
fascinating problems that await further exploration: Eisenstaedt offers an
English summary of his two extensive papers in French on the history of that
most important of all solutions to the Einstein field equations, the Schwarz-
schild solution, as well as a provocative discussion of the reasons for the neglect
of the general theory among physicists for about thirty years. Havas provides
a shorl, tantalizing introduction to his extensive, largely unpublished work
on the history of the discovery of a unique feature of the general theory: Its
rield equations delimit and in certain cases completely determine the motions
of sources of the gravitational field. Bergmann provides an account of the
early history of attempts to quantize the general theory, an area of work in
which he played-and continues to play-an active role.
Two papers concern the history of early attempts at unified field theories.

Vizgin discusses the origins of the geometrical unification program, while
Biezunski discusses the exchange of letters between Einstein and Cartan on
the attempt to unify gravitation and electromagnetism using the concept of
distant parallelism.
Ellis gives an impressive classification and survey of the first forty years of

work on relativistic cosmology, and provides an invaluable bibliography,
while Kerszberg studies in detail the origins of that subject in an early dispute
between Einstein and de Sitter.
The participants in the Osgood Hill meeting were all encouraged to

persevere in their hitherto rather solitary efforts by the opportunity to meet
each other, often for the first time, and to discuss together, both formally and
informally, many problems of common interest. They resolved to plan a
second conference, which was held in France in September 1988 under the
auspices of the Centre Nationale de la Recherche Scientifique. It is hoped that
this meeting will institute regular meetings on Ihe subject. May this volume
serve to convey to a wider circle of physicists, historians of science, and
philosophers of science at least part of the sense of enthusiasm and thc
challenge to do further work felt by the participants in the first meeting.

What was Einstein's Principle of

JOHN NORTON

l. Introduction
In October and November 1907, just over two years after the completion of
his special theory of relativity, Einstein made the breakthrough that set him
on the path to the general theory of relativity. While preparing a review article
on his new special theory of relativity, he became convinccd that the key to
the extension of the principle of relativity to accelerated motion lay in the
remarkable and unexplained empirical coincidence of the equality of inertial
and gravitational masses. To interpret and exploit this coincidence, he
introduced a new and powerful physical principle, soon to be called the
"principle of equivalence," upon which his search for a general theory of
relativity would be based. Moreover, with the completion of the theory and
throughout the remainder of his life, Einstein insisted on the fundamental
importance of the principle lo his general theory of relativity.
Einstein's insistence on this point has created a puzzle for philosophers and

historians of science. It has been argued vigorously that the principle in its
traditional formulation does not hold in the general theory of relativity.
Consider, for example, a traditional formulation such as Pauli's in his 1921
Encyklopadie Article. For Pauli the principle asserts that one can always
transform away an arbitrary gravitational field in an infinitely small region
of space-time, by transforming to an appropriate coordinate system (Pauli
1921, p. 145).
In response, such eminent relativists as Synge (1960, p. ix), and even

Eddington before him (1924, pp. 39-41), have objected that a coordinate
transformation or change of state ofmotion of the observer can have no effect
on the presence or absence of a gravitational field. The presence of a "true"
gravitational field is determined by an invariant criterion, the curvature of
the metric. The gravitation-free case of special relativity is just the case in
which this curvature vanishes, whereas the true gravitational fields of general
relativity are distinguished by the nonvanishing of this curvature.
This objection has immediate ramifications for the "Einstein elevator"

thought experiment, which is commonly used in the formulation of the
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principle of equivalence. In this thought experiment, a small chamber, such
as an elevator, is accelerated in order to transform away a gravilalional
rield present within it or, depending on the version at hand, to produce a
gravitational field in an initially gravitation-free chamber. Now in general
relativity, nonvanishing metrical curvature is responsible for tidal gravita~

tional forces. Their effects can be used by an observer within the chamber to
decide whether the gravitational field present is a true gravitational field or
is due to the acceleration of the chamber in gravitation-free space. Alterna-
tively, they can be used to determine whether an apparently gravitation-
free chamber is in free fall in a gravitational field or moving uniformly in
gravitation-free space. It is significant that the effects of these tidal forces do
not vanish as the box becomes arbitrarily small. For example, the tidal bulges
arising in a freely falling liquid droplet do not vanish as the droplet in made
arbitrarily small, ignoring such effects as surface tension (Ohanian 1977).

Of course it has proved possible to retain a principle of equivalence in
general relativity. But to do this, the principle might be given quite new
forniulations, which seem to carry us far from Einstein's original intentions.
For example, in its "weak" form the principle merely asserts the equality
of inertial and gravitational mass. Or in another form, it asserts that all
phenomena distinguish a unique affine structure for space-time (Anderson
1967, pp. 334-338). Alternatively, we can retain a traditional formulation of
the principle, such as Pauli's, by reading the restriction to infinitely small
regions of space-time as denying access to certain quantities such as curvature,
which are constructed from the higher derivatives of the metric tensor. But
then the principle is reduced to a simple and, as far as questions of founda-
tions are concerned, not especially interesting theorem in general relativity.
Certainly Einstein could not represent such a result as a fundamental principle
of his theory.

My purpose in this paper is to determine precisely what Einstein took his
principle of equivalence to be, to show how it figured historically in his
discovery of the general theory of relativity, and to show the sense in which
he took it to be fundamental to that theory. In particular I will seek to
demonstrate that Einstein's version of the principle and the way he sought to
use it are essentially different from the many later versions and applications
of the principle. As a result, we shall see that the objections rehearsed earlier
from the later debate over the principle of equivalence are peripheral to the
concerns of Einstein's version of the principle and that this version does find
completely satisfactory and uncontroversial expression in the general theory
of relativity.

In the following section, as a focus for the remainder of the paper, I will
present one of the clearest and most cautious of Einstein's formulations of the
principle of equivalence and in Section 3, 1 will develop sufficient formal
apparatus to negotiate certain ambiguities in it. In particular, I will introduce
the concept of a three-dimensional relative space of a frame of reference, which
is essential to the understanding of Einstein's principle and much of his early
work on his general theory of relativity.

In Sections 4 and 5, 1 will review the role the principle played in the 1907
to 1912 period of Einstein's search for his general theory of relativity. In
Section 4,1 will outline how the principle enabled Einstein to construct a novel
relativistic theory of static gravitational fields and, in Section 5, 1 will outline
the sense in which he believed the principle would enable an extension of the
principle of relativity to accelerated motion.

In Sections 6, 7, and 8, 1 will examine the principle of equivalence within
Einstein's general theory of relativity, whose basic formal structure was laid
down by Einstein and Marcel Grossmann in 1912 and 1913 and which
achieved its final form in November 1915. In Section 6, 1 will review aspects
of Einstein's transition from a three- to a four-dimensional formalism, and,
in Sections 7 and 8, 1 will review the status of the principle in the theory. In
particular, we shall see its crucial heuristic role in the transition from the
special to the general theory.

In Sections 9 and 10, I will relate Einstein's version of the principle and the
results he drew from it to the "infinitesimal" principle of equivalence, such
as that formulated by Pauli, and which is now commonly but mistakenly
regarded as Einstein's version of the principle. In particular, I will analyze
in some detail a devastating objection Einstein had to this version of the
principle. It follows from the objection that, insofar as it can be precisely
formulated, the infinitesimal principle is trivial. In Section I I, I will review
Einstein's attitude to Synge's now popular identification of "true" gravita-
tional fields with metrical curvature.

Finally, in Section 12, 1 will draw together the threads of my story and
answer the question posed in the title of this paper.

2. Einstein's Formulation of the Principle of Equivalence

Einstein has given us many statements of the principle of equivalence in his
treatments and discussions of the general theory of relativity. But none is
clearer or more cautious than the formulation he gives in a 1916 reply to
Kottler's claim that Einstein had given up the principle of equivalence in the
general theory of relativity (Einstein 1916b). Einstein began by introducing
the limiting case of special relativity in which he defined a "Galilean system.,
I quote this here for later reference:

l. The Limiting Case of the Special Theory of Relatiuity. Let a finite space-time
region be free from a gravitational field, i.e., it is possible to set up a reference
system K ("Galilean system"), relative to which the following holds for the region
considered. Coordinates are measured directly in the well-known way with unit
measuring rods, times with unit clocks, as is customarily assumed in the special
theory of relativity. In relation to this system an isolated material point moves
uniformly and in a straight line, as was assumed by Galileo.

He then proceeded to his statement of the principle:
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2. Principle of Equivalence. Starting from this limiting case of the special theory of
relativity, one can ask oneself whether an observer, uniformly accelerated relative
to K in the region considered, must understand his condition as accelerated, or
whether there remains a point ofview for him, in accord with the (approximately)
known laws of nature, by which he can interpret his condition as'rest." Expressed
more precisely: do the laws of nature, known to a certain approximation, allow
us to consider a reference system K, as at rest, if it is accelerated uniformly with
respect to K? Or somewhat more generally: Can the principle of relalivity be
extended also to reference systems, which are (uniformly) accelerated relative to
one another? The answer runs: As far as we really know the laws of nature,
nothing stops us from considering the system K, as at rest, if we assume the
presence of a gravitational field (homogeneous in the first approximation) relative
to K,; for all bodies fall with the same acceleration independent of their physical
nature in a homogeneous gravitational field as well as with respect lo our system
K,. The assumption that one may treat K, as at rest in all strictness without any
laws of nature not being fulfilled with respect to K,, I call the "principle of
equivalence."

For Einstein, the basic assertion of the principle of equivalence is that "one
may treat K, as at rest. . I will defer discussion of exactly what he intended
with this assertion until Section 5. The assumption upon which this assertion
is based-that acceleration can produce a gravitational field-is at present
more commonly associated with the principle of equivalence. The way in
which it is used, however, is distinct from its use in "traditional" formulations
of the principle such as Pauli's. In the latter, by reversing Einstein's argument,
one assumes that one can always transform away an arbitrary gravitational
field in general relativity within an infinitesimal region of space-time. Einstein
however considers only the homogeneous gravitational field produced by
uniform, nonrotating acceleration in the Minkowski space-time of special
relativity. In addition, there is clearly no restriction to infinilesimal regions.

These last features are typical characteristics of Einstein's preferred for-
mulation of the principle and appear in many of the statements of the principle
that Einstein gave throughout the half century of his working life. These
include his first published formulation of the principle in 1907, some five years
prior to the complelion of the general theory of relalivity (linslcin 1907,
p. 454), his well-known 1911 communication on gravitation (Einstein 1911,
pp. 898-899), and his 1916 review of the just-completed theory (Einstein
1916a, pp. 772-773). The principle is defined in these terms in The Meaning
of Relativity, the work which came closest to his "textbook" on relativity
(Einstein 1922, pp. 57-58). Finally, it appears again in this form in one of his
last discussions of the question, the 1952 appendix to his popular book,
Relativity (Einstein 1952, pp. 151-152).

Einstein's next step in his reply to Kottler was to insist pointedly that his
principle did not allow one to transform away arbitrary gravitational fields.
Rather it dealt only with those gravitational fields that could be transformed
away and which we would now identify as associated with Minkowski space-
time.

3. Gravitational Fields not only Kinematically Coiiditioiied. One can also invert the
previous consideration. Let the system K,, formed with the gravitational field
considered above, be the original one. Then one can introduce a new reference
system K, accelerated with respect to K,, with respect to which (isolated) masses
(in the region considered) move uniformly in a straight line. But one may not go
on and say: if K, is a reference system provided with an arbitrary gravitational
rield, then it is always possible to find a reference system K, in relation to which
isolated bodies move uniformly in a straight line, i.e., in relation to which no
gravitational field exists. The absurdity of such an assumption is quite obvious.
If the gravitational field with respect to K,, for example, is that of a stationary
mass point, then this field certainly cannot be transformed away for the entire
neighborhood of the mass point, no matter how refined the transformation
artifice. Therefore, one may in no way assert thdt gravitational fields should be
explained so lo speak purely kinematically. a "kinematic, not dynamic under-
standing of gravitation" is not possible. Merely by means of acceleration trans-
formations from a Galilean system into another, we do not become acquainted
with arbitrary gravitational fields, but those of a quite special kind, which,
however, must still satisfy the same laws as all other gravitational fields. This is
only again another formulation of the principle of equivalence (in particular in
its application to gravitation).

In short, he rules out an extension of the principle to arbitrary gravitational
rields on the grounds that an acceleration of the reference system can only
produce gravitational fields of a quite special kind. Such comments appear
quite frequently in Einstein's writings, throughout his life. They appear in his
publications and in his correspondence, right up to the last years of his life.

What might seem striking to the modern reader here is Einstein's failure to
consider the possibility of transforming away arbitrary gravitalional fields in
infiiiitesiinal regions of space-time. The omission was not a peculiarity of this
particular discussion of the principle, for I have been unable to find any
sustained treatment by Einstein of such an extension of the principle.
Nevertheless we can readily infer Einstein's attitude to this possibility. In
Section 9, we shall see that he believed that one cannot distinguish the motion
of a point-mass uninfluenced by a gravitational field from other motions if
one considers only infinilesimal regions of the manifold. It follows immediately
from Einstein's comments above that it is meaningless to talk in any thorough-
going sense of transforming away a gravitational field in such infinitesimal
regions.

The task of explicating Einstein's formulation of the principle of equivalence
and even some of the preceding discussion is by no means straightforward.
To begin, we must deal with Einstein's failure to maintain such dislinctions
as those between frames of reference and coordinate systems and between
three-dimensional and four-dimensional concepts. For example, we shall see
that when Einstein speaks of a four-dimensional coordinate system, he may
be referring to a four-dimensional coordinate system simpliciter, a frame of
reference, or even a three-dimensional space associated with the frame. In the
following section, I will introduce su�]CIent formal apparatus to deal with this

Einstein'.5 Principle of Equivalence
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problem, and then with it, we shall find that there is little difficulty in under-
standing Einstein's intentions. Then we can turn to ask precisely what Einstein
means when he talks of a gravitational field produced by acceleration and in
what sense the associated states of acceleration can be regarded as being

in the context of Newtonian theory and special and general relativity are well
known (see, for example, Friedman 1983, pp. 79-84, 129-135, 181-183).

However this discussion of Galilean and other systems in four-dimensional
space-time does not entirely capture Einstein's intentions. He was also con-
cerned with certain three-dimensional spaces, which are alluded to throughout
his discussion of the principle of equivalence. It is appropriate to call these
spaces "relative spaces," because of their similarity to the "relative space"
Newlon defined to contrast with his absolute spacE (Newton 1729, p. 6).
Einstein himself introduces the concept of this space in the introductions to
his accounts of relativity theory, where it is presented as our most primitive
notion of space (Einstein 1922, pp. 3-4. 1954a, pp. 5-8). It arises through our
experience that a given physical body can be extended by bringing other
bodies into contact with it. The space of all such possible extension is the
relative space of the body.

If we think of the time-like curves of a frame of reference as the world lines
of physical bodies, then these bodies define a single relative space, insofar as
eacli of Ihe bodies can be extcnded to contact any othcr body of the frame.
The geometric properties of this space can be investigated in the familiar
manner by laying out infinitesimal rigid rods, which are at rest in the frame.
An example of this, which Einstein discussed frequently, is the relative space
of a uniformly and rigidly rotating frame of reference in Minkowski space-
time. In particular on finds there that the geometry of the relative space is

The properties of the relative space defined by a given frame of reference
can be precisely specified, although not in general by isomorphism with a
three-dimensional hypersurface in the space-time manifold with the associated
induced geometrical structure. The nature candidates for such hypersurfaces-
the three-dimensional hypersurfaces orthogonal to the curves of the frame of
reference-simply fail to exist if the frame of reference is rotating even in
Minkowski space-time, for example.

Rather, we formally define the relative space R of a frame of reference F
in a four-dimensional manifold M as follows. F defines an equivalence relationf under which points p and p, of M are equivalent if and only if they lie on
the same curve c of F. The relative space R is the quotient manifold M/f and
has the curves of F as elements. Coordinate charts of R are inherited directly
from the coordinate charts of M, which are adapted to the frame, ensuring
that R has a well-defined local topology. That is, if {x' } (i - 1, 2, 3,4} is a
chart in a neighborhood of M adapted to F, then there will be a chart {y }

1, 2, 3) in the corresponding neighborhood of R . for which y'(c) x'(p)
1, 2, 3) whenever p lies on c.

A positive-definite metric g, is induced on R as follows. At any point p on
c we define the (unique) orthogonal metric gorth as the restriction of the
space-lime metric g to any three-dimensional hypersurface H,(p) orthogonal
to c at p. A diffeomorphism h, which maps points of H,(p) in a neighborhood

3. On Reference Systems and Relative Spaces

In this section, I will deal with structures associated with the semi-Riemannian
manifolds of special and general relativity.

In such manifolds, it is now customary to represent the intuitive notion of
a physical frame of reference as a congruence of time-like curves. Each curve
represents the world line of a reference point of the frame. The velocity of these
points is given by the tangent vectors to the curves, where defined. We shall
usually deal with frames of reference in rigid-body motion and we can readily
nominate the state of motion of such frames because of the limited number of
degrees of freedom associated with them. In particular, an inertial frame of
reference in a Minkowski space-time is a congruence of time-like geodesics in
rigid-body motion, and therefore its reference points move with constanl

A coordinate system {x } (i = 1, 2, 3, 4) is said to be "adapted" to a given
frame of reference just in case the curves of constant x x and x are the
curves of the frame. These three coordinates are "spatial" coordinates and the
x coordinate a "time" coordinate.

With these definitions, Einstein's talk of "accelerated coordinate systems"
can be made precise. A coordinate system is "accelerated" just in case it is
adapted to an accelerating frame of reference. In this rnanner of speaking, a
transformation from one frame of reference to another can be represented at
least locally by a transformation between coordinate systems adapted to each
frame.

Similarly we can represent the "Galilean" reference system mentioned in
the last section as a coordinate system in Minkowski space-time, adapted to
an inertial frame of reference and chosen so that the metric has components
diag(- I, - I, - I, c ), where c is a positive constant-the coordinate speed
of light. In such a coordinate system, differences of coordinates along curves,
for which all but one coordinate is held fixed, are equal to the proper time or
proper length of that segment of the curve, according to whether the curve
is space-like or time-like. This implements Einstein's requirement that the
coordinates be given directly by clock readings and rneasuring operations with
rigid rods.

Presumably Einstein required the coordinates of his accelerated coordinate
systems to have as much of a similar direct rnetrical significance as was
possible. Methods and scope for constructing analogous coordinate systems

10
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of p to points in a neighborhood of c in R , is such that, if p, lies on the curve
c, of F, then h(p') . g, at c is defined as the image of gorih at p under h.
(Intuitively, we take g, to be the three-dimensional spatial mctric revealed to
an observer co-moving with the frame through the laying out of infinitesimal
rods.)

Since point p of c here is chosen arbitrarily, it is clear that the resulting
induced metric will only be uniquely defined in certain special cases. These
special cases turn out to be just those in which the frame of reference is in
rigid-body motion, for the requirement of rigid-body motion can be expressed
as the requirement of constancy of the orthogonal n]etric along the world lines
of the body. More specifically, what is required is the vanishing of the Lie
derivative of gorih? that is, Lvgorth O, where V is the tangent vector field of

General relativity deals with space-times that do not always admit

rigid-body motions. Obviously, in these cases we will be unable to construct
a relative space with a well-defined metric.

To deal with the phenomena Einstein considers, we need to define a few
more structures in these relative spaces. A gravitational field will be repre-
sented by a scalar field in nearly all the cases we need consider. A moving
point-mass M will be represented by a scalar, its rest mass, and an appro-
priately parameterized curve C, its trajectory in the relative space R C can
be inferred readily from the points of intersection of M's world line with the
time-like curves of the frame. That is, if M's world line c at parameter value
x intersects the curve c, of frame F, then C is the map that takes x to c,. The
velocity and acceleration vectors of C can now be defined in the usual way. If
c is parameterized by proper time, we would then arrive at the poinl-mass's
proper velocity and proper acceleration.

In certain important special cases, it is possible to introduce a "frame time"
into the relative space R of a frame F. These cases are those in which
the relevant neighborhood of the manifold can be foliated by a family of
hypersurfaces, orthogonal to the curves of the franie F. Pick any curve c of F,
parameterized by proper tirne. Informally, we shall think of this curve as the
frame clock of F and its relative space R Disseniinate the time it marks by
the following procedure. Define a scalar field T Dn the space-time manifold
whose constant-value hypersurfaces coincide with the hypersurfaces of the
foliation and whose value agrees with the proper-time parameterization of c.
Of course T will only be defined up to an additive constant.

This frame-time can now be transferred to the structures defined in RF by
obvious means. For example the trajectory C of a moving point-mass M in
R can be parameterized by T, if T is also used to parameterize M's world
line in the procedure for constructing C. From this parameterization, we
would then arrive at M's frame velocity and frame acceleration. Through a
similar procedure, a time-varying field in R induced by a field defined in
the space-time manifold, can be represented by a family of fields indexed by
T. The parameterization and indexing ofstructures in RF by T givcs a criterion
of simultaneity.

Clearly, in general we shall not be able to define a frame time. A rotating
frame, for example, has no orthogonal hypersurfaces. Even if there are
such hypersurfaces, the frame time may not be unique. A rigid, uniformly
accelerating frame in Minkowski space-time admits orthogonal hypersurfaces;
but the frame times defined by each of its curves differ by a multiplicative
constant, although they yield the same simultaneity criterion. However, if the
frame is an inertial frame in Minkowski space-time then the same frame time
is defined by all curves of the frame, up to an additive constant.

We can recover a'standard formulation" of special relativity-correspond-

ing to the original three-dimensional formulation of the theory introduced by
Einstein in 1905-by writing the laws that govern physical processes in
Minkowski space-time in terms of structures defined within the relative space
of an inertial frame, using the relative space's frame time. This formulation
will hold just in any relative space of an inertial frame. Quantities describing
the same process viewed from two different inertial relative spaces will be
related by the Lorentz transformation in the familiar manner.

Generalizing, we construct a standard formulation of a four-dimensional
space-time theory, in any given relative space that admits a frame time, by
re-expressing its laws in terms of structures defined in the relative space,
parameterized where necessary by the frame time. Thus we can construct a
standard formulation of special relativity in the relative space of a rigid
uniformly accelerating frame-and it will look quite different from the
standard formulation associated with an inertial frame.

Einstein commenced his description of the principle of equivalence in his
reply to Kottler by mention of space-time. It is now clear, however, that the
phenomena he proceeded to describe are considered in relation to the relative
spaces of the frames of reference. An isolated material point in a Galilean
system can only be properly described as "mov[ing] uniformly and in a
straight line" in the relative space. There it is represented by a geodesic of the
relative space ("straight line"); its proper time and its frame time parameteri-
zation are directly proportional to the metrical distance along the curve
("move uniformly"). Use of either parameterization in this way also gives two
general definitions of "uniform straight-line motion" in relative spaces, which
agree in this cavL•e.

Similarly, it is more natural to understand Einstein's requirement that the
coordinates of the Galilean system be "measured directly in the well-known
way" with rods and clocks as referring to operations described in the relative
space and out of which the Galilean space-time coordinate sytem is

But most important of all, when Einstein speaks of "the presence of a
gravitational field" in his reply to Kottler, clearly we should understand it to
be present in the relative space of the frame of reference in question. In
Minkowski space-time, there is a gravitational field in the relative space of the
accelerated reference system but not in the relative space of the Galilean
system. This is certainly more satisfactory than trying to speak of the presence

c,onstructed.
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of a gravitational field in space-time in this context. For then we would have
to assume that a change of frame of reference can "produce" a gravitational
rield in space-time even though it does not change the world line of the
point-mass on which the newly produced field is supposed to act.

This somewhat cumbersome mixture of three- and four-dimensional con-
cepts in Einstein's formulation of the principle of equivalence derives directly
from the fact that, for the first five years of its life, the principle and the
gravitation theory associated with it were treated entirely within the same
three-dimensional formalism Einstein had used in his 1905 special relativity
paper. In particular, the spaces Einstein dealt with in this period were
invariably the relative spaces of frames of reference. Nevertheless, Einstein's
1916 formulation and his original 1907 formulation of the principle read
almost identically, even though the former was associated with a theory that
could not readily be written in a three-dimensional formalism. In the following
section I turn to examine this early period of Einstein's work. I will be
concerned with showing precisely which structures Einstein chose to represent
the gravitational field in the relative spaces he dealt with.

In effect, Einstein asks us to give up the familiar concept of gravitational
field as that which mediates the gravitational interaction of bodies. In its place
in the relative space of frames of reference, regardless of whether they are
accelerated or not, we infer the existence of a structure that is responsible for
the deviations from uniform straighi-line motion of a free point-mass, without
concerning ourselves with what generates that structure. Following Einstein's
lead, we would take such a structure to be a gravitational field by definition,
if the deviations associated with it are independent of the point's mass.

Using this definition, we could now describe as gravitational fields the
inertial fields arising in relative spaces of rigid frames of reference in arbitrary
states of acceleration in Minkowski space-time. It is difficult to imagine that
Einstein would contradict this result. Nevertheless, as I have pointed out,
he formulated his principle of equivalence only for the case of uniform
acceleration.

There were most probably several reasons for this additional restriction. In
the early years of the principle of equivalence, in order to convince skeptical
contemporaries that inertial fields could be regarded as gravitational fields,
he had to show that they behaved exactly like known gravitational fields-
that is, like Newtonian gravitational fields-aside of course from the question
of source masses. If the principle of equivalence is formulated in a Newtonian
space-time, as Einstein did sometimes in these earlier years,16 the requirement
that the inertial field behave exactly like a Newtonian field places severe
restrictions on the allowed states of motion of the frame of reference.

In Newtonian mechanics, the inertial field induced on the relative space of
a rotating frame of reference contains a Coriolis field, which exerts a force on
a body dependent on its velocity. A structure representing such a field will
contain vector potentials, such as those arising in electromagnetic theory,
rather than the familiar scalar potential of the Newtonian gravitational field.
The inertial field induced on the relative space of a frame of reference in
rectilinear acceleration can be represented by a scalar potential satisfying
Laplace's equation. But if the acceleration is not uniform the resulting field
will be nonconservative due to the explicit time dependence of the potential.

In this case of a Newtonian space-time, we are led directly to Einstein's
choice of a uniformly accelerated frame of reference for the formulation of
the principle of equivalence. For only in this case will the structure concerned
in the relative space behave exactly like a Newtonian gravitational field. It
will be a scalar field, it will satisfy Laplace's equation, and its gradient will be
equal to the acceleration of otherwise free point-masses in the space.

It would be natural for Einstein to continue to formulate the principle of
equivalence in terms of the special case of uniform accleration in Minkowski
space-time as well, if only in the interests of continuity. In addition, we can
identify at least three complexities arising with the use of rotating frames of
reference or those in nonuniform acceleration in Minkowski space-time.

First, the associated relative spaces would have non-Euclidean geometries,
if they were well defined. This was a problem Einstein was well aware of from

4. A New Theory of Gravitation

4.1. A NEW CONCEPT OF GRAVITATIONAL FIELD

Einstein made clear from the inception of the principle of equivalence in 1907
that its main purpose was to enable the extension of the principle of relativity
to accelerated motion. But for the five years following 1907, his actual use
of the principle involved the development of a novel relativistic theory of static
gravitational fields out of which his general theory of relativity would emerge
in 1912 and 1913. The principle assured him that a certain structure ("inertial
field") arising in the relative space ofa uniformly accelerated frame of reference
in Minkowski space-time was just one special type of gravitational field. The
properties of this structure could be examined minutely using the known
results of special relativity and the properties of other types of gravitational
rields could then be inferred.

That this structure (whose properties will be developed and outlined in
Section 4.2) could be regarded as a gravitational field requires a change in our
understanding of what a gravitational field is. We must now accept that
gravitational fields can have an existence dependent on the relative space
considered and that the choice of relative space may decide whether or not a
single given process is regarded as acted on by a gravitational field. The
obvious objection, which was put by Laue to Einstein in 1911, is that this
type of gravitational field cannot be "real" since it has no source masses. 14

Einstein's later response to this objection was that it is essential to field
theory to be able to conceive of fields, such as gravitational fields, as existing
independently of their sources.

Einslein's Principlc of Equivalence
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a very early stage. But he treated it as a separate issue from his principle of
equivalence, usually by consideration of a rotating frame of reference.

Second, he would be unable to introduce a frame time into the relative space,

making very difficult the description of phenomena in the space by a standard
formulation of a theory such as he used in 1907-1912.

Third, the trajectory of a light signal exchanged between two points in the
relative space would differ on the forward and return journeys. In a letter of
June 1912 to Ehrenfest, in which Einstein discussed the failure of his 1912
gravitation theory to deal with the fields associated with rotating frames of
reference, he mentioned this failure of the "reversibility of light paths" in such
rields and described how dealing with them would be the next step (EA 9-333).

In any case, after the completion of the general theory of relalivity, when
the dI�lcultieS of the earlier gravitation theory had been resolved, thcrc is d
suggestion in one or two places in Einstein's writings that hc W<lS prcparcd lo
extend the formulation of the principle to the case of frames of reference in
rotation or nonuniform acceleration (for example, Einstein 1922, p. 59; 1952,
pp. 151-154).

where fi = l/(1
and v is its magnitude.

This relation closely parallels the relation

acceleration gradient of scalar field

governing the motion of a freely falling point-mass in traditional Newtonian
gravitation theory and in which the point's mass also does not appear. Thus
in accord with the discussion of Section 4.1, Einstein could view the motion
of the point-mass in the relative space as under the influence of a gravitational
rield whose scalar potential was c and which was responsible for the deviations
from uniform straight-line motion.

Nole that while the scalar field c was introduced earlier via Ihe g44
component of the Minkowski metric in a particular coordinate system, it can
be described in coordinate-free terms: c is just the Minkowski norm of the
tangent four-vector of the curves of the frame, when parameterized by the
frame time. It can be seen that c will have a constant value along each of these
curves and therefore a unique, well-defined value at each point of the relative
space.

Recalling that the coordinates {x'} (. 1, 2, 3) are inherited as Cartesian
coordinates by the Euclidean relative space, the relation c l+bx now
can be seen to assert that the gravitational potential c varies linearly with
(Euclidean) distance in one direction in the relative Space. This is exactly the
way a traditional Newtonian potential behaves in the case of a,homogeneous
gravitational field.

There were some complications however, in addition to the usual relativistic
corrections. c turned out to be the isotropic speed of light in the relative space,
measured with frame time, which it now followed must also vary with position
in the relative space. It could be shown that the rates of clocks at rest in the
relative space would vary with c and, therefore, with position.

Now that Einstein had a firm grasp on relativistic gravitational fields in the
one special case of homogeneous fields, it was a simple matter to infer the
properties of arbitrary static gravitational fields by a natural and hopefully
unproblematic generalization. To do this, Einstein left the standard formula-
tion of the theory unchanged, except for relaxing the condition that c vary

linearly with distance in the direction of acceleration. Following the model of
Newtonian theory, he now required that c satisfy a weaker condition, the field
equation

2 2 112 d/dt(x') is the three-velocity of the point-mass,

4.2. THE 1907-1912 THEORY

Einstein's 1907-1912 theory of static gravitational fields achieved its most
developed form in two consecutive papers in the latter year (Einstein 1912a;
1912b). The theory may be represented most precisely in four-dimensional
terms, although Einstein had not yet begun to use them. It was based
on exploiting certain especially simple properties of uniformly accelerating
frames of reference in Minkowski space-time.

These special properties can be derived from the result Ihat one can always
rind a coordinate system {x } (i - 1, 2, 3, 4) adapted to a uniformly accelerating
frame in Minkowski space-time in which the rnetric has the form

where c = l + bx and b is a constant. It follows immedialely that the
geometry of the relative space is Euclidean, inheriting the coordinales {x' }

1, 2, 3) as Cartesian coordinates. Further, the space-time can be foliated
by a family of hypersurfaces orthogonal to the frame, the hypersurfaces of
constant x . Therefore we can introduce a frame time.

For convenience, select the world line of the frame for which x
O as the frame clock and call t the frame time disseminated by it. The

choice as frame clock of any of the other world lines of the frame would alter
t by a constant multiplicative factor and thus not materially affect the results.

Thus Einstein could introduce a standard formulation of special relativity
in the relative space. In particular, it followed in this standard formulation
that the motion of a free point-mass, whose world line was a geodesic in the
space-time, was governed by the equation

where G is the mass density and k a constant.
This step amounted to the transition to the relative spaces of more

general semi-Riemannian manifolds with static space-time metrics of Lorentz

Einstein's Priiiciple of Equivalence

d/dt(fiv'/c) c/8x',
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signature. The relative spaces are those Df frames of reference whose velocity
vectors are Killing vector fields. The metric must be static rather than just
stationary, since the space-time must adrnit a foliation by a family of hyper-
surfaces orthogonal to these frames, in order for a frame lime to be defined
for use in the standard formulation. The requirement that the relative spaces
still be Euclidean further restricts the space-time metric to those whose
orthogonal metrics are Euclidean.

It follows that there always exists a coordinate system {x, y, z, t} adapted to
the frame in which the space-time metric has the form diag(- I, - I, - I, c )
and the relative space inherits the coordinates {x,y,z} as Carlesian co-
ordinates. As a result, Einstein's 1912 theory is sometimes described as a
theory of space-times with the line element

where c = c(x, y, z), although his theory actually deals with the relative spaces
of such space-times.

It is interesting that the field equation chosen here for the relative space
corresponds to the field equation for the space-time metric

infinitesimal regions of the relative space was not introduced to homogenize
inhomogeneous fields, as it is in the modern infinitesimal principle. His
principle still dealt only with homogeneous fields produced by uniform
acceleration. (Note that the inhomogenous fields of his 1912 theory were not
produced by acceleration but by generalizing the properties of homogeneous
rields.) Therefore, the need for such a limitation, in the case of fields that were
already homogeneous, was a source of some puzzlement to him and he
dispensed with it as soon as he could. But before he could, there were yet more
problematic developments concerning the principle of equivalence. I relate
them here in the hope of nipping in the bud Ihe myth of Einstein's 1912
introduction of the modern infinitesimal principle of equivalence.

In late 1912 and early 1913, in this climate of uncertainty about the
principle, Einstein made his major breakthrough to the Entwurf theory with
the mathematical assistance of his friend Marcel Grossmann (Einstein and
Grossmann 1913). The new theory contained virtually all the essential features
of the final general theory of relativity. However, they were unable to
incorporate generally covariant gravitational field equations in it. Einstein
was able to remove this defect only after nearly three years of intense work
and thereby arrived at his final general theory of relativity (see Norton 1984).

During this period, Einstein omitted to mention the catastrophe that had
befallen the principle of equivalence. Because of their restricted covariance, it
can be shown that the field equations of the Entwurf theory do not hold in
coordinate systems adapted to uniformly accelerating frames of reference in
Minkowski space-time, even allowing restrictions to infinitely small regions
of space-time. In the language of Einstein's 1916 formulation of the principle
in his reply to Kottler, this meant that he could not regard such coordinate
systems as "at rest., That is, according to his new theory, the principle of
equivalence was false if formulated for this standard and simple case.

Therefore, in the introduction to the Entwurf paper, Einstein had to present
the principle of equivalence as a result drawn from his earlier theory of static
fields; for he still based the principle on the assumption that a uniform
acceleration of the reference system in Minkowski space-time produced a
homogeneous gravitational field even if only in an infinitely small region of
the relative space. Presumably because of this problem, Einstein avoided the
detailed discussion of the equivalence of the inertial field of uniform accelera-
tion and homogeneous gravitational fields in the three years in which he held
to the Entwurf theory, for this Iheory entailed no such equivalence. But he
retained the principle of equivalence, for it was essential to the conceptual
development of his theory. In addition, the notion of the equivalence of inertial
and gravitational fields was central to the theory. However, the extent to which
his Entwurf theory admitted this equivalence was not entirely clear.

This d]�IcultY was resolved dramatically and completely with Einstein's
November 1915 adoption of the generally covariant field equations of his
completed general theory of relativity. The restriction of the principle of
equivalence to infinitely small regions of space disappeared from his writings.

where R is the Riemann curvature scalar, T is the trace of the stress-energy
tensor of a dust cloud, and k, is a constant, although when Einstein formulated
his theory he could not have known this.

In the second of the 1912 papers cited, Einstein described the difficulties his
bold new theory soon encountered. In order to retain the equality of action
and reaction of forces, that is, to retain a law of momentum conservalion,
Einstein found himself forced to a modified field equation

This new field equation no longer admitted the homogeneous field associated
with uniform acceleration in Minkowski space-time as a solution, unless
one considered only infinitely small regions of the relative space. Einstein
confessed that he had resisted this development, since it now meant that his
principle of equivalence could only be formulated in infinitely small regions
of the relative space, even though it still dealt only with the simplest case of
uniform acceleration in Minkowski space-time. 18

4.3. THE TEMPORARY LIMITATION TO INFINITESIMAL REGIONS

Because of the superficial similarits, between this version of the principle and
the infinitesimal principle of equivalence now common in the context of
arbitrary gravitational fields in general relativity, some writers have regarded
this development as, for example, "the dawn of the correct formulation of the
principle of equivalence as a principle that holds only locally" (Pais 1982,
p. 205). It certainly was not as far as Einstein was concerned. The limitation to

dy, dz +c dt

l = (k12)1,

R=k'T
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5. Extending the Principle of Relativity the "laws of physics" were being considered in their "standard formulations,,
described in Section 3. The standard formulations of classical mechanics and
special relativity in question would be those then generally available, that is,
those defined in the relative spaces of inertial frames (henceforth "inertial
spaces"). These standard formulations would hold only in inertial spaces and
therefore fail to satisfy Einstein's requirement that they "apply to [the relative
spaces of] systems of reference in any kind of motion." Thus they would single
out inertial spaces and their associated inertial frames as privileged.

In response, Einstein used the principle of equivalence to propose a more
general theory, a theory of homogeneous gravitational fields, whose standard
formulation will hold not only in inertial spaces but in uniformly accelerated
spaces as well. The relativistic version of this theory is quite familiar to us
now from Section 4 and presumably also to Einstein's readers of 1916. It is
just his 1907-1912 gravitation theory, restricted to the case of a homogeneous
gravitational field. In this way, Einstein broadened the set of privileged frames
and relative spaces to include those in uniform acceleration.

Precisely what Einstein achieved with this result has not always been
properly understood. His point can be made more clearly by avoiding
reference to the standard formulation of theories, which has proven to be
confusing to modern readers steeped in the four-dimensional formulation of
these theories.

The focus of Einstein's concern is the necessity in special relativity and
classical mechanics of presuming an immutable division of relative spaces
and frames of reference into the privileged inertial and the noninertial. The
principle of equivalence enabled him to eliminate the immutability of this
division, by reinterpreting the nature of the inertial effects which distinguish
the privileged inertial spaces and frames from all others. He explained this to
a correspondent in a letter of July 12, 1953, reminding him that the principle
could not be used to generate arbitrary gravitational fields by acceleration:

Einstein's early success in constructing a new gravitation theory from his
principle of equivalence is partly responsible for the still prevalenl mis-
conception that this was its essential purpose. To combat this, he frequently
stressed that the principle did not provide a recipe for producing arbitrary
gravitational fields by acceleration. The real point of the principle, as he had
made clear in 1907, was that it enabled an extension of the principle of
relativity to accelerated motion. Thus in the 1916 formulation of the principle
quoted in Section 2, the principle itself is "the assumption that one may treat
[the uniformly accelerated reference system] K, as at rest in all strictness
without any laws of nature not being fulfilled with respect to K

Prior to 1913 and the development of the basic formal structure of the
general theory of relativity, Einstein gave no sustained discussion of precisely
what he required in an extension of the principle of relativity and how
the principle of equivalence was to help bring it about. However, we can
reconstruct Einstein's position on these questions in this early period by
considering the discussion he gave in an introductory section of his 1916
review of the general theory of relativity, called"On the grounds which suggest
an extension of the postulate of relativity" (Einstein 1916a, pp. 771-773). This

section concluded with a formulation of the principle of equivalence. Further,
it dealt only with concepts that would have arisen in the pre-1913 period,
suggesting that he was rehearsing arguments essentially from this period of
his work. In particular, the discussion focused exclusively on the relative
spaces of frames of reference.

Einstein began by pointing out an "epistemological defect" of classical
mechanics and special relativity, enabling us to locate his arguments in
Newtonian and Minkowski space-times. In a celebrated thought experiment,
he considered two fluid spheres in relative rotation and noted that only one
of them can be free of centrifugal distortion. But there is no observable
difference between the relative spaces of the rest frames of each sphere, other
than the state of motion of the distant masses of the universe, in which, he
concluded, the cause of the centrifugal distortion is to be sought. This led to
the following requirement for relative spaces

Of all imaginable spaces R , R , etc., in any kind of motion relatively to one another,
there is none which we may look upon as priviledged a priori without reviving the
above-mentioned epistemological objection. The laws of physics must be of such a
nature that they apply to systems of reference in any kind of motion. (Einstein 1916a,
p. 772)

The equivalence principle does not assert that every gravitational field (e.g., the one
associated with the Earth) can be produced by acceleration of the coordinate system.
It only asserts that the qualities of physical space, as they present themselves from
an accelerated coordinate system, represent a special case of the gravitational field.
It is the same in the case of the rotation of the coordinate system: there is de facto
no reason to trace centrifugal effects back to a 'real' rotation. 19

Through the principle of equivalence, Einstein proposed that we do not
regard these distinguishing inertial effects as depending on an immutable
property of the accelerating relative space, but as arising from the presence of
a field in the relative space, which was to be seen as a special case of the
gravitational field. This view could be extended beyond the case of uniform
acceleration of the principle. Within this view, relative spaces would have no
intrinsic states of motion-none would be'really" rotating for example-and
in this sense they would all be indistinguishable. However, any relative space
could become inertial according to the particular instances of the gravitational

Einstein then proceeded to formulate the principle of equivalence that
enables a uniformly accelerated observer to avoid inferring that he is "really"
accelerated and enables us to regard the uniformly accelerated reference
system K, as just as'privileged" or'stationary" as the unaccclcratcd syslem K.

Since Einstein's discussion was in terms of relative spaces, it is clear that
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field defined on the relative spaces. Simiarly, all frames of reference would be
indistinguishable, until the introduction of any particular instance of the
gravitational field made some inertial and others not.

This crucial aspect of Einstein's account has been commonly misunder-
stood. The fact that an accelerated frame ren]ains distinguishable from an
unaccelerated frame in both special and general relativity is irrelevant to the
extension of the principle of relativity. Einstein's account requires that each
instance of the gravitational field distinguish certain frames as inertial and
others as accelerating. The decision as to which frames will be inertial and
which accelerated, however, must depend only on the particular instance of
the gravitational field at hand and not on any intrinsic property of the

20frames.
At this stage of his development of general relativity, Einstein's important

innovation did not yet lie in the introduction of an empirically new theory.

According to the principle of equivalence, his theory of static gravitational
fields was predictively identical to special relativity in the case ofhomogeneous
gravitational fields. Rather, it lay in a new way of looking at the division of
structures between space and the fields it contains in the context of special
relativity. Specifically, he no longer regarded the structures accounting for

inertial effects as a part of space. Rather he now looked upon them as associated
with the fields defined in space and, in particular, intimately related to gravita-
tion. This move stripped space of the privileged frames to which he objected.

Einstein's "Gestalt switch" can be described rnore precisely if we present it

more explicitly in four-dimensional terms. Of course, Einstein himself did not
begin to work explicitly in such terms until five years after his original 1907
formulation of the principle of equivalence.

In the old view of special relativity, the background arena of space and time,
against which physical processes unfold, is a Minkowski space-time, that is,
a pair: <M, g>, where M is a four-dimensional manifold and g a Minkowski
metric. This background arena admits certain privileged structures: inertial
frames of reference and their associated inertial spaces.

In the new view of special relativity, we are informed by the principle of
equivalence that the structure responsible for inertial effects, the Minkowski
metric g, is not an intrinsic part of the background arena of space and time.
Rather, it is a field defined against that background and actually a special
case of the field structure that also accounts for gravitational effects. The
background arena of space and time is now just the bare space-time manifold
M. In M in the absence of a metric, we can still introduce frames of reference
as congruences of curves, although we cannot require them to be time-like,

and we can still define their relative space, although they will have no induced
metric. Clearly in terms of M alone, all such frames and correspondingly all
relative spaces will be indistinguishable and therefore none will be privileged.

Following the model of classical gravitation theory, special relativity in
this new view circumscribes the metric fields allowed on the manifold by a
differential field equation. It requires a metric of Lorentz signature and with

in Riemann curvature tensor

This requirement does not specify a unique Minkowski metric, but a large set
of Minkowski metrics. Because of this, the theory does not single out any frame
of reference as privileged in a particular "background space" (i.e., manifold),
even though each metric allowed by the theory will single out certain frames
as inertial and others as noninertial. For, speaking informally, it can be shown
that there is always a Minkowski metric allowed by the theory in which any
well-behaved noninertial frame would become inertial. This result, given
more precisely later, rests entirely on an active interpretation of the general
covariance of the preceding field equation.

In a space-time manifold M, let g be a Minkowski metric and F an inertial
frame of reference, that is, one whose time-like curves are geodesics in rigid-
body motion. Let F, be any frame of reference in the neighborhood U, of M
(or even any congruence of curves which need not be all time-like), for which
there exists a coordinate sytem {x'"} with domain U, adapted to F,. (Such a
frame is "well behaved".) Now in some neighborhood U of M there exists a
coordinate system {x } adapted to F whose range coincides with that of {x}.
h is a diffeomorphism that maps p to hp such that x'(p) = x"(hp). Then it
follows that F, is an inertial frame of reference, with respect to the Minkowski
metric g,, which is the image of g under h.

The essential features of the old and new way of viewing special relativity
are summarized in Table l.

TABLE l. Comparison of old view of special relativity with new view informed by
principle of equivalence.

Old view New view

Background arena of space
and time M only

where
M = four dimensional manifold
g = Minkowski metric

Examples of contents/
processes in space and
time

Electromagnetic fields,

matter in dust clouds, etc.
Electromagnetic fields,

matter in dust clouds, etc.
Any Minkowski metric =

special case of structure
inducing gravitational

Privileged frames of

reference in background
of space and time?

Yes, each <M, g> has a
unique set of inertial
frames.

No, bare manifold M has

no privileged frames of

reference. Any well-

behaved frame can be made
inerlial by defining an
appropriate Minkowski
metric on M.

Minkowski space-time Four-dimensional manifold

rields

iklm

<M,g>
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The equivalence of all frames embodied in this new view goes well beyond
the result that Einstein himself claimed in 1916 from the principle of equiva-
lence. He claimed only an equivalence of inertial and uniformly accelerated
relative spaces, that is, of inertial and uniformly accelerated frames. The
establishment of a wider equivalence would have been straightforward, even

if inessential in view of the fact that he had the general theory of relativity in
hand by then. But he most likely chose to avoid this extension because it would
have required him to find standard formulations of a gravitation theory,
similar to his 1907-1912 theory, which would hold in relative spaces of frames
in rotation or nonuniform acceleration. I listed some of the difficulties Einstein
would face in this task in the last section.

In any case, Einstein could not simply take special relativity, viewed in the
new way, as a theory extending the principle of relativity in the way required
for two reasons. First, the principle of equivalence clearly indicated that
the theory was not complete. The structure accounting for inertia must
also account for all gravitational effects. The Minkowski metric of special
relativity, however, could only account for effects due to gravitational fields
which could be transformed away over some neighborhood of a relative space
by transforming to a new relative space. So Einstein immediately continued
from his statement of the principle of equivalence, quoted earlier from his 1916

review article, by observing that "in pursuing the general theory of relativity,
we shall be led to a theory of gravitation.... We shall see that it was the
completion of this task that yielded the general theory of relativity.

The second reason was more subtle but far more important and can only
be touched on informally here. The theory was also causally incomplete. As
we have seen, Einstein required a complete theory of inertia to account for
the disposition of inertial frames in space-time in terms of the only available

observable cause, the distribution and motion of the masses of the universe.
Special relativity in any of the forms described cannot be that theory. The
disposition of inertial frames and the Minkowski metric which determines
them is completely unaffected by any change in these masses. In some large
neighborhood of space-time, such changes might include the setting of all
masses into rotation about a central axis or even the conversion of all their
energy into radiation and its resulting dissipation.

However it was natural for Einstein to expect that the extended theory,
which dealt with general gravitational effects, would explain the observed
disposition of inertial frames of reference in terms of the matter distribution
of the universe. For the structure that determined this disposition would
behave in many aspects like a traditional gravitational field and therefore be
strongly influenced by any motion of its sources, the masses of the universe.

Although Einstein's hopes were not borne out by later developments, he
made clear in his earliest relevant publications that he expected his new
general theory of relativity to implement a "hypothesis of the relativity of
inertia,, which required inertia to be nothing other than the resistance of a
body to acceleration with respect to other bodies (Einstein 1913b, pp. 1260-

1262). This, of course, would forbid universes, all of whose masses were
rotating about a local inertial compass. He had already sought and found
small effects he felt were consistent with this hypothesis. They included the
dragging of the inertial frames of reference inside a rotating shell of matter
and were similar to those discussed in his Meaning of Relativity (Einstein1922,
pp. 100-103). Clearly he also related this hypothesis to his 1907-1912 theory
of static gravitational fields, for in 1912 he had published a paper which
demonstrated the existence of similar such effects in that theory too (Einstein

6. The Breakdown of Relative Spaces

Ii was inevitable that Einstein would give up the use of slandard formulations
of theories in his search for a general theory of relativity. For the relative spaces
used by these formulations would only have well-defined geometries if the
associaled frame is in rigid motion, which is by no means generally the case.
Even in Minkowski space-time, no nonuniformly rotating frame can move
rigidly. Worse, the relative space will only have the frame time required by
standard formulations if the space-time admits a foliation by hypersurfaces
orthogonal to the frame. Even uniformly rotating frames in Minkowski space-
time do not admit such a foliation.

In his general theory of relativity, Einstein turned to the four-dimensional
space-time formulation of theories. As indicated in the last section, he now
also came to regard the four-dimensional space-time manifold without further
structure as the background of space and time against which physical
processes unfold.

One can define very few reference structures in such a manifold. Frames of
reference as congruences of world lines can be defined. But without further
structure, such as a metric, they cannot be described as time-like or have an
overall state of motion assigned to them. The richest reference structure
available is the arbitrary space-time coordinate system, whose coordinate
values can have no metrical significance, such as Einstein had required in his
Galilean reference systems.

So in the general theory of relativity, Einstein proceeded to use arbitrary
space-time coordinate systems as the reference structures from which to view
physical processes and formulate physical principles. In his expositions of
general relativity, Einstein typically made this transition from frame of
reference and relative space to arbitrary space-time coordinate system by
considering the relative space of a frame of reference in uniform rigid rotation
in Minkowski space-time (for example, Einstein 1916a, pp. 773-776; 1922,
pp. 59-62). He would show that the spatial geometry is non-Euclidean and
conclude that the coordinate system used there could not have the same direct
metrical significance of spatial coordinates in his Galilean reference systems.
Similar results followed from attempts to retain a time coordinate, presumably

1912d).
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for space-time, whose value would coincide with the readings of clocks at
rest in the frame. Einstein then introduced the use of arbitrary space-time
coordinate systems as a natural extension of the methods developed in the
nineteenth century for dealing with non-Euclidean spatial geometries.

This argument gave psychologically natural grounds for introducing the
methods of differential geometry into relativity theory. However, it failed to
demonstrate the completeness of the demise of relative spaces in general
relativity. The relative space of the argument's uniformly rotating frame of
reference still has a well-defined geometry, unlike the relative spaces of
other frames of reference in space-times with more general semi-Riemannian
metrics. Einstein turned to this problem in his popularization Relativity
(1954a), most of whose discussion is set in terms of the relative spaces of
"reference bodies" (=frames of reference). In chapler 28 he points out thal

rigid reference bodies will in general no longer be available in general relativity
and that "the Gauss coordinate system has to take the place of the body of
reference." He then proceeds to describe the difficulties and artificiality
of retaining the use of nonrigid reference bodies (and by implication Iheir
associated relative spaces with ill-defined geometries) through the discussion
of what he calls "reference molluscs."

In the same chapter, Einstein gave his well-known reformulation of the
extended principle of relativity-"All Gaussian co-ordinate systems are
essentially equivalent for the formulation of the general laws of nature"
and proceeded to explain that this requirement was satisfied by a theory if its
, laws were written in a generally covariant form. Naturally, this meant that his
generally covariant general theory of relativity realized the extended principle

of relativity.
Einstein has taken the principle of equivalence to assert the equivalence

of inertial and uniformly accelerated relative spaces, an asserlion Ihat is
subsumed by the extended principle of relativity. So it was easy for Einstein
to conclude, in continuing his reply to Kottler, that the principle of equiva-
lence was automatically satisfied by his general theory of relativity:

were any frames privileged, the coordinate systems adapted to them would
also be privileged.

However, as has been frequently objected, it is hard to see how this
requirement could capture all that Einstein required in an extension of the
principle of relativity, when there are simple generally covariant formulations
of many other theories apart from general relativity. These include special
relativity, Nordstrom's theory of gravitation, and Newtonian gravitation
theory. Of course Einstein was aware of this at least in the case of the first two
theories.

A thorough analysis of Einstein's intentions here and their refinement in
his later work is a complex task that goes well beyond this paper. Nevetheless,
I will make a few tentative comments concerning Einstein's early view of the
question to make his remarks more plausible.

For Einstein, violations of the extended principle of relativity need not be
limited to the laws of a theory. They could also arise in its solutions, that is,
in models or classes of models of the theory. For example he pointed out in
a 1917 paper on the cosmological problem that it was "contrary to the spirit
of the relativity principle" to introduce solutions of the field equations of
general relativity by imposing a boundary condition of a Minkowski metric
at matter-free spatial infinity (Einstein 1917, p. 147). This introduces privileged
coordinate systems in which the metric approaches the form diag(- I,

I, l ) as the limit to spatial infinity is taken. In addition, these privileged
coordinate systems were objectionable since there was no observable cause
for their special status, contradicting the hypothesis of the relativity of inertia.

Clearly, solutions of generally covariant formulations of special relativity
and Newtonian theory would necessarily involve the introduction of similarly
objectionable privileged coordinate systems in one form or other. Minkowski
space-time, even regarded as a model ofgeneral relativity, would be objection-
able for the same reason. However, Einstein believed that the introduction of
these boundary conditions would not always be needed in the case of his
general theory of relativity. In his 1917 paper, he continued to demonstrate
how the field equations of general relativity, augmented with the cosmological

term, admitted solutions without the use of boundary conditions at spatial
infinity. To arrive at these solutions, one needed only to specify the mass
and world lines of the universe's smoothed-out dust cloud of matter on the
manifold and invoke other natural requirements, such as the symmetry of the
metric with respect to these world lines, and its isotropy about them.

In 1918, Einstein described a solution generated in this way as satisfying
'Mach's Principle" (Einstein 1918a, p. 241). This principle required that the

metric tensor be determined completely by the matter of the universe and was
taken to be the natural generalization of the hypothesis of the relativity of
inertia. In a footnote, he pointed out that he had not previously distinguished
this principle from the (extended) principle of relativity and that this had
caused confusion. So, at least at this time, the general theory of relativity

A gravitation theory violates the principle of equivalence, in the sense which I
understand it, only then, if the equations of gravitation dre satisfied in no reference
system K,, which is moving non-uniformly relative to a Galilean reference system.
That this reproach cannot be raised against my theory with generally covariant
equations is evident; for here the equations are satisfied with respect to each reference
system. The requirement of general covariance of equations embraces the principle of
equivalence as a quite special case. (Einstein 1916b, p. 641)22

Einstein's reformulation of the extended principle of relativity as the
requirement of general covariance is unproblematic in so far as it is based on
the fact that the space-time manifold without any additional structure has no
privileged coordinate systems. This fact immediately entails that there are no
privileged frames of reference and, therefore, no privileged relative spaces. For

Einslein'.s PrinciplL ()f ELIuiviilence
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seemed to be the only viable theory satisfying all his requirements concerning
the relativity of motion. It was clearly impossible for special relativity or
Nordstrom's theory to exhibit such Machian behavior, irrespective of the
covariance of their formulations.

Unfortunately, in the period 1912 to 1915, Einstein believed that the
arbitrary static space-times associated with his 1912 theory ought also to be
solutions of the field equations of his new general theory of relativity. I have
argued elsewhere in detail that this played a major role in his failure to adopt
the generally covariant field equations of his final theory in this period. (see
Norton 1984).

Nevertheless, Einstein commonly used the principle of equivalence to
recover and motivate the basic formal structure of his general theory of
relativity in an argument whose strategy was essentially the same as that used
in 1912. Einstein presents the argument in a compact and well-developed form
in a 1951 letter to Becquerel, in which the role of the principle of equivalence
is made especially clear. 24 He begins by using the equality of inertial and
gravitational mass to justify introduction of the principle, which is formulated
in terms of relative spaces: "An inertial space without gravitational field is
physically equivalent to a uniformly accelerated space, in which there is a
(homogeneous) gravitational field. (Equivalence hypothesis.)" Then after
introducing the requirement of general covariance, he proceeds with the steps
he numbers as the third and fourth of his argument:

(3) One kind of space is completely known to us, that is empty Minkowski-space,
in which the interval ds, as given by

7. Generating General Relativity

Einstein had come to recognize that a general theory of relativity was to be
found as a four-dimensional theory of gravitation. The principle of equiva~
lence provided the crucial starting point: the identification of the Minkowski
metric as an instance of the four-dimensional space-time slruclure represenl-
ing gravitational fields. For Einstein had found that the Minkowski metric

can induce gravitational fields on the relative spaces of a Minkowski space-
time.

Einstein's discovery of the gravitational properties of the Minkowski metric
was a remarkable feat. Unlike so many other discoveries in physics, it seems
to have been almost totally unanticipated by his contemporaries.

The role of the principle of equivalence in Einstein's development of his new
gravitation theory remained essentially the same as in his earlier 1912 theory
of gravitation. The principle yields a special case of the gravitational field,
whose properties are then generalized in a natural way to arrive at a general
theory of gravitation.

However, from the perspective of the general theory of relativity, Einstein
had no prospect of arriving at the correct laws of a general theory of the
gravitational fields of relative spaces, as long as he worked within the frame-
work of his 1912 theory. This follows immediately if we recall that Einstein
sought to characterize arbitrary static gravitational fields as structures

induced onto relative spaces by the special type of static spacc-times I

described in Section 4.2.
In these space-times, in the source-free case, one can readily demonstrate

that the field equations of general relativily, that is, the requirement of the
vanishing of the Ricci tensor

can be measured immediately by resting clocks and measuring rods. Through a
nonlinear transformation, this becomes

g. dx.dxk,

where ds has the same value as a Minkowski system. The g. depend on the coor-
dindtes and, according to the equivalence hypothesis, describe a gravitational field
(of a more special kind).

(4) In general coordinates, a gravitational field of the more special kind satisfies
the differential equations

from the loosening of which the field law of an arbitrary pure gravitational field must
follow. For this, only

entails the vanishing of the Riemann-Christoffel curvature tensor comes into consideration. It is natural to assume that ds expresses the naturally
measured interval also in the case of a general pure gravitational field.

Because of its extreme brevity, Einstein's argument requires some explica-
tion. In his step 3, he appears to identify a coordinate effect, the nonconstancy
of the components gik, Wlth the presence of a gravitational field. His real
intention emerges, however, if we recall his practice of tacitly associating
changes of frame of reference with coordinate transformations. In particular,
a nonlinear coordinate transformation can represent the change from an

This in turn entails that the only source-free gravitational fields in relative
spaces which the theory can deal with correctly, from the perspective of the
general theory of relativity, are those induced by acceleration in Minkowski
space-time. In addition, it follows from an evaluation of the components of
the curvature tensor in a coordinate system adapted to the accelerating frame
that this acceleration must be a uniform rectilinear acceleration. 23
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inertial frame of reference to a rigidly and uniformly accelerated frame of
reference, which is precisely the case considered in the statement of the
principle of equivalence just given. In this case, the nonconstancy of the qik IS

now associated with the presence of a homogeneous gravitational field in the
relative space of the accelerated frame, for as we have seen in Section 4, the
potential of such a field is given by g44 in a coordinate system adapted to the
frame.

Thus Einstein's step 3 is multifaceted. The introduction of an arbitrary
coordinate system makes the presence of a metric tensor in Minkowski
space-time formally explicit as a matrix of components gik. At the same time
Einstein uses the principle of equivalence to point out that this metric induces
a gravitational field of a special type in the relative space of an accelerated
frame of reference. This justifies interpreting the Minkowski metric as a
particular instance of the four-dimensional generalization of such gravita-

Interpreting the Minkowski metric in this way indicates that Einstein can
arrive at a four-dimensional theory of arbitrary gravitational fields, which will
also be his general theory of relativity, by generalizing the properties of the
Minkowski metric in a manner analogous to the way that uniform gravita-
tional fields can be generalized to nonuniform fields in Newtonian theory. He
rinds that the way to proceed is straightforward. The general theory will deal
not only with Minkowski metrics, but also others of Lorentz signature.

This argument appears throughout Einstein's earlier work, but in a slightly
less-developed form.25 For it was only in his later vears that he explicitly
renounced the use of a separate stress-energy tensor as the source term in the
rield equations and used these equations only in their source-free form.
This source-free form of the field equations can be arrived at readily in the
argument, as Einstein shows earlier, by rnerely contracting the flat space-time
condition of special relativity. The argument appears commonly in Ihis more
complete form in his later writings.26

The earlier examples of the argument also contained an important addition
to the example quoted earlier. Einstein would note that in the Galilean
reference system of special relativity, a free point mass moves uniformly in a
straight line. Such motion is represented in Minkowski space-time by a
time-like geodesic, which satisfies the condition that the interval be exlremal
along the curve:

inertial and gravitational fields and that the Minkowski metric was a special
case of it. Einstein summarized this insight in a compact 1918 staternent of
the principle:

Principle of Equivalence: inertia and gravity are wesensgleich [identical in essence].
From this and from the results of the special theory of relativity it necessarily follows
that the symmetrical "fundamental tensor" (g,,) determines the metrical properties
of space, the inertial behavior of bodies in it, as well as gravilational action. (Einstein
1918a, p. 241)27

8. A Manner of Speaking

It was not uncommon for Einstein to associate the nonconstancy of the
components of the metric tensor, or, equivalently, the nonvanishing of the

Christoffel symbols in a given coordinate system with the presence of a
gravitational field. In particular, he would describe the Christoffel symbols as
the "gravitational field strengths" or "components of the gravitational field,"
for in a coordinate system in which these symbols vanished, free point-masses
move "uniformly in a straight line." Therefore, these components "condition
the deviation of the motion from uniformity" (Einstein 1916a, p. 802).

As in the last section, this association of the Chrisloffel symbols with
gravitational field strengths can be explicated by recalling that Einstein often
tacitly referred to frames of reference and their relative spaces when he talked
explicitly only of a coordinale system adapted to them. If a cootdinate system
adapted to a uniformly accelerating frame of reference in Minkowski space-
time is chosen so that its spatial coordinates are Cartesian, then the Christoffel
symbols will contain only the spatial derivatives of the g44. However, these
derivatives logether form d field slrengih, the three-vector gradient of the
potential of the homogeneous gravitational field in the associated relative
space.
The connection made here between the Christoffel symbols and the field

strengths of the gravitational fields in relative spaces depends on a careful
choice of space-time and coordinate system. Einstein, however, did not make
this clear in his work and rarely qualified the identification of nonvanishing
Christoffel symbol and gravilational field strength.

This practice has undoubtedly caused confusion. In a letterof January 1951,

28Laue challenged Einstein on this point. He gave the example in Minkowski
space-time of the transformation to curvilinear spatial coordinates from a
Galilean coordinate system with no alteration in the time coordinate. Since
this transformation is not associated Ivith a change of state of motion, the
resulting nonvanishing of "field strengths" is physically counterintuitive.

Einstein began his response by stressing that the Newtonian concept of
gravitational field ("all the expressions obtained from the potential") is
different from the concept of the relativistic gravitational field ("everything

It was natural to assume, the argument continued, that this requirement would
also be satisfied by the world line of a free point-mass in the more general case
of the general theory of relativity. I will return to the importance of this point
in Section 9.

In short, we have seen in this section that the principle of equivalence
enabled Einstein to see that one structure was responsible for inducing both

tional fields.
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29formed out of the symmetrical g. "). This corresponds to the distinction
made here between the gravitational fields of relative spaces, which are usually
represented by scalar fields, and their four-dimensional generalization, the
metric field. Nevertheless, as he continued to explain, it was possible to forge

a heuristic link between these two concepts and this link was the principle of
equivalence:

Heuristically, the interpretation of the field existing relative to a system, parallelly
accelerated [parallel beschleunigten] against an inertial system (equivalence prin-
ciple) was naturally of decisive importance, since this field is equivalent to a
Newtonian gravitational field with parallel lines of force. In this case, the Newtonian
field strengths are equal to the spatial derivatives of the g44. Correspondingly, if one
wants to, one can designate the first derivatives of the g,. or the displacement
quantities r[affine connection] as gravitational field strengths, which certainly have
no tensor character. In this manner of speaking, the introduction of cylindrical

coordinates leads to the appearance of field strengths in a Galilean space. With this
it is only a question of a manner of speaking.

Here Einstein uses the special case described earlier to juslify speaking of the
rirst derivatives of the gik (which determine the Christoffel symbols and the
a�lne connection in these space-times) as gravitational field strengths. One
can continue to use this manner of speaking in other cases, bul, as Einstein's

response indicates, it should be used with some caution.
This attitude to the description of the Christoffel symbols as gravitational

rield strengths was not a later development in Einstein's thought. It is also
clearly evident in his 1916 reply to Kottler. There he says of this nomenclature,
referring also to the nongenerally covariant stress-energy pseudo-tensor of the

gravitational field, that "it is meaningless in principle and only intended to
make concessions to our physical thought habits," but that it "appears to me,
at least provisionally, not without value to maintain the continuity of thought"
(Einstein 1916b, p. 641).

Today, some fifty years later, we insist that coordinate effects be carefully
distinguished from physical effects. Exarnples such as Laue's show the confusion
that would otherwise arise. Therefore, the provisional value of Einstein's
manner of speaking is no longer evident. Einstein continued his response to
Laue by stressing the important point beneath his manner of speaking, which
involved no equivocation about coordinate effects:

It is essential however, that a gravitational field exists in the sense of general relativity
also in the case of a Galilei or a Minkowski space, even if the field strengths in the
sense defined above vanish. In the theory of relativity, just the dimensionality of the
rield is the only thing that remains of the earlier physically independent (absolule)
space.

metric. All space~times of general relativity contain such a metric field-
gravitational field "in the sense of general relativity" regardless of the frame
of reference or relative space under consideration. This holds equally for
Minkowski space-times, even though we can always find relative spaces in
them that are gravitation-free in the older sense. In short, in general relativity
a Minkowski space-time is not the gravitation-free special case.

9. The Infinitesimal Principle of Equivalence
Einstein's contemporaries of the early 1920s regarded the relative~space
dependence of the gravitational field as the basic assertion of the principle of
equivalence, rather than the occasion for inference to a more fundamental
structure. Naturally, they were dissatisfied that Einstein dealt only with this
relative-space dependence in the very simple case of the homogeneous
gravitational fields of uniformly accelerated reference systems in Minkowski
space-time. They sought an extended statement of this dependence that would
apply directly to arbitrary gravitational fields (Pauli 1921, pp. 145-147"
Silberstein 1922, pp. 10-13). They believed that this could be achieved in
general relativity on the basis of the notion that special relativity holds in
infinitesimally small regions of the space-time manifold, tacitly assuming that
special relativity is a gravitation-free special case. As a result, their construal
of the principle was very different from Einstein's and lays stress on the notion

30that a gravitational field can always be transformed away. Pauli's classic
formulation of the resulting principle reads:

For every infinitely small world region (i.e., a world region which is so small that
the space- and time-variation of gravity can be neglected in it) there always exists a
coordinate system K (X , X , X , X ) in which gravitation has no influence either
on the motion of particles or any other physical processes (Pauli 1921, p. 145). 31

Pauli continued to explain a little later that

The special theory of relativity should be valid in K . All its theorems have thus to
be retained, except that we have put the system K , defined for an infinitely small
region, in place of the Galilean coordinate system.

In particular, this meant that the metric adopted the form diag(I, I, I, - l) in

This "infinitesimal principle of equivalence" can be connected to Einstein's
version at least superficially by noting that classical gravitational fields
become homogeneous in infinitesimal regions of the relative space. Inverting
Einstein's usual argument, they can then be transformed away at least

infinitesimally by an appropriate acceleration of the reference system. One
then regards the Pauli version of the principle as a four-dimensional restate-
ment of these two results.

Of course this infinitesimal principle and the discussion of its connection
to Einstein's version is beset with a number of serious technical dI�]culties.

In a given space-time, the nature, and even existence, of a gravitational field
in a relative space will depend on the choice of frame of reference defining the
relative space. But this relative-space dependence of these gravitational fields
does not extend to their four-dimensional generalization, the space-time
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The notion of both three- and four-dimensional "infinitesimal regions" and
the sense in which special relativity holds in such regions are unclear. Further,
the actual statement of the principle makes it look as though it deals solely
with a coordinate effect. These problems will be addressed shortly.

The popularity of the infinitesimal principle derives at least in part from its
leading to a particularly attractive result: that it is possible to reconstruct
much of the space-time manifold of general relativity as a patchwork of
infinitesimal pieces in which special relativity holds.

Moritz Schlick, in his influential two-part article on space and time in

the March 1917 issues of Die Naturwissenschaften, attempted just such a
reconstruction (Schlick 1917). "We stipulate," he wrote, "that in an infinitely
small region and in a reference system in which the bodies considered have
no acceleration the special theory of relativity holds., It followed that in a
"local" coordinate system, such as Pauli's K the interval between two

infinitesimally separated events is given by

Transforming to an arbitrary space-time coordinate system {x. } (.
the expression for the interval became

where the symmetric coefficients gik (i, k 1, 2, 3, 4) represent the components
of the metric tensor in the new coordinate system. Schlick was thus able to
infer that the new theory would involve a metric tensor and to arrive at many
of its properties by considering the properties of the interval as given in special
relativity.

In addition, Schlick considered the motion of a free material point. By
reviewing its motion in the relative spaces of both local and accelerated
coordinate systems and invoking the principle of equivalence, he concluded
that the components of the metric tensor in the new coordinale system
determine the gravitational field in the latter space. It also followed from
special relativity that the world line of such a particle in the local coordinate
system (X.) would be a geodesic. Since this was an invariant property, it would
also be true of the world line in all coordinate systems, such as (x.). He then
invoked the "principle of continuity" to justify the important conclusion that
the world line of a free material point would be a geodesic in finite regions of
the manifold as well.

Einstein has used arguments very sirnilar to those just described. In parti-
cular, he used the assumption that special relativity holds in infinitesimal
regions of the space-time manifold of general relativity in a manner close to
that of Schlick, to introduce the metric tensor and some of its properties,
especially those relating to the behavior of infinitesimal rods and clocks

32(Einstein 1916a, pp. 777-778; 1922, pp. 62-64). However, this assumption
was never related to the principle ofequivalence, which was always formulated
in Minkowski space-times. In addition, he was cautious in his use of this

assumplion, since he held that it was only true to a limited extent. This
emerged in the correspondence between Einstein and Schlick following

We know from this correspondence that Einstein had seen Schlick's article
33prior to its publication and that he approved of it wholeheartedly. Six weeks

after their initial exchange, however, Einstein wrote to Schlick to point out
an error in one of the arguments sketched out here:

The derivation of the law of motion of a point mass given on page 184 proceeds
from the motion of a point being a straight line, when considered in the local
coordinate system. But from this nothing can be derived. In general, the local

coordinate system has a meaning only in the infinitely small and in the infinitely
small every continuous line is a straight line. The correct derivation runs as follows:
in principle there can exist finite (matter-free) parts of the world for which

with an appropriate choice of the reference system. (If this were not the case, then
the Galilean law of inertia and the special theory of rel. could not have held good.)
In such a part of the world, the Galilean law of inertia holds with this choice of
reference system. and the world line is a straight line, and therefore a geodesic, with
an arbitrary choice of coordinates.

That the world line of a point is a geodestic in other cases too (if none other
than gravitational forces act) is an hypothesis, even if a very obvious one. 34

Einstein's objection bears directly on the assumption that special relativity
does hold in an infinitesimal region of the space-time manifold of general
relativity. He claims that it can only hold in a limited sense, for in such regions
we cannot formulate the requirement that the world line of a free point-mass
be a geodesic. (Note that Einstein called such lines "straight" in a Galilean
reference system, since their spatial coordinates are linear functions of the
time coordinate.)

Rather, as Einstein indicates here and as was his own practice elsewhere,
when one discusses the motion of free point-masses, one must consider finite
regions of the manifold in both special and general Felativity. From the
assumption that special relativity holds infinitesimally in general relativity, it
does not follow that the world line of a free point-mass will be a geodesic in
general relativity. Einstein's approach here and throughout his early work
was to take this result in general relativity as strongly suggested by the
corresponding result in special relativity, but in the last analysis still an
independcnt assumption. (Of course, later he sought to derive this result in
general relativity from the gravitational field equations.)

Finally, Einstein's comments here provide one more reason for his failure
to retain an infinitesimal principle of equivalence after he briefly entertained
one in 1912. As he came to realize, such a principle could not deal with the
motion of bodies, the consideration of which formed the core of his principle.
In the next section, I turn to examine whether Einstein's objection to
Schlick holds. If it does, then he has pointed out a rarely dcknowledged, but

(dx,), + (dx,), + (dX3)' _ (dx,),.

+ g44(dx4

Schlick's article.
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nevertheless devastating, difficulty for the traditional infinitesimal principle of
equivalence. 35 If he is correct, then the restriction to infinitesimal regions
makes it impossible to distinguish the geodesic world lines of free point-masses
from other world lines and thus it is impossible to judge whether-in the
words of Pauli's formulation-"gravitation has no influence on . . the motion
of particles."

the .qik,mn by comparing the gik at two points infinitesimally close to p, the
second more removed thdn the first. Then, finally, we imagine Ihal access to
quantities higher than any designated order can be denied by restricting
consideration to sU�1clentIY small infinitesimal regions around p.

It is now clear that the notion of these infinitesimal regions is problematic
in differential geometry, since such regions cannot be equated with neighbor-
hoods in their usual sense or any other slructure commonly employed.

If we are to make a consistent evaluation of Einstein's objection to
Schlick, the foregoing discussion must be made more precise. First, ambiguous
restrictions concerning infinitesimal regions will be replaced by restrictions
concerning orders of quantities. The assertion that special relativity holds
infinitesimally in general relativity will be taken to mean only that special
relativity holds at a point in the space-time manifold when quantities up to
second order only are considered.

Second, we can eliminate the dependence on the coordinate system Ko and
on Galilean coordinate systems in Minkowski space-time by replacing the
quantities g. g andg in the examples of first-, second-, and third-order
quantites mentioned earlier, by the covariant quantities g D., and D.D

10. The Problem of Infinitesimal Regions

When Pauli and Schlick wrote of special relativity holding in infinitely
small regions of the space-time manifold of general relativity, they could not
have meant that special relativity holds in its usual sense. For whatever an
infinitesimal or infinitely small region is, it must contain at least one point.
Special relativity requires the vanishing of the Riemann-Christoffel curvature
tensor. This requirement is well defined at every point of the manifold and is

typically not satisfied in general relativity.

Rather they referred to a coordinate-dependent result, as is suggested by
their qualification that special relativity hold in the region of an appropriately
defined coordinate system. In a neighborhood of any given point p in the
space-time manifold in general relativity, it is possible to introduce a "local"
corrdinate system K so that at p: the components of the metric gik have the
values diag(I, I, I, - l); the first (coordinate) derivatives of the components of
the metric tensor g and thus also the Christoffel symbols vanish. but, in
general, the second derivatives g will not vanish.

When special relativity is said to hold in K in an infinitesimal region
around p, what is meant is the following. In K at p, structures defined on the
manifold, which do not deal with second and higher (coordinate) derivatives
of the metric tensor, behave identically to their special relativistic counter-
parts at any point of a Minkowski space-tirne in a Galilean coordinate system.
The criterion of identical behavior is equality of components of the quanti-
ties concerned. For example, in both cases the metric has components
diag(I, I, I,- l), which means that the coordinate velocity of light will be
unity. Both cases are commonly regarded as gravitation free insofar as the
Christoffel symbols, the "gravitational field strengths," vanish. And the world
line of a free point-mass is a "straight" line, in the sense that it satisfies the

O at p, where s is the interval. The two cases differ,
however, when quantities containing gik.mn are considered. Most notably the
curvature tensor vanishes only in the case of Minkowski space-time.

The ignoring of second and higher derivatives of the metric tensor is usually
justified by the introduction of a hierarchy of nested orders of quantities.
Examples of first-order quantities contain the gik alone; of second-order
quantities, the g. and g , and g,.
and so on. One must now imagine that the gik are given at p alone; the gik,m
are given by comparing the gik at p and at an infinitesimally close point. and

respectively. D. is the unique covariant derivative operator compatible with
the metric g. The coordinate-dependent notion of identity of quantities in
the space-time manifold of general relativity with corresponding quantities
in a Minkowski space-time is also naturally replaced by a requirement of
diffeomorphic equivalence at the two corresponding points of each manifold.

Finally, we can extend the hierarchical ordering of quantities to those not
constructed solely out of the metric and its derivatives by a technique based on

36one outlined by Geroch. We generate subsets of the set of all diffeomor-
phisms {h} whose domain is some neighborhood of p and which map p back
onto itself. Let .q' be the image of.q under such a diffeomorphism and D,: the
derivative operator constructed from g,. {h } arc all those diffeomorphisms for
which g, _ g at p. {h } are all those diffeomorphisms for which D,. - D. at p.
{h } are all those for which D,:D' D,D, and so on. We find 37

We can think of the members of {h.} as disturbing the manifold about p in
a way that will not affect the particular nth order quantity used at p to define
them. More figuratively, they leave undisturbed the infinitesimal region about
p needcd to determine that quantity. Hence it is natural lo use these sets of
diffeomorphisms lo define the hierarchy of orders of other quantities defined
on the manifold. If Q is a quantity defined at p, then the order of any quantity
F(Q) derived from it in the hierarchy of orders engendered by Q is the smallest

value of n for which we always have F(Q') = F(Q), where Q, is the image of Q
under any member of {h.}.

Let c be a curve through p differentiable to all orders with a tangent vector
X. We can also classify the hierarchy of quantities generated by c at p by
considering the images of c under members of {h}. If an image curve c, has

of third-order quantities, the g g

.condition d X'/ds
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the tangent vector X,, then we find that X, is first order since X, X only
under any member of {h }. Writing D X'D;, we flnd D ,X' _ D X only
under the members of {h }. Hence D X is a second-order quantity. Similarly
(D )'X is of order n + I for all positive integers n. 38

Now let the curve c passing through p be a geodesic parameterized by the
interval s and have tangent vector X = d/ds. By definition, at every point of
c in some neighborhood of p, X will satisfy the condition

to second-order quanlities only, then it follows that we cannot formulate
special relativity's requirement that the world line of a free point-mass be a
geodesic.

In the terminology used by Pduli, Schlick, and Einstein, we would say that
in the infinitesimal region concerned in the "local" coordinate sytem K the
fact that a world line satisfies the condition d X'/ds O does not mean that
it is a geodesic. This much is obvious once we realizc that the restriction to
infinitesimal regions effectively involves a restriction to the consideration of
quantities at a single point in the manifold. However, we now also see that,
under a consistent treatment of this restriction, the higher derivative terms,
which might enable us to distinguish other curves satisfying this condition
from geodesics, are not accessible from within these infinitesimal regions.

It necessarily follows that at p

D,D,X= O
for all positive integers n.

Einstein's objection that "in the infinitely small every continuous line is a
straight line" can now be made more precise. If we restrict ourselves to
quantities of first order, then at p we can only characterize curves through p
by their tangent vectors, if defined. But if c is any curve through p with tangent
vector X* then there will always be a geodesic c through p with tangent vector
X equal to X* That is, as far as first-order quantities are concerned one cannot
distinguish smooth curves from geodesics. If we read Einstein's "continuous
line" as "smooth curve," then this first-order indistinguishability seems to
express his point more precisely.

In the context of the infinitesimal principle of equivalence however, access
to first- and second-order quantities is allowed. It follows that a geodesic c
with tangent vector X will be indistinguishable from any Su�]cIentlY smooth
curve c with tangent vector X* provided X* _ X and D .X* _ D,X = O.
Of course, the higher derivatives of X* along c will not vanish in general. So
c need not be a geodesic. Since Einstein's objection was concerned in effect
with this second-order case, it would have been better stated as "the world
lines of any particles unaccelerated at p (i.e., D X = O) are indistinguishable
from geodesics."

It is now also clear that any restriction on the order of quantities accessible
at p will make it impossible to distinguish geodesics from other curves. If
quantities to order n are allowed, then we cannot distinguish a geodesic c from
any other sufficiently smooth curve c* if they agree on quantities up to order
n. Nevertheless, c need not be a geodesic since any of the (D ,)"X* may fail
to vanish for m > n -

Another way to arrive at similar results is to consider c,, the image of c
under any member of jh.}. By definition, c, will be indistinguishable from

c to order n at p. That is, they will agree on any quantity up to order
n that characterizes them. For example, X'_ X, D ,X'_ D X=
(D ,)(n-l)x' _ (D )(n-l)x _ O. But as before, c, will not be a geodesic in general
since its derivatives of order greater than n I need not vanish.

The results of this section vindicate Einstein's objection to Schlick. If we
understand the infinitesimal principle of equivalence to assert that special
relativit holds at a oint in the s ace-time manifold of general relativity up

39

I l. Real and Fictitious Gravitational Fields

The infinitesimal principle of equivalence tells us that the space-time mani-
folds of special and general relativity share the same first- and second-order
structure at a point. For example, it.tells us that metric g and compatible
derivative operator D. at a single point in each manifold are diffeomorphically
equivalent. This result is not deep-it really only depends on the fact that
both metrics have the same signature.

Presumably, this result is what Synge had in mind when he lamented in
the introduction to his well-known text on general relativity that he never
understood what I assume to be the infinitesimal principle of equivalence.

Does it mean that the signature of the space-time metric is + 2 (or 2 if you prefer
the other convention)? If so, it is important, but hardly a Principle. Does it mean
that the effects of a gravitational field are indistinguishable from the effects of an
observer's acceleration? If so, it is false. In Einstein's theory, either there is a
gravitational field or there is none according as the Riemann tensor does not or does
vanish. (synge 1960, p. ix)

Synge's response to this difficulty is to insist that the effects of a true gravita-
tional field are distinguishable from those of a fictious field produced by the
acceleration of the observer, through an invariant criterion based on the
Riemann-Christoffel curvature tensor.

It should now be clear that Einstein would not endorse this response to the
difficulties of the infinitesimal principle of equivalence. For here Synge is
proposing to resurrect precisely the distinction whose breakdown was crucial
to Einstein's discovery of the general theory of relativity. Einstein explained
his attitude to this question in correspondence with Laue, after Laue had
pointed out that the Riemann-christoffel curvature tensor vanishes in the
context of the rotating disk problem:

It is true that in that case the R vanish, so that one could say: "There is no gravita-
tional field present., However, what characterizes the existence of a gravitational
rield from the empirical standpoint is the non-vanishing of the fik [coe�]cientS of

Eiiistein's Pi"inLiple of Equivalence
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the affine connection], not the non~vanishing of the R If one does not think
intuitively in such a way, one cannot grasp why something like a curvature should
have anything at all to do with gravitation. In any case, no reasonable person would
have hit upon such a thing. The key for the understanding of the equality of inertial
and gravitational mass is missing.40

Here Einstein reminds Laue that he had been able to recognize that the
relativistic theory of gravitational fields should be a theory dealing with
metrics of nonvanishing curvature, precisely because he was able to recognize
that special relativity, the theory which dealt with a metric of vanishing
curvature, was really also the theory of a special type of gravitational field.
He could see this because, in turn, the Minkowski metric induced a structure
identical to a classical gravitational field on the relative spaces of accelerating
frames of reference and, unlike Synge, he had resisted the temptation of
regarding this structure as somehow fictitious or different from "real" gravita-
tional fields. (We have seen earlier how the r. can appear as the field strengths
of this structure in the relative spaces concerned.)

In the last analysis, over a half century after Einstein found and used this
key, it matters little to one's application of the theory if one follows Synge and
says that "the Riemann tensor is the gravitational field" (synge 1960,
p. viii) or if one follows Einstein and calls the metric tensor the gravitational
rield. For the connection between these structures and the gravitational fields
of relative spaces which they generalize is essentially only a heuristic one.
Perhaps Synge's approach is more comfortable for those who wish to continue
thinking of special relativity as a gravitation-free case. For them, the presence
of a gravitational field is the intrusion of some kind of perturbation into the
Minkowski metric, in the same way as classical gravitational fields arise as
anisotropies in otherwise constant scalar fields. If the curvature of a metric
rield is nonvanishing, then even a freely falling observer can detect this
perturbation through the presence of tidal gravitational forces and he may
well also be able to identify some nearby rnassive body that is largely respon-
sible for it.41

Personally however, I find Einstein's attitude more comfortable and the
association of gravitational fields only with metrics of nonvanishing curvature
an arbitrary and unnecessary distinction. For such a distinction masks one of
the most beautiful of Einstein's insights, that there is no essential differ-
ence between inertia and gravity. According to general relativity, the same
structure-the metric-governs the motion of a body in free-fall in the
'gravitation-free" case of special relativity or in free-fall in a classically recog~

nizable gravitational field. If we are to call any structure "gravitational field"
in relativity theory, then it should be the metric.

effects. As a result, the privileged inertial states of motion defined by inertial
effects are not properties of space but of this structure and the various possible
dispositions of inertial motions in space are determined completely by it.
Space of itself is to be expected to designate no states of motion as privileged.

This principle guided Einstein to seek his general theory of relativity as a
gravitation theory of which special relativity was a special case. There the
principle found precise theoretical expression. The structure responsible for
inertial and gravitational effects is the metric tensor. The space-time mani-
fold itself has no properties that would enable us to designate the motion
associated with any given world line as privileged, that is as "inertial" or
"unaccelerated." This designation depends entirely on the metric and the a�lne

structure for space-time that it determines.
The purpose of the "Einstein elevator" thought experiment was to show

that the structures associated with supposedly gravitation-free special relativity
were already intimately connected with gravitation. To demonstrate this, he
transformed from an inertial frame of reference to a uniformly accelerated
frame and showed that a structure indistinguishable from a classical homo-
geneous gravitational field was induced by the Minkowski metric on the
associated relative space.

This property of the Minkowski metric enabled Einstein to identify it as an
instance of the four-dimensional generalization of classical gravitational fields.
This identification set Einstein on a royal road to his general theory of
relativity. For it effectively reduced his task to that of finding a theory
that generalized the properties of the Minkowski metric in a way enabling
treatment of arbitrary graN'itational fields.

Unfortunately, Einstein's contemporaries seized upon one of Einstein's
intermediate results, that in certain cases the gravitational fields of relative
spaces have a relative existence, dependent on the choice of frame of reference.
They sought to generalize this result from the simple.cases in Minkowski
space-time that Einstein considered to arbitrary gravitational fields. It has
rarely been acknowledged that Einstein never endorsed the principle that
results, here called the "infinitesimal principle of equivalence., Moreover, his
early correspondence contains a devastating objection to this principle: in
infinitesimal regions of the space-time manifold it is impossible to distinguish
geodesics from many other curves and therefore impossible to decide whether
a point-mass is in free fall.

Some readers may feel dissatisfied that Einstein's principle of equivalence
rinds the uncontroversial expression indicated above in the general theory of
relativity. On the contrary, I find it a source of great satisfaction and a
testament to the coherence and clarity of Einstein's vision. For it shows that
Einstein has been completely successful in taking an idea, which was quite
extraordinary when conceived in 1907, and incorporating it completely into
the body of a now universally accepted physical theory. In recent decades
there has been much criticism of "the" principle of equivalence. But the
principle under cogent attack has rarely been Einstein's version. For, to
paraphrase Einstein's 1916 reflection on the critics of Mach, "even those

12. What was Einstein's Principle of Equivalence?
Einstein's principle of equivalence asserted that the properties of space that
manifest themselves in inertial effects are really the properties of a field

r this same structure also overns gravitational
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who regard themselves as Einstein's opponents barely known how much of
Einstein's views they have imbibed, so to speak, with their mother's milk"
(Einstein 1916c, p. 102).42

p. 82. Informally, the condition ensures constancy of the orthogonal interval between
c and an infinitesimally close curve c, of F in the hypersurfaces H,.

In Newtonian space-times, the scalar field T is already given for all frames by the
absolute time field. Therefore every relative space will have a frame time.

Einstein 1907, pp. 414, 454. Then he wrote (p. 454): "This assumption extends the
principle of relativity to the case of uniformly accelerated translational motion of the
reference system." Einstein did not begin to describe his hypothesis with the compact
labels "equivalence principle" and "equivalence hypothesis" until 1912 and 1913.

Laue to Einstein, December 27, 1911, EA I6-�8.
See Einstein 1918b, p. 7�. 1950, p. 347; 1955b, p. 140.
In his early (1911) version, Einstein notes that he will "disregard the theory of

relativity" and confine himself to "customary" kinematics and "ordinary" mechanics.
Einstein briefly rehearses the problem of characterizing such fields as Newtonian

Einstein relayed his puzzlement at this result to Ehrenfest in a letter of June 1912,
EA 9-333. See also Einstein 1912c.

Einstein to A. Rehtz, July 12, 1953, EA 27-134. In his 1920b, Einstein summarizes
the principle in similar terms: the physical properties of space prevailing relative
to K, are completely equivalent to a gravitational field., K, is a reference system in
uniform rectilinear acceleration with respect to a Galilean system.

20 Friedman 1983, pp. 191-195, has given a lucid analysis of the limited prospects
of using a principle of equivalence to yield a generalized principle of relativity, if the
latter is understood to require this type of indistinguishability.

g, must be a Minkowski metric, since if g has the form diag(- I, - I, - I, l) in a
coordinate system {y'}, then g, will have the same form in {y';}, the image of {y'} under
h. Similarly the components of g in {x'} at p will equal the components of g, in {x }
at hp. therefore: (a) since the curves of constant x, (i = 1, 2, 3) are geodesics of g, the
curves of constant x" (i = 1, 2, 3) will be geodesics of g,; and (b) since the orthogonal
metric of g in the frame F satisfies the rigid-body motion condition, the same will be
true of the orthogonal metric of g, in F,. From (a) and (b) it follows that F, will be an

inertial frame of g,.
22 In his correspondence about his early work on the general theory, Einstein

commented briefly that he saw the principle of equivalence incorporated into the new
theory through its covariance properties; Einstein to P. Ehrenfest, Winter 1913-1914?

EA 9-347; Einstein to M. Besso, March 1914 (speziali 1972, p. 53).

These results also make plausible the failure of Einstein's first 1912 field equation
lo yield a conservalion law, in spite of its similarily lo the field equalions of general
relativity. From the perspective of general relativity, we would only expect his first
rield equation to yield consistent results in the trivial case of Minkowski space-time.

24 Einstein to Becquerel, August 16, 1951, EA 6-074 and 6-075. Einstein's argument
is especially interesting and important, since it is intended to take a skeptic who accepts
special but not general relativity step by step from the former to the latter, carefiilly
delineating the assumptions of each step.

25 See Einstein 1913a, pp. 285-286; 1913b, pp. 1255-1256; 1914a, p. 177; 1914b,
pp. 1032-1033. See also Einstein 1954a, pp. 100-101, for a very clear exposition
without formalism.

26 See Einstein 1936, pp. 308-309; 1949, pp. 70-73; 1950, pp. 350-351; 1952,
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For a compact discussion of some principles of equivalence, see Thorne, Lee,
and Lightman 1973, pp. 3570-3572.

This hypothesis is not labeled as the'principleofequivalence" in this article-the
term does not appear anywhere in the article.

For example, Einstein 1911, p. 899; 1954a, pp. 77-78.
For example, Einstein to T. Levi-civita, March 20, 1915, EA 16-233; to E. Klug,

February13, 1929, EA 25-126; to L.R. and H.G. Lieber, November 20,1940, EA 15-135;
to J. Reyntjens, August 26, 1950, EA 27-144; to A. Rehtz, July 12, 1953, EA 27-134.

In all the places cited in this section, the only weak exception to this is in the
letter to the Liebers where he allows that the gravitational field at a point is "in a
certain way fictitious," because it can be transforrned away.

Earman and Glymour have also remarked on this (1978, p. 254).
Specifically, six degrees of freedom in Newtonian space-times, three in Minkowski

space-time and three or less (if any) in an arbitrary semi-Riemannian manifold. See
Pauli 1921, pp. 130-132. So a "(rigid) uniformly accelerated frame of reference" in
Minkowski space-time is specified by requiring the reference point.s lo bc in rigid
motion and oiie of them to be uniformly accelerated. I shall always rc(Id "uniform
(rectilinear) acceleration" in Minkowski space-time as referring to hyperbolic motion
(Pauli 1921, pp. 74-76).

Torretti 1983, pp. 14-15, 28, defines a similar "relative space."
Stachel (1980) has discussed Einstein's use of this example in detail.
If F is rotating, H,(p) will be orthogonal to c only. So in general this mapping

procedure must be repeated with a new orthogonal hypersurface for each c in R . Most
of the discussion of this section can be transferred to Newtonian space-times with little
modification. Similar induced metrics could be defined in the relative spaces of
Newtonian space-times by deriving them from the three-dimensional metrics of
hypersurfaces of simultaneity.

Pauli 1921, p. 131 writes this as the requirernent of the constancy along c of the
components of gorth in an adapted coordinate system. This condition is equivalent to
the vanishing of the frame's expansion tensor, as defined in Hawking and Ellis 1973,

27 Einstein used this same notion of identity of essence elsewhere in Einstein 1912c,
p. 1063; Einstein and Grossmann 1913, p. 226; and Einstein 1922, p. 58.

gravitational fields in 1920a.

pp. 153-154; 1955a, pp. 14-15.
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28 Laue to Einstein, January 8, 1951, EA 16-152.
29 Einstein to Laue, January 16, 1951, EA 16-154.
30 Compare with Einstein's: "There is no space without gravitational or inertial field.

What one calls empty space in the sense of classical or Maxwell's theory, is a gravita-
tional field of a special kind, that is one in which the gravitational potentials are
constant with an appropriate choice of coordinates." Einstein to H. Titze, January 16,

1954, EA 23-026/027.

the usual Cartesian coordinate system, geodesics passing through the origin are
mx, for m a constant. However, the curves y = for all n > 2 Satisfy the condition

D X _ O at the origin. The conditions (D )'X = O for all positive integers n are not
sU�1clenl. In the Euclidean space they are satisfied at the origin by the smooth curve

exp(- l/x ) for all other x, but this curve is not a geodesic. (I
am gi"dteful to Al Janis for this last point.)

40 Einstein to Laue, September 12, 1950, EA 16-148.
Einstein and Rosen 1935 have added a curious twist to the standard objection

that the gravitational fields produced by acceleration cannot be "true" gravitational
rields since they have no sources. Recalling the principle of equivalence by name, they
consider a coordinate system {x; } adapted to a uniformly accelerated frame of reference
in Minkowski space-time and, in the now familiar manner, associate a homogeneous
gravitalional field with it. This accelerated frame cannot fill all of Minkowski space-
time. In the case they consider, their frame fills the submanifold given by (yi ) > (y4
where {y'} is the Galilean coordinate system used to define the frame (see their
footnote, p. 74). They note that the Minkowski metric is a solution of the usual
gravitational field equations of general relativity in the coordinate system {x.},
but that certain components (T22 and T ) of the otherwise everywhere vanishing23
source stress-energy tensor become singular along the hypersurface x O, which is a
boundary of the submanifold containing the accelerated frame. This represents a kind
of source mass or energy distribution. They introduce the example so they can proceed
to illustrate how such singularities can be removed. For further details see Einstein
and Rosen 1935, p. 74.

31 See also Silberstein 1922, p. 12.
32 In a letter to P. Painlevé, December 7, 1921, EA 19-003, Einstein stresses that the

general theory rests completely on the assumption that space-time behaves as il does
in special relativity in infinitely small elements of the space-time manifold.

33 Schlick to Einstein, February 4, 1917, EA 21-568; Einstein lo Schlick, Februciry
6, 1917, EA 21-612.

41

34 Einstein to Schlick, March 21, 1917, EA 21-614. Schlick corrected the drgument
in accord with Einstein's remarks in the republication of the article in monograph
form. See Schlick 1920, pp. 60-62.

35 Torretli 1983, pp. 150-151, 316, has niade the same objection in this context using
virtually the same words as Einstein, but independently of him. Torretti writes: "In a
Riemannian manifold, every curve is 'straight in the infinitesimal He illustrates his
point vividly by pointing out that the streets which run along both parallels of latitude
and meridians on the earth's surface are straight in the infinitesimal of such cities as
Chicago, but only the meridians are geodesics.

36 I am grateful to David Malament for making available to me mimeographed
lecture notes of Robert Geroch, in which the technique is outlined.

37 If members of {h} map a point with coordinates x to one with y,, then at p
members of {h, } satisfy y, k members of {h } satisfy the additional condition

members of {h j satisfy the additional condition y'.kmn- O and so on.
Commas denote differentiation with respect to x

38 It is important to note that one can only consistently compare orders of quantities
if their orders are assigned within a hierarchy generated by the same slructure. Any
tensor will generate a hierarchy of quantities in which Ihal lensor 1,4> of fir.lil c)rdcr, SbinLc
all tensors are invariant under the members of {h }. For example, Ihe curvalure ILn,sor
will be of first order in a hierarchy it generates, whereas it is of third order in the
hierarchy generated by the metric tensor. In the text I tacitly assume that one can
compare the orders of quantities in the rnetric tensor hierarchy wilh Ihc orders or
quantities in the hierarchy engendered by a geodesic through p. This is justified by Ihe
fact that these two hierarchies can be cornbined as follows. Each member of the set
of geodesics {c} through p has a parametrization by the interval s induced upon it
by the metric tensor g. Conversely, given this same parametrization we can recover
the original g, through the condition g(X, X)= I for all tangent vectors X = d/ds.
Therefore, for the present purpose, we can consider g and associated quantilies as well
as the set of tangent vectors {X} and associated quantities as dependent on {L} and
its parametrization. In particular, the irnage of {c} and its parametrization under a
member of {h} will generate a new metric tensor g, and a new set of tangent vectors
{X' }. We can now determine the orders of these and related quantities in the manner
outlined earlier. The expected results do obtain. For example, both g and X are first
order in this hierarchy.

39 This argument establishes the necessity of these additional conditions. Their
necessity can be illustrated in the example of a two-dimensional Euclidean space. In

42Ofcourse, the original quotation is recovered byreplacing"Einstein" by "Mach."
This image may complement Synge's memorable image of the principle of equivalence
as a midwife at the birth of general relativity who is now to suffer burial, but at least
with appropriate honors. (Synge 1960, pp. ix-x).
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