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The Physical Content
of General Covariance

John Norton

1. Introduction

“My wildest dreams have been fulfilled,” wrote a jubilant Einstein in
early December 1915 to his dear friend Michele Besso (Speziali, 1972,
p. 60) “General covariance. Perihelion motion of Mercury wonderfully
exact...,” he continued, checking off the achievements that brought to
a dramatic and successful close nearly three years of struggle with his
general theory of relativity, during which time he had mistakenly come
to believe that he must forgo general covariance. The general covariance
of his theory was to be stressed by Einstein as one of its most distinctive
properties and, in particular, the one that gave mathematical expression to
the theory’s extension of the principle of relativity to all states of motion,
He explained this connection to the principle of relativity in lectures he
gave at Princeton University:

We shall be true to the principle of relativity in its broadest sense if
we give such a form to the laws that they are valid in every such four-
dimensional system of coordinates, that is, if the equations expressing
the laws are covariant with respect to arbitrary transformations. (Ein-
stein 1922, p. 60)

Such proclamations are common in Einstein’s work.! Unfortunately, they
have proved to be a problem for later commentators who seek to un-
derstand Einstein’s views because it is now commonplace for any rea-
sonably coherent space-time theory to have a generally-covariant formu-
lation. One need only formulate it by the standard methods of modern
differential geometry. Since these generally-covariant theories include
the versions of Newtonian space-time theory that unequivocally violate
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the usual relativity principles, any interesting connection between gen-
eral covariance and relativity principles seems extremely dubious. Thys,
some modern texts on general relativity lay out the foundations of the
theory without recourse to principles of relativity or covariance. See, for
example, Hawking and Ellis (1973) and Sachs and Wu (1977), who do
not even have entries for these terms in their indices!?

The purpose of this chapter is not to offer yet another vindication of
Einstein’s claim that general relativity is a theory that extends the prin-
ciple of relativity of the special theory. Rather, I explain why a literal
reading of Einstein’s claims should appear incoherent to modern readers
in the first place. Further, I suggest that Einstein’s covariance principles
are principles with physical content and that they are the analogues of
physically significant covariance principles in the modern context. How-
ever, I also argue that the relativity-principle-like character of Einstein’s
covariance principles is a peculiarity of his older and less adequate for-
mulation of general relativity, a conclusion that provides no support to the
view that general relativity, freed of the peculiarities of specific, known
formulations, has effected a generalization of the principle of relativity.
My explanation rests on the fact that we now use a far richer set of
mathematical machinery in formulating general relativity than Einstein
did in the 1910s. One need only scan a text such as Hawking and Ellis’
(1973) to find a wealth of mathematical terms, distinctions, and symbols
that are just not present in Einstein’s work of the 1910s.

Modern readers routinely translate Einstein’s claims both consciously
and unconsciously into this richer language and are generally very suc-
cessful. My thesis is that this translation has been routinely carried out
incorrectly in one important area, and that this incorrect translation is
responsible for much of the apparent incoherence of Einstein’s claims
about covariance. The root of the problem lies in the following:

Where we now represent a space-time mathematically by a differen-
tiable manifold with a point set of unspecified elements, Einstein simply
used number manifolds, open sets of the R

This representation relation is a coordination of an actual or physically
possible space-time with a general differentiable manifold or, for Einstein,
with a number manifold. Thus Einstein naturally gave this representation
the name coordinate system, and we have: '

Einstein’s coordinate systems are not the coordinate charts of a general
differentiable manifold of the modern approach. Rather, they corre-
spond to the modern representation of an actual or physically possible
space-time by a general differentiable manifold.
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I shall try to show that if we read Einstein in accord with the above
proposal, then we shall find that his principle of general covariance is a
principle with significant physical content, and that that content is of the
character of a generalized relativity principle.

2. The Modern View of Space-Time Theories

We now usually take a space-time theory to be synonymous with its set
of models. Thus, general relativity is the set of all triples (M, gap, Top)s
where M is a four-dimensional differentiable manifold, g, is a Lorentz
signature metric, and T, is a symmetric stress-energy tensor, such that
the gop» and 1, of each pair satisfy the field equation

Gap = KT @

where G, is the Einstein tensor and k is a constant. In everyday practice,
it is usually convenient to treat a single triple (M, gas, Tap) as represent-
ing each actual or physically possible space-time and sometimes even to
speak of the triple as simply being the space-time. But, in more careful
presentations, for example, Hawking and Ellis (1973, p. 56), we are re-
minded that each physically possible space-time is actually represented
by an equivalence class of diffeomorphic triples.

To be more precise, now let us define two requirements that may be
satisfied by space-time theories with models of the form (M, 01,0, .. .),
where M is a differentiable manifold and O1, O,, . .. are geometric object
fields defined on M. The first simply provides for the existence of the
members of the equivalence classes of diffeomorphic models previously
mentioned. It is automatically satisfied by such theories as general rel-
ativity by virtue of the general covariance of its defining field equation

Eq. ().

(Active)® General Covariance: If (M, Oy, 0,,...) is any model of the
space-time theory and h any diffeomorphism from M to hM, then the
carried along tuple (hM, h*Oy, h*O,, .. .) is also a model of the theory.
(Active) Leibniz Equivalence: If (M,0:,0,,...) and (hM,h*Oy,
h*O,, ...} are diffeomorphic models of a space-time theory, then they
represent the same physically possible space-time.

The following is crucial to my story:

The requirements of (active) general covariance and Leibniz equiva-
lence are not forced on us by mathematical necessity; they are physical
principles that we can choose to accept or deny.
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The justification for this claim depends on the fact that two diffeomorphic
models are distinct mathematical objects, unless the diffeomorphism con-
cerned is the identity map or a symmetry of the model. Prior to further
assumptions, we must assume that each property of a theory’s model rep-
resents some physical property of a physically possible space-time. Gen-
eral covariance, asserted without Leibniz equivalence, allows us to take 3
model of a theory and from it generate arbitrarily many new and distinct
mathematical models, each of which asserts the physical possibility of 3
distinct space-time. Leibniz equivalence asserts that two diffeomorphic
models represent the same physically possible space-time. This can only
be the case if the properties that distinguish the two models have no
physical significance, that is, represent nothing in the physically possible
space-time. Finally, general covariance and Leibniz equivalence, asserted
jointly, amount to the assertion that the physically significant properties
of a theory’s models are just those that are invariant under arbitrary dif-
feomorphism. They assert that a model and all possible diffeomorphic
copies of it represent the same physically possible space-time. Thus, the
physically significant parts of each model can only be those upon which
they all agree, that is, their invariants under arbitrary diffcomorphism. In
sum, since these principles take a stand on which space-times are phys-
ically possible and what their physical properties are, the principles are
physical principles, not mathematical stipulations.

The properties that distinguish diffeomorphic models are hardly of
great importance because of the sustained attempt to purge our formula-
tions of space-time theories of properties without physical significance.
But, they are there. The simplest case is the one in which the manifolds
M and M’ are the same and the diffeomorphism A is not an identity or
symmetry of the geometric object fields. Then, we can always find a
point p of M at which O; and h*O; differ. If the point sets of M and
M’ are disjoint, the two models are still mathematically distinct entities
distinguished by the property of set membership. If p is a member of the
point set of M, then it cannot also be a member of the point set of M.
This difference—if noticed at all—is usually not taken to be physically
significant. But, no incoherence would follow from deciding otherwise.*

There are two grounds for accepting Leibniz equivalence, and since
Leibniz equivalence is a physical principle, these grounds depend on
physical considerations and cannot be proofs:

1. Under canonical interpretation, the properties that distinguish two
diffeomorphic models do not correspond to any observable physical
properties. So, we admit Leibniz equivalence in order to minimize in-
stances of distinct physical states of affairs that cannot be distinguished
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by any possible observation.

Of course, we would not be guilty of incoherence if we denied Leibniz
equivalence and allowed the possibility of observationally indistinguish-
able but distinct space-times.

2. The generation of diffeomorphic modelis is a gauge freedom of theo-
ries with generally-covariant field equations. If we deny Leibniz equiv-
alence, we force indeterminism in many space-time theories. For ex-
ample, even general-relativistic space-times that admit Cauchy surfaces
become indeterministic.

The forcing of indeterminism in cases such as these seems unwar-
ranted. In particular, there are no observables corresponding to the prop-
erties that remain undetermined, that is, those properties that distinguish
the diffeomorphic models. Notice again, however, that there is no inco-
herence in denying Leibniz equivalence and thereby forcing indetermin-
ism.

These two considerations are essentially the “point-coincidence” and
“hole” arguments presented in greater detail in Earman and Norton (1987)
and Norton (1987). Both arguments find early expression in the work of
Einstein in the 1910s, and I shall return to the first argument in Section
8.

3. Number Manifolds

The ability of space-time theories to provide mathematical representa-
tions of physically possible space-times depends on the availability of a
continuous, finite-dimensional mathematical structure. The modern study
of such structures was initiated by Riemann (1854) in his classic inau-
gural lecture in which he introduced the concept of the “n-fold extended
manifold.” Riemann’s analysis of his n-fold extended manifolds was brief
and imprecise. We can now turn to the theory of point set topology for
a very detailed account of precisely what it is to have manifold struc-
ture. But, this resource was not available to those geometers who sought
to develop Riemann’s idea in the later part of the 19th century. Fortu-
nately, this proved not to be a serious obstacle since these geometers had
at their disposal one example of a class of differentiable manifolds that
had properties that were well understood and could be used whenever
their theories called for a differentiable manifold. That class of differen-
tiable manifold was the number manifold R™. Thus, Felix Klein made
Riemann’s concept precise by explaining:
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At the foundation of his research, Riemann laid n variables z;, x, ...,
Zr, €ach of which can take all real values. Riemann denoted the totality
of their value systems as a manifold of n dimensions; by a fixed value
system z}, 2, ..., Z,, he meant a point in this manifold. (Klein 1928,
p. 289)

This identification of a manifold of n-dimensions with the number mani-
fold R™ was already well established in 1873, at which time Klein (1873,
p. 315) could report that it was “in agreement with the usual terminol-
ogy.” The tradition survived into the 1920s and appears on the opening
page of Levi-Civita’s 1925 treatise on the “absolute differential calcu-
lus,” as the relevant branch of mathematics was then called. (Levi-Civita
1925, p. 9; 1926, p. 1). While the point set topological approach was
being developed in the 1910s through such works as Weyl (1913) and.
Hausdorff (1914), the identification of geometrical manifolds with num-
ber manifolds remained attractive since it promoted the application of
geometrical methods to the problems of real analysis and vice versa.’

This number manifold tradition entered relativity theory in its in-
fancy. Minkowski’s famous “world” was none other than R*. He wrote
in his 1908 address® (Minkowski 1908, pp. 56-67);

We will try to visualize the state of things by the graphic method. Let
z, ¥, z be rectangular coordinates for space and let £ denote time. . .. A
point of space at a point of time, that is, a system of z, y, 2, {, I will
call a world point. The manifold of all thinkable z, y, z, ¢ systems of
values we will christen the world.

The following summarizes the crucial difference between the older
approach of Klein and Minkowski and the modern approach.

Modern approach: An actual or physically possible space-time is rep-
resented mathematically by a general differentiable manifold, that is,
one with a point set of unspecified elements.

Older approach: An actual or physically possible space-time is repre-
sented mathematically by a special case of the general differentiable
manifold, a number manifold, R*, or its open subsets. The representa-
tion, which may only be “patchwise,” is a coordination of the space-time
with points of R"®, so that the maps x, z,, ..., =, (Klein) or z, v,
z, t (Minkowski) that effect this coordination are called “coordinate
systems.”

Einstein’s work in space-time theories lies within the older approach. I
refer here in particular to the three major expositions of general relativity
that Einstein gave in the 1910s: Einstein and Grossmann (1913), Ein-
stein (1914), and Einstein (1916a). These expositions set the pattern for
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Einstein’s and many others’ later expositions. Each of these three expo-
sitions presented a review of the current state of the theory and included
a self-contained primer on the mathematical techniques needed to work
with the theory. Einstein’s assumption was that his physicist readers were
unacquainted with these mathematical techniques. Einstein himself had
needed the assistance of his friend Marcel Grossmann in 1912 and 1913
to gain access to them. Grossmann drew heavily on the review article
by Ricci and Levi-Civita (1901) of the absolute differential calculus, and
he provided a primer on the novel mathematics needed for the new the-
ory in his mathematical part of their joint work, Einstein and Grossmann
(1913). The following year, Einstein felt that he had sufficiently mastered
the mathematical techniques to write the primer himself and in such a
way that it would “enable a complete understanding of the theory with-
out the need to read other pure mathematical treatises” (Einstein 1914,
p. 1040).

The compliance of Finstein with the older number manifold tradi-
tion is not immediately obvious from a reading of the above expositions.
Unlike Klein, Minkowski, and others, neither Einstein nor Grossmann
defined what their manifolds are. Rather, their unexplicated primitive is
the space-time coordinate system, 1, 2, 3, 24, from which the expo-
sitions move immediately to the treatment of coordinate transformations
and the transformation laws for vectors and tensors. The standard practice
of modemn readers is to interpret these coordinate systems as coordinate
charts of another mathematical object, a general differentiable manifold,
which in turn represents the actual or physically possible space-time.
Thus, this modern reading requires the presence of an intermediate level
of mathematical structure that is never explicitly addressed in the expo-
sitions. If we take Einstein at his word and accept that the expositions
are intended to be self-contained, then we must assume that Einstein
did not suppress a major level of mathematical structure, and we must
read Einstein’s coordinate systems as being just like those of Klein and
Minkowski. They coordinate the actual or physically possible space-
times with the mathematical structure used to represent them, R* or its
open subsets.

In the appendix, I review in greater detail the mathematical tradi-
tions upon which Einstein and Grossmann drew in their work on general
relativity. This review helps explain their failure to define the nature of
their manifolds.
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4. The Mathematical Structure of Einstein’s Space-Time
Theories

The use of a number manifold rather than a general differentiable man-
ifold in the older tradition is just one manifestation of the fact that the
older tradition used a much simpler set of mathematical machinery than
we use now. To illustrate the point, I will consider the mathematical
structures that Einstein used in his formulation of general relativity and
to enable close comparison with modern methods, I will read Einstein’s
formulations in a way that mimics the modern extensional or model the-
oretic formulations of space-time theories.

4.1 MODELS

Suppressing the stress-energy tensor T, in the modern formulation, gen-
eral relativity has the models’

(M, gap). @

To recover Einstein’s models, we now know that we should replace the
manifold M by an open set of R*, for example, A, so that we have the
models ’

(A, metrical object). 3

The second position in Eq. (3) requires a mathematical object representing
a metrical structure. Einstein routinely introduced a non-Minkowskian
metrical structure into his expositions by considering two infinitesimally
close space-time points x; and x;+dz; and writing the interval ds between
them as

ds® = gy, da; day,. )

Following the standard definitions of Einstein and Grossmann (1913)
and Einstein (1914 and 1916a), the “fundamental” or metric tensor cor-
responding to Eq. (4) is not the matrix g;;, but the equivalence class of all
the matrices produced by the well-known tensor transformation law un-
der all smooth transformations of the coordinate system. Since we seek
an object peculiar to the coordinate system image set A for the second
position in Eq. (3), we choose not the tensor but the matrix g;, so that
the models are of the form

(A, gir). )

Generalizing, Einstein’s formulation of a space-timé theory posits models
of the form

(A4, Ok, (O2ik -+, ), ©®
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where A is an open set of R*, the quantities (Op);r... are matrices, and
each matrix occupies the position corresponding to a geometric object of
equivalent rank in the modern formulation.

4.2 COORDINATE TRANSFORMATIONS

We have seen that the set of models of a space-time theory in the modern
formulation is divided into equivalence classes of diffeomorphic models.
Two models (M, gqp, Tus) and (M’,g’,, T",) of general relativity, for
example, belong to the same equivalence class just in case there is a
diffeomorphism h for which M’ = hM, g, = h*gap, and T, = h* Ty,

Smooth maps from open sets of R* to open sets of R*-—that is, co-
ordinate transformations—serve the same function for Einstein’s models.
In specifying a model Eq. (6), one must also specify the transformation
law for each of the quantities (O,);k... (covariant tensor, contravariant
tensor, mixed tensor, etc.) A model of general relativity is the triple
(A, gik, Tik), where gix and T transform as covariant tensors. Two
models, (A, gix, Tix) and (A4, g, T7,.), belong to the same equivalence
class just in case there is a smooth map from A to A’ under which g;x
and T} transform into g}, and T7,.

4.3 SPECIAL RELATIVITY AND GENERAL RELATIVITY

The model theoretic version of Einstein’s formulation of general relativity
looks very much like the modern version. Its model set is the set of all
triples (A, gik, Tix) that was defined previously and satisfies the field
equation

Gir = kT, 1)

corresponding to Eq.(1). The formulation of special relativity looks a
little less like its modern counterpart. In his space-time formulations of
special relativity, for example, Einstein (1922), introduced the metrical
structure through the line element

ds? = ——dw% - dx% - clx% + dx%,
which corresponds only to a matrix of metrical components:
hik=diag(—17"'1)_ly+l)a (7)

so that, assuming the space-time is topologically R*, special relativity
has a single model:

(R*, hix). (8)
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The more interesting case of multiple models arises if there are further
matter fields defined on the space-time, such as a Maxwell field or dust
cloud. To avoid unnecessary detail, I shall represent these matter fields
by their stress-energy mairix Tjz so that the model set is the set of all
triples of the form

<R47 hika Tik>7 (8’)

such that the T} satisfy the laws of the relevant maiter theory and trans-
form as a covariant tensor. A comparison of Einstein’s formulation and
the modern formulation of a space-time theory highlights the advantages
of the modern formulation. In particular, if the space-time in question is
not topologically R", then Einstein’s formulation cannot represent it by
a single model, but must combine several in a patchwise fashion, with
all the attendant complications.

5. The Problem of Superfluous Manifold Structure

A general differentiable manifold is structurally a quite impoverished
representation of a space-time. In modern formulations of space-time
theories, if we wish to represent such familiar entities as frames of ref-
erence, we need to introduce them as further structures defined on the
manifold. We represent a frame of reference by adding a congruence of
curves. But, Einstein’s use of number manifolds to represent space-time
raised a quite different problem for him. Number manifolds have too
much structure. Take some model (R*, g, Tix) of a relativistic space-
time. Since the model represents the space-time, the straightforward
reading is that each of its mathematical properties represents a property
of the space-time. Some of these properties are:

1. Inhomogeneity: each point of R* is distinct, so every space-
time event is intrinsically different to every other;

. Absolute simultaneity: x4 is a time coordinate, so the hy-
persurfaces of constant x4 represent hypersurfaces of simul-
taneity.

. Absolute rest: the natural rest frame of the space-time is
represented by the congruence of x4 curves;

. Set of inertial frames: each parallel congruence of straights
with constant velocity V, where V2 = (dx1/dxs)* +
(dx2/dze)? + (dxs/ dx4)? represents a frame of reference of
uniform velocity; and
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5. Metrical significance of the coordinates: the x1,x2, 3 co-
ordinates are measures of length, and the x4 coordinate is a
measure of time.

The idea that number manifolds have such default physical interpreta-
tions played an important role in Einstein’s developments of space-time
theories. For example, it was not uncommon for him to introduce the
notion of a space-time coordinate system by means of property (5), that
is, by specifying the space and time measuring operations needed to de-
fine the coordinate values (see, for example, Einstein 1917, Chapters 2
and 3). But then, proceeding to general relativity and its wider class of
coordinate systems, Finstein went to great pains to convince the reader
that coordinate systems must forfeit their direct metrical significance (see,
for example, Einstein 1916a, Section 4; 1917, Chapters 23-25).%

6. The Solution: Einstein’s Covariance Principles Are
Physically Significant Principles

What Einstein needed was some systematic method of denying physical
significance to all of the superfluous structures imported into his space-
time theories by his use of number manifolds. Einstein was not the only
one to face this problem. Felix Klein had faced and solved it brilliantly
some 40 years earlier. The central idea of his celebrated Erlangen pro-
gram was to characterize geometric structures as the invariants of groups.
Einstein applied this same idea to his space-time theories. Associated
with each theory was a covariance group of coordinate transformations.
The physically significant mathematical properties were those that re-
mained invariant under the transformations of the group.

Einstein’s solution admits a precise statement in a way that mirrors
the requirements of general covariance/Leibniz equivalence, defined in
Section 2 for the modern formulation. The main difference is that the
modern view only needs to define covariance with respect to the group
of smooth transformations, whereas for Einstein, the group varies in size
with the theory.

Covariance of a theory under a group G of transformations:

If (A, (O1)ix - -+, (O2)ik - - -, - - -} is a model of a space-time theory, then
any tuple (A’ (01l - -+, (02, - - -, - - -) related to it by a transformation
within G is also a model of the theory.

Leibniz equivalence: If two models (A, (O1)i -+, (O2)i -+, --) and
(A, (01 -+, (On)i + -+, -+ ) of a space-time theory are related by a
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transformation within G, then the two models represent the same actual
or physically possible space-time.

Following the pattern in Section 2, I have distinguished covatiance from
Leibniz equivalence, although the two are usually lumped together and
simply labeled as a covariance principle. In particular, I shall read Ein-
stein’s assertions that a space-time theory is or should be covariant under
some group as the assertion that it does or should satisfy both of thege
requirements. Einstein clearly understood Leibniz equivalence to be part
of a covariance requirement, as he showed in his autobiographical notes,
There, he imagined that one treats some generally-covariant field theory
as if it were only Lorentz covariant. Recognizing its general covariance,
he urged, led to the

level of understanding corresponding to the general principle of rela-
tivity. For, from the standpoint of the Lorentz group, two solutions
would incorrectly have to be viewed as physically different if they can
be transformed into each other by a nonlinear transformation of coordi-
nates, i.e., if from the point of view of the wider group they are merely
different representations of the same field. (Einstein 1949, pp. 70-73)

The Lorentz and generally covariant approaches of his example have
identical covariance in the strict sense of my definition above because
they have identical sets of models (“solutions”), generated by the one set
of equations. They differ just on the issue of the Leibniz equivalence
requirement associated with each group, that is, on which models are to
represent the same physical space-time.

Einstein also predicated the covariance property not directly to the
model set but to the equations that define the model set. The two are
clearly equivalent; if the equations defining a model set are covariant
under a group G then the model set must also be covariant under that
group and vice versa.

The covariance/Leibniz equivalence requirements provide a system-
atic method of depriving some of the mathematical properties of a the-
ory’s models of physical significance. If two intertransformable models
represent the same space-time, then all mathematical properties upon
which they differ can have no physical significance. That is, only those
properties shared by the models—the invariants of the theory’s covariance
group—can be physically significant.

Finally and most important, notice that the satisfaction of a co-
variance/Leibniz equivalence requirement by a space-time theory is not
merely a matter of mathematical definition. The requirement involves a
judgment of whether certain mathematical properties of models are phys-
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ically significant and such judgments are necessarily matters of physical
contingency. In this regard, the status of the requirement is exactly the
same as that of active covariance/Leibniz equivalence requirements for
the modern formulation of space-time theories, so that the considerations
of Section 2 apply equally here. The conclusion that Einstein’s covari-
ance/Leibniz equivalence principles have physical content after all is a
direct result of the new reading that I urge here for Einstein’s “coor-
dinate systems.” I stress that this conclusion is not possible under the
standard modern reading of Einstein’s coordinate systems as the coor-
dinate charts of a differentiable manifold. For example, taking some
model (M, gqp, Top) of general relativity, and transforming between dif-
ferent coordinate charts of its manifold M simply transforms between
what are by mathematical definition different component representations
of the same model.’

7. Covariance Principles as Relativity Principles

The covariance/Leibniz equivalence properties of space-time theories for-
mulated in the modern way usually attract little attention. The fact that
they deprive certain mathematical properties of the space-time models
of physical significance is rarely mentioned or even noticed since these
mathematical properties are usually of minimal interest. '

For Einstein, however, the situation was very different. The covari-
ance/Leibniz equivalence properties of his space-time theories contain
the relativity principles of his theories. The mathematical properties of
his models that are deprived of physical significance include those asso-
ciated with preferred states of motion, properties 1-5 listed in Section 5.
The extension of the principle of relativity in the transition from spe-
cial to general relativity is embodied in a sequence of three covariance
requirements: Lorentz covariance, its extension through the principle of
equivalence, and general covariance.

7.1 SPECIAL RELATIVITY

Special relativity is Lorentz covariant, that is, it is covariant under the
transformation of the extended Lorentz group. By definition, the extended
Lorentz group is the set of all transformations that map (R*, hix) onto
itself. To be a special relativistic matter theory, the laws that govern
the T;z of the models Eq.(8’) must be Lorentz covariant; therefore, if
(R*, hik, Tix) is a model of the theory, then so is any Lorentz transform
of it, (R*, hik, T} and under Leibniz equivalence, the two models must
represent the same physically possible space-time.
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Applying the discussion of Section 6, we can now read some of the
properties of the models deprived of physical significance by Lorentz,
covariance. They are those that are not invariant under Lorentz trans-
formation and include (1) inhomogeneity, (2) absolute simultaneity, and
(3) absolute rest. The assertion that there is no physical significance ac-
corded an absolute state of rest is the principle of relativity of special
relativity.

But, those structures that are invariant under Lorentz transformation
remain physically significant. The most notable of these is property 4,
Section 5, the set of inertial frames. While each inertial frame of R* will
in general be mapped onto a different frame, the set of inertial frames
is mapped onto itself. This feature of the coordinate systems of special
relativity makes Einstein’s description of them as “inertial systems” a
natural one.

7.2 GENERAL RELATIVITY

An extension of the principle of relativity to accelerated motion requires
a theory in which not just the state of rest but also the inertial frames
of the number manifolds are deprived of physical significance. This
result is obtained in general relativity through its general covariance. Its
covariance group is the group of all smooth transformations. Under this
group, none of properties 1-5 are invariant, including in particular the
set of inertial frames, property 4. Thus, throughout his writings, Einstein
characterized general relativity as the theory that achieved the elimination
of the preferred inertial system (see, for example, Einstein 1913, p. 1260,
footnote; Einstein 1953).

7.3 PRINCIPLE OF EQUIVALENCE

The basic strategy of the extension of the principle of relativity in the
move from special to general relativity is the expansion of the covariance
group of the theory. To motivate this expansion, Einstein routinely in-
cluded the case of the principle of equivalence as an intermediate between
special and general relativity.!! The principle is nothing other than an ex-
pansion of the covariance group of special relativity. As formulated so
far, the intertransformable models of special relativity are always related
by a Lorentz transformation. The principle of equivalence requires that
we add to the set of models all those models produced by transformations
that map inertial frames into uniformly accelerated frames. Under these
new transformations, a model

(R*, hir) ®
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will be mapped to a model
(4, gir) ®)

where A is some open subset of R* and g;; no longer has the simple
constant values of h;x = diag(—1,—1,—1,+1).

The covariance/Leibniz equivalence requirement asks that Egs. (8)
and (9) represent the same physically possible space-time. Now, Eq. (9)
has an interesting physical interpretation. The trajectories of free test
particles do not coincide with the curves of the inertial frames, as canon-
ically defined for A via (property 4), Section 5. But, these accelerated
trajectories of the free particles are governed solely by the matrix of
coefficients g;x and are independent of the particles’ masses. So, in
a much celebrated argument dependent on the equality of inertial and
gravitational mass, Einstein urged that we interpret the acceleration of
the particles as due to a homogeneous gravitational field represented by
gik- The covariance/Leibniz equivalence requirement amounts to the as-
sertion of the physical equivalence of Egs. (8) and (9), one interpreted as
gravitation free and the other as with a homogeneous gravitational field.
If we use K to label the coordinate system of the inertial model, Eq. (8)
and K' for the coordinate system of the accelerated model, Eq. (9), the
covariance/Leibniz equivalence requirement becomes exactly Einstein’s
statement of the principle of equivalence:

The assumption of the complete physical equivalence of the systems of
coordinates K and K/, we call the “principle of equivalence”. . . (Einstein
1922, p. 56)

Finally, since the principle of equivalence is an intermediate between
Lorentz and general covariance, we can understand why Einstein would
claim:

The requirement of general covariance of equations embraces the prin-
ciple of equivalence as a quite special case.” (Einstein 1916b, p. 641)

This is a claim that has hitherto resisted coherent interpretation by
modern commentators.

8. Kretschmann’s Objection

One of the earliest objections to Einstein’s equating of general covariance
with a general principle of relativity was raised in Kretschmann 1917.12
Kretschmann’s paper is remarkable not so much for this objection, for
which the paper is usually remembered, or, as I urge in Section 8.2,
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misremembered. Rather, as I explain in Section 8.3, it is remarkable for
its prescient treatment of relativity principles and other ideas in space-
time theories.

8.1 THE POPULAR VERSION

Kretschmann’s objection is now routinely represented (see, for example,
Graves (1971, p. 137).) as the remark that one can take the equations
expressing any given law and, with sufficient mathematical ingenuity,
modify them until they take on generally-covariant forms. Thus, the
achievement of general covariance is merely a challenge to our math-
ematical ingenuity and fails to express anything physical, let alone to
express a relativity principle.

The objection, in this simplified form, has been widely accepted.
But, it is not at all clear that this form of the objection is correct. Of
course, one can always take a law-like equation and modify its form un-
til it becomes generally-covariant. One can then assert that the modified
equation has the same physical content as the original. But, this assertion
might require physically contingent hypotheses. In modifying the orig-
inal equations, one might, for example, introduce further mathematical
structures to enable achievement of general covariance. To retain physi-
cal equivalence with the original equation, one must make the physically
contingent assumption that the added structure is merely an auxiliary and
has no independent physical significance.

A clear instance of this arises in the expansion of the covariance
of special relativity by the principle of equivalence. The expansion was
effected by adding models of the form Eq. (9). However, the assertion
that the expanded theory has the same physical content as the original
theory required an assumption. It was that a model of the form Eq.(8)
represents the same space-time as a model of the form in Eq. (9) to which
it could be transformed, even though the second model was considerably
different in mathematical structure. The assumption needed, that these
mathematical differences have no physical significance, is Leibniz equiv-
alence, which, as I have repeatedly stressed, is a physically contingent
hypothesis. Its physical character is shown very clearly in this case, be-
cause, in the guise of the principle of equivalence, it makes the assertion
that a gravitation-free model, Eq. (8), represents the same space-time as
the model in Eq. (9), which contains a homogeneous gravitational field.

Finally, if one accepts this form of the objection, I see no reason-
able way that one can avoid analogous objections against the physical
significance of just about any property of any given theory. To estab-
lish the physical vacuity of some given property of a theory, one need
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only represent it as a purely formal property and establish that the pres-
ence of that formal property can be guaranteed in formulations of a wide
range of incompatible theories, a task so loosely defined that it is triv-
jally achievable. Thus, the presence of £ = mc? in the laws of special
relativity can be shown to be devoid of physical content. If one modifies
the formulation of special relativity so that the string E = mc? becomes
a stipulation, the definition of a quantity m in terms of the energy E of
some body, then the physical content formerly carried by E = mc? is
transferred to the physically contingent m’ = m, where m’ is defined as
the inertial mass of the body. With only a little mathematical ingenuity
and the introduction of a few auxiliary terms, one can similarly guarantee
the presence of E = mc? in a formulation of Newtonian mechanics'® or
just about any other theory.

8.2 KRETSCHMANN’S VERSION

What Kretschmann actually said was more cautious and more interesting
than the simplified report of section 8.1. At the outset of his paper,
after recalling the connection claimed by Einstein between covariance
and relativity principles, Kretschmann summarized his first worry:!4:

...imagine that all physical observations consist in the last analysis of
the determination of pure topological relations (coincidences®) between
space-time objects of perception and, hence immediately that no coor-
dinate system is privileged® above any other by them, so that one is
forced to the conclusion that each physical theory can be brought into
accord with every arbitrary relativity postulate, including the most gen-
eral, without alteration of the theory’s freely chosen and observation-
ally testable content, by a means associated at worst with mathematical
difficulties: a purely mathematical transformation of the representing
equations.® (Kretschmann 1917, pp. 575-576)

Kretschmann claimed that the laws of any space-time theory can be
brought into generally-covariant form purely by mathematical manipula-
tion and thus, by Einstein’s lights, into accord with a generalized prin-
ciple of relativity. But, the claim is dependent on an assumption: that
“all physical observations consist in the last analysis of the determina-
tion of pure topological relations (coincidences?)...” This assumption is
immediately recognizable as the central assertion of Einstein’s so-called
point-coincidence argument, and of course, Kretschmann’s footnote (a)
to the word coincidences is to Einstein’s best-known published version
of the argument (Einstein 1916a, p. 776).

The point-coincidence argument is Einstein’s version of argument
(1) for Leibniz equivalence given in Section 2.1 In brief and translated




298 John Norton

into the model theoretic terms of this chapter, he urged that all obsery-
ables are, in the end, space-time coincidences, such as the world line
intersections of particles in a simplified universe containing only par-
ticles or, more generally, that all measurement reduces to coincidences
of material systems and measuring instruments. All such coincidences
are preserved under coordinate transformation, so that intertransformable
models must represent the same physically possible space-time, which is
Leibniz equivalence (and, in turn, is included automatically in Einstein’s
requirement of general covariance).

This assumption, upon which the argument and Kretschmann’s claim
are based, amounts to a significant physical assumption. It amounts to
requiring that

(PC) the physical content of a space-time theory is fully exhausted by
the catalog of its space-time coincidences,

so that we are enjoined to accord no physical significance to any property
of a model of a space-time theory, if the property is not fully recoverable
from this catalog of coincidences. That such a dramatic assumption is
at the heart of Einstein’s argument is seen more clearly in the versions
of the argument written to his correspondents. To Besso in a letter of
January 3, 1916, he explained the core of the argument:

Reality is physically nothing other than the totality of space-time point
coincidences. If, for example, all physical occurrences were constructed
from the motion of material points alone, then the meetings of the
points, i.e., the intersections of their world lines, would be the only
reality, i.e., that which is in principle observable. (Speziali 1972, p. 64)

Following the pattern of his other presentations of the argument,' Ein-
stein continued to argue that this assumption leads directly to general
covariance:

Naturally, these intersection points are preserved under all transforma-
tions (and nothing new is added), as long as certain uniqueness condi-
tions remain true. Therefore it is most natural to require of the laws
that they do not determine any more than the totality of time-space
coincidences. According to what I have said above, this has already
been achieved through generally covariant equations.

Thus, we have neither Einstein’s nor Kretschmann’s arguments warrant-
ing the claim that general covariance is physically vacuous. Rather, for
both, it is a consequence of a profound physical assumption (PC) about
the world, that the physical content of a space-time theory is exhausted
by the catalog of its space-time coincidences.
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I have been unable to develop a clear picture of Einstein’s own atti-
tude toward Kretschmann’s arguments and, in particular, whether Einstein
realized that Kretschmann had failed to demonstrate the physical vacuity
of general covariance. Einstein’s published response (Einstein 1918) to
Kretschmann is clearest. There we find that Einstein conceded a little
less than is usually thought. He listed the three principles upon which his
general theory depends: (1) the principle of relativity, (2) the principle of
equivalence and (3) Mach’s principle. The principle of relativity becomes
the assumption (PC) and the remark that general covariance follows from
it:!7

Principle of relativity: The laws of nature are only assertions about

time-space coincidences; therefore, they find their only natural expres-

sion in generally covariant equations.

On the following page (p. 242) he conceded to Kretschmann that general
covariance “is only a requirement relating to the mathematical formu-
lation [of laws],” but this concession is clearly dependent on the prior
assumption of (PC). The concession is immediately explained by Ein-
stein with a restatement of the assumption (PC) and the fact that it leads
directly to general covariance.!® _

Einstein’s later treatments of general relativity uniformly stress the
fundamental role played by a requirement of general covariance and seem
to remain essentially unaffected by whatever concession he might have
made to the claimed physical vacuity of general covariance. Such a con-
cession is not mentioned, for example, in his textbook-like exposition
(Einstein 1922, see especially p. 60) or in a lengthy, unpublished expo-
sition of special relativity and general relativity (Einstein 1920). It is
mentioned in passing elsewhere (such as in Einstein 1924, pp. 90-91)
and in greater detail in Einstein (1949, pp. 64-65). But, it is difficult
to see that he took the objection seriously given, in the latter instance
(Einstein 1949), the discussion that follows and especially his insistence
on (Einstein 1949, p. 73) that “we have already given physical reasons
for the fact that in physics invariance under the wider [general] group
has to be required. . .” (Einstein’s emphasis—not mine!).

8.3 KRETSCHMANN’S FORMULATION OF RELATIVITY PRINCIPLES

That generally-covariant formulations should be available for all space-
time theories (given PC) was only the first point of Kretschmann’s cri-
tique. The bulk of his paper was devoted to the question of determining
just what relativity principle was satisfied by any given space-time theory,
given that this judgment could not simply be made from the covariance
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group of the theory’s equations. The answer he gave and many of the
results he derived turn out to be characteristic of much later work.

In modern terms, he recommended that we identify the relativity
principle of a space-time theory with the symmetry group of the geomet-
ric structure of the theory. This viewpoint emerges most clearly when
he gives a “geometric determination” of the theory’s relativity principle,
In essence, he sought that group of transformations that maps the con-
formal and affine structure of the theory back into itself, that is, their
symmetries. His approach depended on the idea that these are the ob-
servable structures of the theory. For special relativity (Kretschmann
1917, pp. 581-583), he sought only the symmetries of the conformal
structure, that is, of the “bundle of the light-like world lines” and ar-
rived at a group of transformations that is independent of the equations
describing the theory. He provided (Kretschmann 1917, pp. 607-611)
a similar analysis for general relativity, first seeking the symmetries of
the conformal structure and then the (time-like) affine structure to con-
clude that these structures jointly have no non-trivial symmetries, so that
general relativity is “a completely absolute theory” and, moreover, that
special relativity has the largest relativity group of space-time theories
employing a Lorentz signature metric.

It is remarkable that as a part of his analysis of the extent to which
observation can determine the mathematical structures of special relativity
and general relativity, Kretschmann asked and answered the question of
how much conformal and affine structures determine the metrical struc-
ture. He found (Kretschmann 1917, pp. 585-590) that the conformal
structure determines the metric up to a conformal factor and that the
affine structure forces this factor to take a constant value. These results
and the general approach are usually attributed to a later tradition ini-
tiated by Weyl (Torretti 1983, pp. 192-193). Kretschmann’s paper is
also notable for its treatment of invariant methods of defining specialized
coordinate systems in general relativity in terms of curvature invariants
(Kretschmann 1917, pp. 591-606).

The precise response (Einstein 1918) to this latter and most sig-
nificant part of Kretschmann’s critique is less clear. Presumably, it is
embodied in his distinction of Mach’s Principle!® from the principle of
relativity, a distinction that he conceded in a footnote (Einstein 1918,
p. 241) he had not previously made and that, he allowed, had caused
confusion. Presumably, Einstein hoped that the satisfaction of Mach’s
principle by general relativity would distinguish it from other generally-
covariant space-time theories and justify the idea that the theory embod-
ies some kind of extension of the relativity of motion. It is now well
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known that these hopes were never fulfilled and that Einstein abandoned
Mach’s principle in later years. The story is told in many places; see, for
example, Torretti 1983, pp. 194-202.

9. Conclusion

What has been established here is that the covariance principles of Ein-
stein’s formulations of space-time theories have physical content in a
manner precisely analogous to the less important active covariance princi-
ples of the modern formulation of space-time theories. We have also seen
that Einstein’s covariance principles have the character of relativity prin-
ciples since they deny physical significance to a series of mathematical
structures interpreted as representing rest and inertial frames of reference.
But, this relativity principle character is peculiar to the formulation of
space-time theories chosen by Einstein. It depends on his use of number
manifolds to represent space-time, which introduces considerably more
mathematical structure into his models than is present in the models of
a modern formulation of the same theory. The corresponding covariance
principles of the modern formulations, then, have physical content, but
they do not have the character of a relativity principle. Just as Kretsch-
mann urged in 1917, the relativity principles of modern formulations are
defined in terms of the symmetries of the geometrical structures defined
on the manifold, and perhaps with the exception of special relativity, the
identification of these principles has considerably less importance to the
theory’s formulation.

Perhaps the most important heuristic outcome of the comparison
of Finstein’s and the modern formulations of space-time theories is the
recognition that the latter uses a considerably richer repertoire of mathe-
matical structures. I argued that the failure to recognize this or to account
for it properly had led to a systematic mistranslation of many of Einstein’s
ideas into the modern context. I have argued elsewhere, in a longer treat-
ment of the issues raised here (Norton 1989), that another instance of this
problem is the great difficulty modern commentators have faced in de-
ciding whether to read Einstein’s coordinate transformations actively or
passively in the context of his hole and point-coincidence arguments, and
I urge that the methods introduced here provide a complete solution to
this problem.
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Appendix: Two Traditions
Absolute Differential Calculus and Vector Analysis

Einstein and Grossmann drew their mathematical techniques for gen-
eral relativity from two traditions so that these techniques are actually
an amalgamation of the methods and standard procedures of these two
traditions. A review of these traditions and how they were combined ex-
plains some of the apparent idiosyncrasies of Einstein and Grossmann’s
techniques and, to some extent, their neglect to define the nature of their
manifolds.

First and most important was the tradition in differential geometry
and the invariants of quadratic differential forms that began with Gauss’s
theory of surfaces and extended through the work of Riemann, Christof-
fel, Lie, Ricci, and Levi-Civita. For the advent of general relativity, the
tradition’s most important product was the Ricci and Levi-Civita (1901)
review article of the absolute differential calculus upon which Einstein
and Grossmann drew heavily. There were two distinct parts to this tradi-
tion. On the one hand was the investigation initiated by Gauss of surfaces
characterized in the simplest two-dimensional case by the line element

ds? = E du® + 2F du dv + G dv* (A1)

where u and v are the coordinates and F, F', and G are some functions
of them. The study of such surfaces led directly to the investigation of
the invariants of quadratic differential forms such as Eq. (A1). However,
the theory of these invariants could in principle be developed as an au-
tonomous theory; one need only think of u and v as variables subject
to transformations and suppress the surface theoretic interpretation. The
literature in the theory of invariants of quadratic differential forms, such
as Wright (1908, p. 4), did go to some pains to point out that differential
geometry provided just one interpretation of the theory.

Einstein and Grossmann’s debt to this tradition has been frequently
recalled (see, for example, Pais 1982, pp. 210-213) and is much cele-
brated as an instance of pure mathematics anticipating the needs of the
physicist. This tradition is usually designated as the primary mathe-
matical source for general relativity. Einstein (1915, p. 779) had intro-
duced one of the final versions of the theory as “a veritable triumph of
the method of general differential calculus founded by Gauss, Riemann,
Christoffel, Ricci, and Levi-Civiter [sic].” More soberly in the introduc-
tory page of his 1916 review of the theory, he remarked:

The mathematical aids necessary for the general theory of relativity lay
ready made in the “absolute differential calculus,” which rests on the
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research of Gauss, Riemann, and Christoffel on non-Euclidean mani-
folds and had been brought into a system by Ricci and Levi-Civita and
already applied to the problems of theoretical physics. (Einstein 1916a,
p. 769)

(Lamentably this page was omitted from the standard English translation,
Einstein 1916b.)

It is easy to misunderstand Einstein’s remarks here. What he pointed
out are the mathematical methods required for general relativity that were
not already a part of the standard repertoire of physicists and of relativists
inparticular. There was a second mathematical tradition upon which Ein-
stein also drew heavily, the tradition of work in vector analysis. Einstein
did not mention it since it was already incorporated into relativity theory
by 1912 and 1913. (We shall see that Grossmann was clearer on the role
of vector analysis in general relativity.)

This second tradition grew from the work of Hamilton and Grass-
mann, and Gibbs and Heaviside, and its methods and concepts were
developed with a very careful eye on their applications in physics. (For
a general historical survey, see Crowe 1967). Vector analysis entered the
German physics literature by means of its prime application, the theory
of electricity and magnetism, when August Foppl decided to use vector
methods in his text (Foppl 1894) on Maxwell’s theory. This text, and
its later incarnations, soon became the most popular text in electricity
and magnetism in the German physics community. Foppl’s text offered a
self-contained exposition of vector analysis, a practice that was repeated
in the later incarnations, such as in Abraham and Foppl (1904) and the
last version of Becker (1964).

Since there were close historical connections between special rel-
ativity and the theory of electricity and magnetism, it was natural for
vector methods to become associated with special relativity, even though
Einstein’s 1905 article “On the Electrodynamics of Moving Bodies” (Ein-
stein 1905) did not employ the latest vector methods. That association
was made most firmly by Minkowski (1907), when he showed that the
four-dimensional space-time formulation of special relativity enabled an
especially simple formulation of the theory of electrodynamics. The ve-
hicle of this new formulation of electrodynamics was the extension of
the standard vector analysis of the period to a four dimensional vec-
tor analysis at whose heart lay (among others) the two new quantities
“space-time vectors of the first kind” and “space-time vectors of the
second kind,” which soon came to be known as four- and six-vectors,
Introductions to the mathematical techniques required for the space-time
formulation of special relativity soon leaned heavily toward an exposition




304 John Norton

of four-dimensional vector analysis. Thus, Sommerfeld’s (1910a, 1910b)
introduction to these techniques is entirely devoted to an exposition of
four-dimensional vector analysis, and the association between vectorial
concepts and special relativity had become so strong that Sommerfeld
formulated the principle of relativity simply as the assertion that “only
space-time vectors are allowed to appear in physical equations” (1910a,
p. 749; Sommerfeld’s emphasis).

The two traditions described developed in essentially autonomous
literatures, although it was clearly obvious to the researchers in both
traditions that they shared common problems and that their methods could
be applied in the other tradition. For example, the review article by Ricci
and Levi-Civita (1901) concludes with a discussion of the application
of the absolute differential calculus in physics to vectorial fields and the
example of the theories of electrodynamics, heat, and elasticity in general
coordinates. Conversely, Abraham in his 1901 Teubner Encyklopidie
article on vector analysis, noted in passing that the absolute differential
calculus could be used to represent vectors and tensors in curvilinear
coordinates (Abraham 1901, p. 38). That a more substantial connection
should be effected between the traditions became all the more likely after
Minkowski (1907) stressed the importance to the Lorentz group of the
invariance of the space-time interval

2+t + 22— 12, (A2)

an expression quadratic in the space-time coordinates z, y, z, t. This em-
phasis was close to the focus of the differential geometry of the time, the
invariants of quadratic differential forms.

It was Einstein and Grossmann who effected the first systematic
amalgamation of the two traditions. In developing general relativity,
Einstein began with special relativity in the four-dimensional vector for-
mulation given to it by Minkowski. In order to incorporate gravitation
into the theory, Einstein replaced Minkowski’s requirement of the invari-
ance of Eq. (A2), by the invariance of the quadratic differential form:

da® + dy? + d2* — di?,

or, more generally in the arbitrary curvilinear coordinate z* (i = 1, 2, 3,
4),

gir dzidz®. (A3)

Through Grossmann, Einstein found that the mathematical techniques
needed to understand the invariants of this quadratic differential form
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were already collected in the Ricci and Levi-Civita (1901) review article
on the absolute differential calculus. Einstein and Grossmann took the
techniques of this calculus and grafted them onto the vectorial methods of
four-dimensional special relativity to yield a generalized vector analysis
that became the standard for work in general relativity.

Grossmann explicitly acknowledged this procedure in the introduc-
tion to his mathematical part of Einstein and Grossmann (1913). He
noted that the mathematical aids for developing a “vector analysis of the
gravitational field” derive from the work of Christoffel and Levi-Civita
and continued:

However, the vector analysis of Euclidean space related to arbitrary
curvilinear coordinates is formally identical to the vector analysis of an
arbitrary manifold given through its line element. Therefore, there are
no difficulties in extending the vector analytic conceptual system, as it
had been developed in recent years by Minkowski, Sommerfeld, Laue,
and others for relativity theory, to the general theory of Einstein given
here.

The general vector analysis, which one then recovers, proves with
some practice to be just as simple to manage as the special vector
analysis of three- or four-dimensional Euclidean spaces;. . .(Einstein
and Grossmann 1913, p. 23; Grossmann’s emphasis)

Elsewhere, Grossmann (1913) introduced the new mathematical sys-
tem with an equation by equation comparison of the “usual vector anal-
ysis” of Minkowski and Sommerfeld, which was limited to orthogonal
coordinate systems, with the “general vector analysis” of the new theory
to which it had been generalized by introduction of the work of Christof-
fel, and of Ricci and Levi-Civita and now admitted arbitrary curvilinear
coordinate systems,

As a result of this procedure of generalization, aspects of vector
methods and concepts were accorded a prominence that they otherwise
might not have enjoyed. The clearest illustration of this prominence lies
in the nomenclature used. The Ricci and Levi-Civita (1901) review ar-
ticle is now commonly known by such titles as “Ricci and Levi-Civita’s
Tensor Analysis Paper” (Hermann, 1975). However, the remarkable fact
is that the term tensor appears nowhere in Ricci and Levi-Civita’s arti-
cle. The quantities we would now call tensors (and vectors) are there
called “contravariant and covariant systems.” Moreover, the term tensor
is not used in the modern way in standard texts in differential geometry
and the invariants of quadratic differential forms at the time of Einstein’s
development of general relativity (e.g., Wright 1908, Bianchi 1910, Dar-
boux 1914).
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The term tensor comes directly from vector analysis. Tensors were
routinely but certainly not prominenily defined in the standard develop-
ments of vector analysis. However, in the older tradition, the scope of
the definition was narrower than the modem definition. Thus, Abraham
(1901, p. 28) defined as a tensor only those quantities whose components
transformed like the components of what we would now call the outer
product of two vectors. That is, Abraham’s tensors were what we would
now call second rank, symmetric tensors. The reason for this narrow-
ness was simple. As the word tensor betrays, the quantities were defined
with a specific application in mind, the stress tensors of the theory of
elasticity, which were second rank and symmetric. The generality of
the modern definition would simply have been superfluous. The term
tensor found its way into the four-dimensional vector analysis of special
relativity—eventually. Minkowski (1907) did not use the term, although
he did present a matrix representation for the components of the four-
dimensional analogs of tensors. Sommerfeld (1910a, p. 767) applied the
term tensor in the four-dimensional vector analysis in as narrow a way as
Abraham and for similar reasons. Sommerfeld’s tensors were again what
we would call second rank, symmetric tensors, and the word tensor was
still entirely appropriate to their principal application as a stress energy
tensor. Following Minkowski (1907, p. 82), Sommerfeld (1910a, p. 754)
recognized that his six-vectors had components that formed a second rank,
antisymmetric matrix, but he did not apply the term tensor or antisym-
metric tensor to the quantity. Finally, Laue’s (1911) exposition of special
relativity offered as restricted a definition of his four-dimensional “world
tensors” as Sommerfeld’s definition of his “tensor,” although deeper in
his exposition, Laue admitted an “unsymmetric,” three-dimensional stress
tensor (p. 151).

It is easy to see why Einstein or Grossmann would categorize the
coefficients g;% in the fundamental form Eq. (A3) as representing a tensor
within their generalized vector analysis, even though there is no longer
any immediate connection between the quantity represented and the the-
ory of elasticity. These coefficients transform exactly as required by the
definition of the tensors of Sommerfeld and Laue. Yet, for a reason that
is not clear to me, the term tensor was defined by Grossmann in Ein-
stein and Grossmann (1913, p. 25) as applying not just to the quantity
represented by the coefficients g;x, but to all those represented by Ricci
and Levi-Civita’s contravariant and covariant systems. This broader us-
age justifies the labeling of the absolute differential calculus as a tensor
calculus. It became the standard not just in the generalized vector anal-
ysis used in relativity theory, but in differential geometry and the theory
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of the invariants of quadratic differential forms as well. In 1925, Levi-
Civita published a treatise called Lezioni di Calcolo Differenziale Assoluto
(Levi-Cevita 1925). Its expanded English translation was published the
following year [(Levi-Civita 1926) (see Levi-Civita 1925 in references)]
with the appropriate title The Absolute Differential Calculus. But, to it,
presumably in deference to the new nomenclature grafted onto it from
vector analysis, was added parenthetically the new subtitle “Calculus of
Tensors.”

We can now turn to the question of Einstein and Grossmann’s failure
to define the nature of their manifolds. In brief, this failure simply
follows the standard. practice of many of the expositions in both of the
mathematical traditions upon which they drew.

Expositions of vector analysis around 1900 saw their primary bur-
dens to be the definition of vectorial quantities and the development of
their properties. Thus, the first definitions given are typically of polar
and axial vectors, which are characterized in terms of their behavior un-
der coordinate transformation. There is no discussion of the nature of
the physical space in which the vectors are defined; coordinate systems
and right angled coordinate systems are simply introduced as primitive
notions presumed intelligible to the reader. Sommerfeld (1910a, 1910b)
took a similar approach in his exposition of the four-dimensional vector
algebra and analysis. After a brief introductory page, he turned imme-
diately to his first definitions, four- and six-vectors. The concepts of
four-dimensional space-time and coordinate systeins are presumed to be
familiar to the reader.

In their exposition of the absolute differential calculus, Ricci and
Levi-Civita noted:

..a manifold V,, is defined intrinsically in its metrical properties by n
independent variables and by all of a class of quadratic forms of the
differentials of these variables, such that any two of them are trans-
formable from one to the other by a point transformation. (Ricci and
Levi-Civita 1901, p. 482)

This definition of a manifold is different from the definition of a mani-
fold as a number manifold, which we saw in Section 3 in the work of
Klein, and Minkowski and, in 1925, of Levi-Civita.?® Later in his 1925
exposition, Levi-Civita (1926, p. 119) defined what he called a “metric
manifold,” designated by V,,, as a number manifold in conjunction with
a quadratic differential form, Eq. (A3). The manifolds V;, of the Ricci
and Levi-Civita review article are actually equivalence classes of these
1925 V,,. Schouten (1924, p. 58) effectively gave the same definition as
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Levi-Civita’s 1925 definition for a V,,, a number manifold in conjunc-
tion with the specification of a fundamental tensor g;x, and called it g
“manifold with quadratic metric” or a “Riemannian manifold.” Schouten
(1924, p. 8) reserved the designation X, for number manifolds.

For our purposes, the important point is that Ricci and Levi-Civita
buried their definition of a manifold in the short preface to their paper
within an account of the geometric ancestry of their absolute differential
calculus. The formal exposition of their calculus begins in Chapter 1,
with no mention of manifolds and in a way that seems to seek as much
of a divorce from geometrical associations as possible. The first topic,
for example, is the transformations of variables, a discussion that modern
readers almost irresistibly read as “really” about the transformations of
coordinate systems. They then proceeded to define their covariant and
contravariant systems. Like the researchers in the theory of quadratic
differential forms, Ricci and Levi-Civita clearly conceived their calculus
as a very general instrument. Its obvious geometrical application in the
theory of surfaces is just one of the applications alluded to in the paper’s
title, so that its discussion is isolated in Chapter IV. Chapters III, V, and
VI deal with applications in analysis, mechanics, and physics.

Thus, by 1912, the precedent for Grossmann was clearly set. Wheth-
er he conceived his mathematical part of Einstein and Grossmann (1913)
as the exposition of a generalized vector analysis, as the exposition of
the absolute differential calculus of Ricci and Levi-Civita, or as the ex-
position of some combination of them, the concepts of manifold and
coordinate system were to be taken as terms already known to the reader.
At best, they were to be dismissed briefly in prefatory remarks. One is
to proceed through the topic of transformations as rapidly as one can to
the important definitions, the definitions of the vectorial or, correspond-
ingly, covariant quantities. That is essentially what Grossmann did. After
defining the differential form Eq. (A3), he proceeded through the topic of
coordinate transformations to his first major definitions, the definitions of
covariant, contravariant, and mixed tensors of arbitrary rank. Similarly
the mathematical aids section of Einstein’s 1914 article begins with the
definitions of covariant and contravariant four-vectors and proceeds to
define tensors, their algebra and the differential operations that can be
applied to them (Einstein 1914, p. 1034). The section on mathematical
aids in Einstein’s 1916 article follows exactly the 1914 pattern with the
insertion of a brief introduction to motivate the need for the excursion
into tensor calculus (Einstein 1916a).

Einstein and Grossmann’s precedents gave them no strong reason to
define the nature of their manifolds in their expositions of the mathe-
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matical techniques needed for the new theory. But, if that definition is
not given there, should it not be given elsewhere in the developments
of the theory? A simple answer is that Einstein’s developments of gen-
eral relativity began with the presumption that the reader was already
familiar with the four-dimensional formulation of special relativity and
that whatever manifold concept was used there was to be carried over
automatically to the new theory. While I do believe that this presumption
was made, I think there is a simpler answer. That Einstein represented
his physically possible space-times by number manifolds without any in-
tervening mathematical structures is simply implicit in the way he used
coordinate systems. I believe that he saw the point as such an elementary
one that it bore no real discussion. The point is only not immediately ob-
vious to modern readers because they approach Einstein’s writings with
a far more complicated concept of the manifold already in hand. But,
how else, for example, are we to read Einstein’s discussion in the early
pages of his introductory relativity text, Meaning of Relativity, when,
after presuming certain elementary properties for space, he wrote:

...itis easy to say what we mean by the three dimensionality of space;
to each point three numbers, x:, x;, and x3; (coordinates), may be
associated in such a way that this association is uniquely reciprocal
and that xy, x,, and z; vary continuously when the point describes a
continuous series of points (a line). (Einstein 1922, pp. 3-4)

In introducing the three-dimensional coordinate system, Einstein simply
gave us a recipe for expressing more precisely the topological properties
of a physical space: one represents the space with the mathematical
structure of the number manifold R3 2!

Addendum: 1 am grateful to John Stachel for pointing out to me an
affirmation in the mathematical literature of 1914 of the novelty of the
Einstein—Grossmann use of the term “tensor.” E. Budde, in Tensoren
und Dyaden im Dreidimensionalen Raum: Ein Lehrbuch (Budde 1914),
concluded with a brief discussion of the extension of the subject of his
book to higher dimension spaces and higher ranks (pp. 245-46). The
latter extension is due to W. Voigt and invokes quantities of the “nth
rank,” which “transform as a combination of the nth dimension of the
coordinates.” He described Voigt’s nomenclature:

The quantities of the first rank then are vectors, the symmetric, sec-
ond rank quantities are the tensors, those of the third rank Voigt calls
trivectors [Trivektoren]; those of the fourth rank bitensors [Bitensoren].

A sentence later, the section concludes by contrasting this usage with that
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of Grossmann:

Recently, Mr. Grossmann (see bibliography) has proposed a still further
reaching generalization. He denotes quantities of arbitrary rank as “ten-
sors,” so that vectors, trivectors, and bitensors are also subsumed by the
term “tensor’; the generalization consists in extending his definitions
to structures of nth rank in m-dimensional space.

The only work by Grossmann in Budde’s bibliography is “A. Einstein
und M. Grossmann: Entwurf einer verallgemeinerten Relativitdtstheorie,
Leipzig und Berlin 1913.” Thus, the generalized use of the term tensor
in the Entwurf paper was novel at least to Budde, who was sufficiently
acquainted with the mathematical literature available in 1914 to write a
textbook on three-dimensional tensors.

NOTES

1 See, also, for example, Einstein 1916, p. 776 and Einstein 1917, pp. 97-98,

2 Of course, it has proven possible to find reinterpretations of Einstein’s ideas
that do make sense to modern readers. The most successful of these attempts is
based on the notions of absolute and dynamic objects, best known from the work
of Anderson (1967), and explored most recently by Stachel (1986).

3 PFor elaboration on the difference between these active versions of the
requirements and the corresponding passive versions, see Norton 1987 or Norton
1989.

4 Imagine, for example, a space-time theory that requires two manifolds with
disjoint point sets to represent two different space-times, even though the models
that host the manifolds may be diffeomorphic. For a concrete example, take a
Euclidean three space and foliate it into a family of flat, two-dimensional hyper-
surfaces S;, with ¢ a real valued index. We can model each hypersurface by the
unique manifold-metric pair (NV;, hf:g ), where by stipulation, two diffeomorphic
models (N;, h%)) and (N;, hff;) differ only by having disjoint point sets.

SA major deficiency of the tradition was that spaces that were not topolog-
ically R™ could only be represented in a patchwise fashion.

6 1 translate Minkowski’s “Mannigfaltigkeit” as “manifold” where the stan-
dard translation (Minkowski 1908a, p. 76) has “multiplicity.”

71 adopt the following convention. Indices a, b, ¢, ... are to be read
according to the abstract index notation (Wald 1984, Section 2.4), so that gg is
a second rank covariant tensor, i.e., a bilinear map from the tangent space of the
manifold to the reals. Indices i, %, [, ... take real values 1, 2, 3, 4 so that g
represents a 4 X 4 matrix of reals, which could be, for example, the components
of g, in some coordinate chart.

8 This procedure recapitulates Einstein’s historical pathway to general rela-
tivity. This fascinating story can be found in Stachel 1980.
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? For further discussion of this problem of the modern reading, see Norton
1989.

10 The most important exception arises in the context of the Cauchy problem
in which these mathematical properties engender a gauge freedom that threatens
the determinism of the space-time theory.

1 For an extensive survey of Einstein’s statements of the principle and its
role in relativity theory, see Norton 1985.

12 Kretschmann’s mathematical methods also lie within the number manifold
tradition of Klein and Minkowski. This fact is expressed neatly in Kretsch-
mann’s use of the term “coordinate manifold” (see, for example, Kretschmann
1917, pp. 581-82, p. 583). In 1915, he was even more explicit. He announced
that he would “conceive of the space-time reference system of physics as a
four-dimensional manifold of pure numbers” (Kretschmann 1915, p. 917) and
he devoted considerable analysis to the “representation postulates” of physical
theories, which “relate empirical space and empirical time with the spaces and
time coordinates of theoretical physics” (Kretschmann 1915, p. 979).

13 For example, guarantee the presence of the string E = mc® by defining
m = E/J, where E is the kinetic energy of a body with inertial mass m; and
velocity v; m then enters the physically contingent law m = m;v?/2c%. 1 thank
Cory Juhl for discussion,

14 At the point marked by my superscript letters a, b, and ¢, Kretschmann’s
text has footnote references: (a) Einstein 1916a, p. 766; (b) for details, Kretsch-
mann (1915, p. 914-924); (c) compare Ricci and Levi-Civita (1901, p. 125).
In the place cited in (b) and pages 924-26 following, Kretschmann argued at
length for what is essentially just the point-coincidence argument: observation
provides only “topological” results, such as the coincidence of parts of measuring
instruments and subjects, so that the choice between coordinate systems is made
by convention and arbitrary stipulation. Kretschmann’s paper was submitted
on October 21, 1915, two months before the point-coincidence argument even
appeared in Einstein’s correspondence. This fact leaves room for speculation on
the priority and circumstances surrounding its discovery.

15 For a more detailed treatment of Einstein’s formulations of the point-
coincidence argument and its role in his work on general relativity, see Norton
1987.

16 For example, Einstein 1916a, p. 776 or Einstein to P. Ehrenfest, December
26, 1915, in Norton 1987, pp. 168-169.

17 This is not the place to analyze the ambiguity lurking in the notion of
“space-time coincidence.” My view is that, in the last analysis, the assumption
(PC) can only be made precise by replacing it by nothing less than the requirement
of general covariance/Leibniz equivalence.

18 He only then turned to the remark best known from his reply. Even if,
he said, all empirical laws can take on generally-covariant forms, his relativity
principle still has heuristic power because for two empirically equivalent theo-
ries, we should prefer the one whose generally-covariant formulation (absolute
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differential calculus) is simpler and more transparent.

1 This name appears here for the first time and the formulation given beging
with the now familiar words “The G-field is determined without residue by the
masses of bodies....” ‘

20 While Grossmann gave no definition of a manifold in Einstein and Gross.
mann 1913, this Ricci-Levi-Civita definition is clearly the one he had in ming
when he wrote of “the vector analysis of an arbitrary manifold given through itg
line element” (p. 23) and again in a similar remark on p. 31.

21 1 believe that Minkowski also found the point too elementary to bear |
sustained discussion. His technical exposition (Minkowski 1907) does not contain |
the definition of “the world” quoted in Section 3. He limited himself to the remark
that “a single system of values z, y, z, £ or xy, ;, T3, 4, is to be called a space-
time point” (p. 57, Minkowski’s emphasis), with the more elementary discussion ,}:‘
of “the world” delegated to his popular lecture (Minkowski 1908). ;
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