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THE DETERMINATION OF THEORY BY EVIDENCE:
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1900-1915

ABSTRACT. The thesis that observation necessarily fails to determine theory is false
in the sense that observation can provide overwhelming evidence for a particular theory
or even a hypothesis within the theory. The saga of quantum discontinuity illustrates the
power of evidence to determine theory and shows how that power can be underestimated
by inadequate caricatures of the evidential case. That quantum discontinuity can save
the phenomena of black body radiation is the widely known result, but it leaves open
the possibilities of other accounts. That these phenomena, with the aid of minimal
assumptions, entail quantum discontinuity is the crucial but now largely forgotten resuit.
It was first demonstrated by Ehrenfest and Poincaré in 1911 and 1912.

1. INTRODUCTION AND SUMMARY

1.1. Practical Science and the Underdetermination Thesis

There is a serious contradiction between a thesis increasingly popular
amongst philosophers of science and the proclamations of scientists
themselves. The underdetermination thesis asserts that a scientific
theory cannot be fully determined by all possible observational data.
Scientists, however, are not so pessimistic about the power of obser-
vational data to guide theory selection. The history of science is full of
cases in which they urge that the weight of observational evidence
forces acceptance of a definite theory and no other. Thus our science
text books teach us to accept the approximate sphericity of the earth,
the heliocentric layout of planetary orbits, the oxygen theory of combus-
tion, and a host of other theoretical claims simply because the evidence
admits no alternatives.

The case for the underdetermination thesis depends in large measure
on an impoverished picture of the ways in which evidence can bear on
theory. The thesis is commonly advanced with tacit use of some kind
of a hypothetico-deductive view of confirmation. Consider, for exam-
ple, the version of the underdetermination thesis laid out for dissection
in Quine (1975, p. 313):
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Scientists invent hypotheses that talk of things beyond the reach of observation. The
hypotheses are related to observation only by a kind of one-way implication; namely,
the events we observe are what a belief in the hypotheses would have led us to expect.
These observable consequences of the hypotheses do not, conversely, imply the hypoth-
eses. Surely there are alternative hypothetical substructures that would surface in the
same observable ways.

The underdetermination discussed depends on this shielding of the
hypotheses from observation by the barrier of one-way implication.
The supposition of this barrier gives the theorist sufficient latitude to
entertain other hypotheses logically incompatible with the original but
equally able to save the phenomena.

My thesis in this paper is that this barrier of one-way implication
can be broken and that one can effect the converse implication from
observation to hypotheses or from evidence to theory. The result is that
a body of evidence can point to a definite theory or even individual
theoretical hypothesis. In the case study that follows I shall show that
this converse implication was used within recent science explicitly for
the purpose of defeating the underdetermination thesis. To carry out
this converse implication one needs to supplement the observations or
evidence with further hypotheses. In the case study that follows we
shall see that these further hypotheses can be of such a general and
uncontroversial nature that the acceptance of the theory picked out is
placed beyond reasonable doubt.

1.2. The Case of Quantum Discontinuity

I shall illustrate the power of evidence to determine theory with a case
study of the advent of quantum discontinuity in the early part of this
century. The theoretical result at issue is usually associated with the
name of Planck and loosely formulated as the result that systems on
an atomic scale can only adopt a discrete spectrum of energy levels.
This result stands in contradiction to the basic suppositions of classical
physics. Its acceptance marked the demise of classical physics and
ushered in the quantum era.

The case study is especially interesting for a number of reasons. One
might expect a case for the necessity of a theoretically deep result
such as quantum discontinuity on the observational evidence to be
exceedingly complicated. It turns out that the case can be based on a
small group of arguments of great simplicity and generality yet startling
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in their power to force a definite result. That result, quantum disconti-
nuity, was of revolutionary character and strongly resisted. As a result
the arguments for it had to — and did - survive critical scrutiny by some
of the most eminent and capable physicists of the day, who deemed
all manner of conservative alternative to be preferable to quantum
discontinuity.

The evidence will also be seen to pick out not just a theory but a
particular result that must obtain in any theory that may be applied in
the domain. This gives us a concrete and non-trivial instance of how
evidence can bear not only on a theory as a whole but also on a
particular result within that theory, in contradiction with holistic views
of evidence such as the Duhem-Quine thesis.

Finally this case will show us how the collective amnesia of science
readily leads later researchers to forget just how powerful and uncom-
promising the original case was for the result in question so that the
later reconstructions of the case can be oversimplified and weakened.
Broadly speaking, three classes of results are of importance in the case
for quantum discontinuity. The first two are:

I. Classical physics fails to account for certain phenomena,
including the distribution of energy in black body radiation
and the specific heats of substances at low temperatures.

II. The supposition of quantum discontinuity enables a sim-
ple and elegant treatment of these same phenomena.

These first two groups of results figure in the cases for quantum disconti-
nuity now to be found in text book expositions. Typical of these treat-
ments is that found in Bohm’s (1951) well-regarded text of the 1950s.
His first chapter, “The Origin of the Quantum Theory”, gives a lucid
exposition of the results of I and II and announces in summary (p. 22):
“We may conclude that all systems which oscillate harmonically are
quantized with E = hnv whether these systems be material oscillators,
sound waves or electromagnetic waves”.! A critical reader, such as a
philosopher of science concerned with the underdetermination thesis,
may well be unconvinced. The failure of the classical account can be
accepted. The sufficiency of quantum discontinuity to account elegantly
for the phenomena can be accepted. But what guarantee is there that
there is no other account that does as well or even better? Does the
evidence uniquely pick out the conclusion claimed?

In 1910-1912, this very question became the focus of attention of a
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number of researchers, notably Paul Ehrenfest, James Jeans, and Henri
Poincaré. They were able to rule out conclusively such alternatives to
quantum discontinuity with a powerful group of results:

ITI. On a very general statistical model of matter one can
infer directly from the observed distribution of energy in
black body radiation — or even just its finiteness — fo quan-
tum discontinuity.

What made the results especially powerful was that they were essentially
immune to experimental errors that might be made in measuring the
observed distribution. The strongest result of the group took the ob-
served distribution to be exactly that of the celebrated Planck formula.
Other resuits, however, showed that quantum discontinuity still fol-
lowed in a weaker form even if the correct distribution deviated signifi-
cantly from the Planck formula, as long as the total energy density of
the radiation was finite. As we shall see below, this group of results
became central to the case made for quantum discontinuity in the early
1910s, the time in which this discontinuity came to the forefront of
discussion in physics. Yet the results, for all their significance, are now
largely forgotten, except by a few historians of science.

1.3. The Relocation of Inductive Risk from Rules to Premises

The results in III exemplify a powerful strategy for assessing the bearing
of evidence on theory. As I have indicated, the results in I and II leave
us uncertain of the precise bearing of the evidence of the observed black
body spectrum on quantum discontinuity and especially of the degree to
which a unique result is determined. To see this more clearly, notice that
in II we see that quantum discontinuity in conjunction with suitable
auxiliary hypotheses and boundary conditions entails a description of the
observed phenomena in a deductive argument of the form:

ARGUMENT 1.
Quantum discontinuity

Auxiliary hypotheses and boundary conditions (deduction)

Observed black body spectrum.

Thus the observed black body spectrum stands as evidence for quantum
discontinuity according to the hypothetico-deductive (HD) model:
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ARGUMENT 2:

Observed black body spectrum (inductive support, HD model)

Quantum discontinuity.

Because of a notorious weakness of the HD scheme, this second induc-
tive argument leaves completely open the question of whether that
same body of evidence might support a competing theoretical result
equally well or better. For example, the premises of arguments like
Argument 1 can often be modified in not too contrived a manner
without compromising the entailment of the observational data. In such
cases we can generate several alternative hypotheses, each equally able
to save the relevant phenomena. Thus, according to the HD scheme,
each of these alternatives is supported by the observational evidence
and the scheme provides no way to pick between them. Because of this
deficiency, the HD scheme readily invites precisely the underdetermina-
tion of theory by evidence at issue here.

The results of ITI enable a much clearer evaluation of the bearing of
the evidence on the theoretical result. We now have the following
deductive argument:

ARGUMENT 3: Observed black body spectrum
General statistical model of matter
Auxiliary hypotheses

(deduction)
Quantum discontinuity.

It shows that acceptance of the observed black body spectrum necessi-
tates acceptance of quantum discontinuity, provided one is prepared to
accept the general statistical model of matter and the auxiliary hypoth-
eses. The question of whether the observed black body spectrum does
determine a unique theoretical result is now reduced to an assessment
of the acceptability of the general statistical model and the auxiliary
hypotheses. It will turn out, as we shall see in Section 8, these latter
results are of sufficiently weak and general form that no credible chal-
lenge to their acceptance could be mounted. As a result, the necessity
of quantum discontinuity on the evidence of the observed black body
spectrum was deemed unavoidable.

The crucial move in this reassessment of the burden of evidence was
a relocation of the inductive risk taken in inferring from the observed
black body spectrum to quantum discontinuity. In Argument 2 that risk
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is located in the HD scheme itself, in so far as an assessment of the
strength of the inference depends on an assessment of the strength of
the HD scheme as applied to this example. Such an assessment is
extremely problematic, throwing us into the murky depths of general
confirmation theory. In Argument 3, however, the inductive risk is
relocated in the premises added to convert Argument 2 into a deductive
argument. The assessment of the inductive risk taken in accepting these
new premises is by no means easy, but in this case it proved to be a
great deal simpler than assessing the viability of a general inductive
argument scheme.

This strategy of relocating inductive risk from rules to premises has
a place in the traditional literature on inductive inference. Argument
3 is deductive and thus demonstrative. Nonetheless, arguments of this
form have been classified with inductive argumentation where they are
known as ‘“‘demonstrative induction” (Johnson, 1964, p. 210). In such
arguments one infers from premises of lesser generality and premises
of greater generality to conclusions of intermediate generality. In the
example, the premises of lesser generality are those specifying the
observed black body spectrum. Those of greater generality specify the
general statistical model of matter and the auxiliary hypotheses. The
conclusion of intermediate generality is quantum discontinuity.

Demonstrative induction is closely related to another form of infer-
ence, eliminative induction. Viewed extensionally, the premises of gre-
ater generality of a demonstrative induction can be seen to specify a
universe of candidate theories. The premises of lesser generality elimin-
ate all but a select few of these theories that are specified in the
conclusion. Using the eliminative induction form, we can express the
essential content of Argument 3 in a compelling and telegraphic
manner: of all possible statistical theories of black body radiation, only
those that posit quantum discontinuity can do justice to the observed
spectrum or even just its finiteness.’

2. BACKGROUND TO THE PROBLEM OF QUANTUM
DISCONTINUITY CIRCAa 19103

The problem that gave rise to the introduction of quantum discontinuity
concerned the determination of the density of energy u, at frequency
v in black body radiation of temperature 7. By 1900, it was accepted
that the function f, in the general form of the distribution law
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1) u, =f(», T),

was constrained in the following ways by the electromagnetic character
of the heat radiation. The Stefan-Boltzmann law of 1879, 1884 required
the total energy density to increase with the fourth power of tempera-
ture

(2) u=J u,dv=oT"
0

for some constant ¢, and the Wien displacement law of 1894, which
entailed the Stefan-Boltzmann law, in effect required that the function
f(v, T) could be replaced by a function f(»/T) of a single variable
according to

G) u=» f(-;)

Further, a direct application of the principles of classical electrodyna-
mics and statistical mechanics could then lead to a definite function
for f.

In the most direct approach, Rayleigh (1900, 1905) and Jeans (1905a)
pictured a system of black body radiation as a superposition of electro-
magnetic waves of all frequencies, freely interchanging energy. Each
“mode of vibration” or, as I shall call it, ‘radiation oscillator’ behaves
as the individual molecules of a kinetic gas so that the standard methods
of statistical mechanics can be used to determine their average energy.
The function f in (3) is determined by this average energy in conjunc-
tion with the result that the volume density n, of radiation oscillators
is

(4) n,= 87y ,
C3

where c¢ is the speed of light. In the research leading up to his seminal
contribution of 1900, Planck (1900a, 1990b) had modeled black body
radiation enclosed within a cavity as a system of electromagnetic radi-
ation in equilibrium with Hertzian electric resonators within the cavity.
Using principles of classical electrodynamics he derived a relationship
between the energy density u, of black body radiation and the energy
U of a resonator with the resonant frequency »:
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8w/

C3

(5) u, = U

so that once the average energy U of the resonators at each frequency
was known, the function f of (3) could be inferred.

Both approaches yield the same result.* If the phase space of an
individual radiation oscillator or Hertzian resonator has canonical vari-
ables x;, . . . , x,,, then its energy E at temperature T will be distributed
according to the Boltzmann distribution. The probability dW that the
system is in the volume element dV = dx; . . . dx,, of phase space is

E
6) dw=C (——)dV,
©) P\ T

where k is Boltzmann’s constant and C is a normalizing constant set to
ensure that the total probability sums to unity. Alternatively, this can
be expressed as the probability dW that the system has energy between
E and E + dE

(7) dw = Cexp( —k—ET) w(E) dE,

where w(E) = dV/dE and V is the volume of phase space enclosed by
the surface of constant energy E.

The Boltzmann distribution entails the result that dominates all classi-
cal treatments of black body radiation, the equipartition theorem. For
systems whose energy E is a quadratic function of the phase space
variables

(8) E=apxX?+ - - +ax;

for constants ay, . . . , @,, it asserts that the mean energy of each system
is

9 E=n—,

or, in slogan form, there is an energy of k7/2 for each of the n degrees
of freedom of the system. Special cases of the theorem are classical
radiation oscillators or Hertzian resonators, which have two degrees of
freedom. For either case we have
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(10) w(E) = constant,

and the mean energy is given by

I E
11 E=| ECe (-—)dE=kT.
(1D J 0 *P kT
This mean energy, in conjunction with either (4) or (5), yields the so-
called Rayleigh-Jeans law for (1)

8m/
e

(12) u,= kT.

The law is immediately unsatisfactory, as both Rayleigh and Jeans
recognized. It entails that the total energy density in black body radi-
ation and its heat capacity is infinite. This infinitude actually follows
directly from the equipartition theorem (9) and the fact that radiation
has infinitely many degrees of freedom:

Total energy = (kT/2 per degree of freedom) X
(infinitely many degrees of freedom),

so that an escape from this infinity must involve an escape from the
equipartition theorem itself. Nonetheless, the Rayleigh—Jeans law fitted
with the observed energy densities for small »/T.

The best-known formula for the distribution law that did agree with
the observed values and led to a finite total energy was introduced by
Planck (1900a, 1900b). He had previously favored a distribution law
due to Wien,

(13) u,= > exp

where h is Planck’s constant. Planck modified this law to obtain agree-
ment with experimental values in the domain of small »/T to yield his
celebrated formula

(14) exph— -1
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Planck was able to derive this formula by using Boltzmann’s statistical
methods to conclude that the mean energy of a Hertzian resonator is

hv
15 ex —v—l
(15) Per

What Planck’s (1900b, 1901) early expositions of this derivation did not
make clear was that the disastrous classical equipartition result (9) was
avoided by introduction of the supposition of quantum discontinuity:
the energies accessible to the system are limited to the discrete set O,
€, 2¢, 3e. . . for some non-zero energy element €, with equal a priori
probability.® In a later notation we can represent this assumption of
quantum discontinuity as

(16) W(E)=8(E)+8(E—€)+ S(E—2e)+8(E—3€)+---,

where 8 is the Dirac delta.® The sole effect of quantum discontinuity
on the classical calculation is to replace the integration in (11) by a
summation over discrete values

E= 2ECexp(—£)dE=—€—.
(17) E=0,¢2¢... i —1
kt

Compatibility with the Wien displacement law (3) forces e = hv, for
some constant 4, whose value can be set so that (17) yields (15).

By 1910 the sufficiency of quantum discontinuity for enabling deri-
vation of the Planck distribution law (14) was widely recognized. It
could be applied directly either to the radiation oscillators themselves
or to the Hertzian resonators, yielding the mean energy (17) and the
Planck law then recovered through (4) or (5). Derivations of the former
type were given, for example, by Ehrenfest (1906) and Debye (1910),
and of the latter type by Einstein (1907) and Lorentz (1910).

3. THE ALTERNATIVE STRATEGY: BEYOND SAVING
THE PHENOMENA

The results outlined in Section 2 above were widely known by 1910.”
Of course what was in dispute was their significance. Was the ability
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of quantum discontinuity to save the phenomena sufficient grounds for
its acceptance? A conservative mainstream answered no. Jeans (1905b,
p. 294) conceded that “Planck’s law is in good agreement with experi-
ment if A is given a value different from zero”. However, he continued,
“this does not alter my belief that the [classical] value 4 = 0 is the only
value which it is possible to take”. Again, Lorentz (1909, §59) in his
influential Theory of Electrons could present the basic result of quantum
discontinuity and then pass immediately without excuse to a fully classi-
cal approach to the problem of heat radiation.

Ehrenfest (1906) displayed precisely the difficulty.® One could not
rule out the possibility of many ways of saving these same phenomena
of black body radiation and he proceeded to show precisely how this
possibility might be realized. He recapitulated the standard statistical
calculation used to derive the Rayleigh—Jeans distribution law (12) via
the Boltzmann distribution (6) and (7). It involved seeking a distribu-
tion that would maximize the entropy of the total system of radiation
oscillators subject to two constraints: constancy of the number of radi-
ation oscillators (“I"") and constancy of total energy (“II"’). One could
not rule out the addition of further constraints, he continued, that
might express some special physical property of the system. As an
illustration, Ehrenfest augmented the constraints I and II with a third
arbitrarily chosen constraint, “III”, containing an arbitrary function,
®. The standard calculation now yielded an alternative to the distribu-
tion (6) and (7) containing the arbitrary function ®. He concluded in
emphasized text (p. 5):

Any arbitrarily desired spectral distribution can be computed in infinitely many different
ways by the adjoining of an appropriate relation III.

He continued to note that any new constraint III added must have a
physical foundation. Ehrenfest then proceeded directly to the case of
the Planck law (14). Of the arbitrarily many additional constraints III
that would yield the law, he reported that Planck had chosen the
supposition of *“‘energy atoms”.’

Nonetheless there still remained the empirical success of Planck’s
formula (14) and the curious result that it could be derived so simply
from the strange supposition of quantum discontinuity. Even if this last
result could not force acceptance of a supposition that contradicted the
deepest foundations of the edifice of classical physics, it was one that

could not be ignored. An alternative strategy was needed to interpret
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the significance of Planck’s formula as evidence. That strategy was
simple in concept. Do not ask what suppositions entail the observed
results. Rather, ask what can be inferred directly from the observed
results.

While he did not use it exclusively, the master of this strategy was
Einstein. He had been using it on the observations concerning black
body radiation since 1905 and had used it to introduce notions even
more revolutionary than quantum discontinuity. Einstein (1905) as-
sumed the Planck formula correct and from it inferred the volume
dependence of the entropy of radiation in the high frequency domain.
That volume dependence yielded directly his light quantum hypothesis:
high frequency radiation behaves thermodynamically as a collection of
mutually independent quanta of energy of size #v.!° Later, Einstein
(1909a), from the Planck law, inferred expressions for fluctuations in
the energy and the radiation pressure of black body radiation and
showed them to be a sum of two terms, one of wave character, one of
particle character, displaying the necessity of both wave and particle
pictures in any complete treatment of radiation. Einstein (1909b, pp.
495-96) summarized the strategy:'!

Is it not conceivable that the radiation formula given by Planck is correct but nevertheless
that a derivation of it could be given that did not depend on so horrendous looking an
assumption as Planck’s theory? Would it not be possible to replace the light quantum
hypothesis by another hypothesis with which one can still account for the known phenom-
ena? . . . To clarify these matters, we would like to try to proceed in the direction opposite
to that of Planck in his theory of radiation. We regard Planck’s radiation formula as
correct and ask ourselves whether something can be inferred from it concerning the
constitution of radiation.

4. THE ARGUMENT OF JAMES JEANS

Einstein’s strategy could be applied in the case of quantum discontinuity
as embodied in (16) and with striking success. The earliest results of
such an analysis were published in 1910 by James Jeans, who was
soon to become one of the most outspoken proponents of quantum
discontinuity, after several years of attempting to preserve a classical
account.'? The main purpose of Jeans (1910) was to demonstrate the
impossibility of a classical equilibrium account of black body radiation
through a derivation of a generalized form of the equipartition theorem
from very weak and general classical assumptions. Unlike the standard
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form of (8) above, for example, he assumed that the energy of each
system was just a homogeneous function of degree s in the coordinates
recovering, for a system of m degrees of freedom,
. kT

m —

E=
A)

in place of the standard (9). Since this mean energy per degree of
freedom was still a constant and heat radiation possessed infinitely
many degrees of freedom, the infinitude of its energy was still derivable.

The paper concluded with an attempt to derive quantum discontinuity
from the Planck law in accord with the strategy Einstein described
above. That attempt lacked the rigor and the mathematical brilliance
that would shortly be applied to the task. It amounted to a simple
inversion of Planck’s (1901) original derivation of the Planck law. Jeans
began with the quantum expression (15) for the energy of a radiation
oscillator. He considered the total energy E of N oscillators and, using
the relation 3S/dE = 1/T, recovered an expression for the entropy §
of the whole system. An application of Boltzmann’s § = k log W yielded
an expression for the volume W of phase space associated with the
state of the system:

(18) logW= (N + £> log(N + £) £ log £ + cons|tant].
hv hv/ hv ~hv

In Planck’s original derivation, this value of log W was generated by
taking W to be the number of (presumed equiprobable) ways that an
amount of energy E divided into P = E/hv energy elements of size hv
could be distributed over N systems. (In Planck’s case, they were
Hertzian resonators.) Since Planck never takes the limit of these energy
elements becoming vanishingly small, this marks the introduction of
quantum discontinuity into his derivation. The correct expression for
Wis

_(N+P-1)

(19) (N — 1)IP!

and it yields the expression (18) for log W when the factorials are
approximated by exponentials through Stirling’s formula. Jeans (1910,
p- 953) reversed this last step to recover an expression for W, urging
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that it “follows inevitably”” from (15) and finally ‘“‘the necessity for an
indivisible unit of energy follows inevitably from [(19a), below], for
Planck’s assumption of this indivisible unit is known to lead to formula
[(19a)], and there can be only one way of distributing the fluid [of
system state points] in the generalized space so that W is a given
function of E for all values of E”."?

While the derivation Jeans intended is obvious, his exposition is
marred by a lack of clarity. Instead of the formula (19), Jeans writes

_CN+P)!

(19a) w B

where C is a constant. Charity might allow us to assume that this
formula approximates the correct (19) with N legitimately approximated
by N — 1 and the constant C absorbing the missing term N!. Unfortu-
nately, this charity is disallowed us. Jeans repeats the derivation in both
editions of his Report on Radiation and the Quantum Theory, retaining
formula (19a) and announcing erroneously that “(M + P)!/P! is the
number of ways in which P particles can be put into M pigeon-holes”
(Jeans, 1914, pp. 38-39; 1924, pp. 27-28). It is hard to imagine how
such an apparent blunder could survive and appear in the second edition
of a widely read text, unless there is some alternative, charitable read-
ing.

5. THE ARGUMENTS OF HENRI POINCARE

We could understand that Jeans might not have scrutinized too closely
his argument for the necessity of quantum discontinuity by the time of
its restatement in the 1914 first edition of his Report. He acknowledged
there (p. 33) that the problem had been solved very completely in
recent work of Poincaré, whose pronouncements on the necessity of
quantum discontinuity were quoted approvingly and with prominence.
Poincaré’s results formed a central part of the case Jeans advanced for
the quantum theory in a work whose intended audience viewed the
theory as “an object of suspicion”, so that the report “had to be an
apologia as well as an exposition” (Jeans, 1924, Preface to 2nd ed.).
Jeans, however, offered an exposition of his own argument of 1910 in
place of Poincaré’s, because ‘“unfortunately Poincaré’s Paper is of such
an abstruse mathematical nature that is impossible to do any sort of
justice to it in an abstract . ..” (1910, p. 33).
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Poincaré had turned to active work on the problems of quantum
theory in the year preceding his death, in July 1912.'* He was enthused
about work on the theory by his participation in the celebrated Solvay
conference in Brussels (30 October-3 November 1911), where many
of the leading physicists of the era assembled to brood over the quantum
theory. His major contribution to the theory appeared the following
year in the January issue of Journal de Physique (Poincaré, 1912),
though he had already given a synopsis of its essential content on 4
December 1911, at the Academy of Sciences (Poincaré, 1911).

In the introduction (Poincaré, 1912, p. 5), he explained that he
undertook the research for the paper precisely because of the problem
of evidence described in Section 3 above. Nernst, he reported, had
proposed that Planck’s law might be accounted for by a mechanics free
of quantum discontinuity but in which the mass of a body would vary
not just with velocity, as in relativity theory, but with acceleration as
well. Poincaré asked if any mechanics could give a viable treatment of
Planck’s law without quantum discontinuity and, through the results of
his paper, he answered that it could not. Poincaré’s argument was set
in a context that masked the generality of his results. He considered
resonators of long period that behaved classically and those of short
period that would eventually become quantized as one of Planck’s
Hertzian resonators. He first took the case of energy interchange be-
tween one of each type and then extended it to the case of many
resonators of both types. In his analysis he gave yet another derivation
of the inevitability of the equipartition theorem in the most general
classical theory as well as the sufficiency of quantum discontinuity for
the derivation of Planck’s law. There were two results, however, for
which the paper is especially remembered.

The first result is the one extracted by Planck from the paper in his
appreciation of Poincaré’s work (Planck, 1921) and described with some
exaggeration by Fowler (1936, p. 200) as the ‘“‘whole substance” of
Poincaré’s paper. The result is that the only weight function w(E)
compatible with the quantum mean energy formula (15) is the discon-
tinuous (16). To arrive at this result, Poincaré considered the integral
transform of the weight function w(E)

o

(20) d(r) = L w(E) exp(—ET7)dE,

where 7 = 1/kT. Typically, in the transformation from the weight func-
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tion w(E) to its Laplace transform ®(7), no information is lost so that
if we know the form of ®(7) we can recover the original w(E) by an
inversion of the transformation. The function ®(7) is determined, in
turn, up to a multiplicative constant by the mean energy E of the system
according to

~_ 1 (o _EndE= -4
(21) E—@(T) L Ew(E) exp(~Er) dE = = —log(®(7)),

so that an integration of the quantum mean energy formula

(15) E=—1
exp—v—l
kt
yields
_ 1
22 (1) = - | Ed7 =
@) (7) exp[ f T:| 1 — exp(—7hv)

up to a multiplicative constant. The crucial move in the argument is
the inversion of this expression for ®(7) to recover the weight function
w(E).

Using a procedure that was not Poincaré’s, we can see informally
how this inversion proceeds. We expand this expression as an infinite
power series

®(1) =1 + exp(—rhv) + exp(—27hv) + exp(—3thv) + - - -

and notice that each term of the series is the Laplace transform of a
Dirac delta function. That is, §(E) transforms to the constant 1;
8(E — hv) transforms to exp(—thv); &(E — 2hv) transforms to
exp(—2thv); etc.; so the corresponding weight function is just

(16a) w(E)= &(E)+ &E —hv)+
S(E—-2hv)+ 86(E—3hv) + - - -,

which is just (16) with e set equal to hAv. It provides for discontinuous
weights on the energies 0, Av, 2hv, 3hv..."°

It is important for our purposes to display the assumptions needed
to allow the inference from the Planck law (14) through to quantum
discontinuity (16a). Poincaré’s argument is applied to Planck’s Hertzian
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resonators so that the Planck resonator formula (5) is needed to proceed
from the Planck law (14) to the mean energy formula (15). Clearly an
analogous argument can be mounted for radiation oscillators, this time,
however, using the radiation oscillator density formula (4) to proceed
from the Planck law (14) to the mean energy formula (15). The most
important assumption used applies both to Hertzian resonator and to
radiation oscillator, and I shall call it:

General Statistical Model: The observed energy of the system
is the mean of a system whose state is distributed probabilist-
ically according to

@) dw = Cexp(—%_) w(E)dE,

where the weight function w(£) is undetermined.

In sum, we have two deductive arguments belonging to the group of
results III of Section 1:

II1-1a Planck law (14) II1-1b Planck law (14)
General statistical model General statistical model
for Hertzian resonators for radiation oscillators
Planck resonator formula Radiation oscillator density
(5) formula (4)
Quantum discontinuity Quantum discontinuity
(16a) for Hertzian (16a) for radiation
resonators. oscillators.

Poincaré’s second result responds to the most obvious weakness of
results III-1a and III-1b: both depend on assuming the exact correctness
of Planck’s formula (14); yet associated with any such experimentally
determined formula is an amount of experimental error. Is there an-
other formula that also agrees with the observed data within the limits
of experimental error but that does not lead to quantum discontinuity?
What Poincaré’s second result showed was that there is no such formula.
Indeed, any distribution law - even one that lies well beyond the limits
allowed by experimental error — will yield a discontinuity at the E =0
energy level as long as that distribution entails that the total energy
density of black body radiation is finite.

Poincaré’s (1912, §8) analysis dealt with the case of Hertzian res-
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onators. Assuming only that the distribution law (1) is restricted by the
Wien displacement law (3) and that the energy density of black body
radiation is related to the energy of Hertzian resonators by the Planck’s
resonator formula (5), he showed that the finiteness of the total energy
density of black body radiation forced ®(«) >0 for a Hertzian res-
onator in equilibrium with the radiation. However, he also showed that
the continuity of w(FE) entailed ®(x) = 0, for, as he showed,

Eg

23)  ®(x)< j o(E) dE,

0

for any Eo > 0. Thus the finiteness of the total energy density of black
body radiation entailed the discontinuity of w(E). The form of that
discontinuity could be read directly from the inequality (23). Since E,
could have any value greater than zero, the integral could only be
guaranteed to exceed a ®(=) >0 if w(E) had a discontinuous weight,
concentrated at E = (0, whose value was at least as great at ®(«). In
terms of Dirac delta functions, this means that the weight function must
have the form (up to multiplicative constant):

(16b) w(E) = 8(E), at E=0.

Poincaré’s second result applied only to Hertzian resonators. As with
the first result, it could be modified to apply to radiation oscillators by
substituting the radiation oscillator density formula (4) for Planck’s
resonator formula (5).

As before, we can collect these results in the form of two arguments:

III-2a Finiteness of total radiation III-2b Finiteness of total radiation

energy density

General statistical model
for Hertzian resonators
Planck resonator formula
(5)

Wien displacement law (3)

Quantum discontinuity
(16b) for Hertzian res-
onators.

energy density

General statistical model
for radiation oscillators
Radiation oscillator density
formula (4)

Wien displacement law (3)

Quantum discontinuity
(16b) for radiation oscil-
lators.
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6. THE ARGUMENTS OF PAUL EHRENFEST

Poincaré’s paper was mathematically sophisticated and attracted wide
attention. Yet from the physical point of view the paper was not so
sophisticated. It was at least initially dependent on a very specific
physical model of resonators of short and long wave lengths. The
essential physical assumptions on which the final results were based
were buried in a gradual slide from this particular model and a deri-
vation of the equipartition theorem (earlier in the paper) to the general
results on the necessity of quantum discontinuity (given later). Finally,
the paper considered only quantization of Planck’s Hertzian resonators.
The more secure results ITI-1b and III-2b were introduced in the last
section only on analogy with Poincaré’s III-1a and III-2a.

In all these aspects, Poincaré’s paper was the antithesis of another
submitted by the Viennese physicist Paul Ehrenfest (1911) to the An-
nalen in July 1911.'° The paper, ‘Which Features of the Light Quantum
Hypothesis Play an Essential Role in the Theory of Heat Radiation?’,
started with a careful compendium of various physical assumptions and
physical properties on which the final results would be based. Ehrenfest
listed constraints on the form of the distribution law (1), including the
Wien displacement law and various requirements of differing strength
on the limiting behavior of the law. He listed electromagnetic aids,
including the radiation oscillator density formula (4) as well as a careful
statement of the statistical mechanical argument needed to form the
crucial probability distribution (7). Unlike Poincaré, Ehrenfest applied
his analysis to radiation oscillators, a more secure physical arena in
which to locate quantum discontinuity, for one could replace the prob-
lematic Planck resonator formula (5) with the more secure radiation
oscillator density formula (4) (see Section 8 below). From these foun-
dations Ehrenfest proceeded to derive a series of results embracing and
extending III-1b and III-2b. He seemed to recognize the interchange-
ability of these results with the corresponding results III-1a and III-2a,
speaking in his conclusions (p. 110) of a transformation “from the
Rayleigh-Jeans ‘proper vibration’ terminology to the ‘resonator’ termin-
ology preferred by Planck”.

Ehrenfest clearly had found all of Poincaré’s essential results — and
more — before Poincaré and even before the Solvay conference, which
Ehrenfest unfortunately did not attend. Yet his paper was all but ign-
ored at the conference. Ehrenfest’s priority and superiority was rarely
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mentioned later and then only scantily even by a sympathetic sponsor,
Lorentz (1921, p. 308).

Ehrenfest’s results focused on a particular way of expressing the
relationship between the function f(v/T) of the distribution law (3) and
the weight function w(E), which, Ehrenfest noted, is really a function
of both E and vso that it is better written as y(», E). Using results about
the reversible adiabatic compression of radiation that are essentially
equivalent to the Wien displacement law, Ehrenfest showed that this
weight function could be expressed as a product of two functions:

(24) y(v, E)= Q) - G(Elv).

Using this result, the Wien displacement law (3), the distribution law
(7), the radiation oscillator density formula (4), and the following sub-
stitutions of variables

Ehrenfest arrived at the following expression for f(¥/T) = f(0o):

Jogexp(-aq)G(g)dq _ P(o) _ -il
sexp(-0q)G(@)dg Qo) do o

where C is a constant.'’

Taking equation (25) as his focus, Ehrenfest began asking how con-
straints on the form of f(o) were to be refiected in the weight function
Q(o). Unlike Poincaré, he ascended no mathematical heights to re-
cover his basic results, preferring the practical mathematics of the
working physicist of 1911, pausing from time to time to give examples
of specific functions to illustrate the results obtained. His first main
result, for example, was that no continuous G(g) could yield a distribu-
tion with finite total energy density, expressed in this case as the require-
ment that f(o) diminish faster than 1/0* for large o. In a table he
showed, with a series of families of functions, that moving the weight of
G(q) toward the origin q = 0 caused f(o) to diminish faster. However, if
Q(o) was to remain continuous and integrable, it was impossible to
bring sufficient mass into the vicinity of g = 0 to enable f(o) to diminish
faster than 1/0°*°. He then turned to consider discontinuous weight
distributions.

We can represent Ehrenfest’s results as spanning between III-2b and

(25)  Cf(o)=
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III-1b. If we require that the distribution law (1) yield not just a finite
total energy density but also come closer and closer in form to the
Planck law (14), then we find that the weight function advances corre-
spondingly from the form (16b) to (16a). These results, which have
obvious analogs for Hertzian resonators, can be summarized in the
argument scheme

III-3  Wien displacement law (3)
Constraints A, B, and C, respectively, on the distribution
law (3)
General statistical model for radiation oscillators
Radiation oscillator density formula (4)

Quantum discontinuity (16A), (16B), and (16C), respec-
tively, for radiation oscillators

To complete the scheme III-3, we can now state the constraints A, B,
and C and the expressions for G(q) that follow, noticing how the
expressions for G(gq) move from (16b) closer to (16a) as the constraints
applied bring us closer to the Planck law (14).

A. “Avoidance of the Rayleigh—Jeans Catastrophe in the ultraviolet”,
“violet requirement”: f(o) must diminish faster that 1/¢*, so that
lim, - » {o*f(c)} = 0. It yields

(16A) G(q) approaches g = 0 faster than:
G(q) = &(q) + A

for A some positive constant.

B. “Strengthened violet requirement”: Since distribution laws such as
that proposed by Wien (13) and Planck (14) require f(o) to diminish
exponentially, that is faster than 1/0", for any integer n > 0, we can
strengthen constraint A to require lim, - .{o"f(o)} = 0. It yields

(16B) G(q) approaches g = ( faster than:
G(g) = &(g) + Aq”

for A some positive constant.

C. “Wien—Planck violet requirement”: We require that f(o) diminish
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exponentially for large o, so that lim, - -{f(o)/exp(—Lo)} = M, for
some non-zero constants L and M. This yields'®

(16C) G(q) =48(q), forO0=sg=<L,

and if f(o) equals M - exp(—Lo) for large o, then we have a second
discontinuity at g = L:

(16C") G(q) = Ad(q) + B5(g), for0<g=<L

for constants A and B.

Ehrenfest clearly thought the results in III-2 and III-3 the most
important. However, we do also know that he was in possession of the
essential parts of III-1. He mentions toward the close of his paper that
if one knows the exact functional form of f(o), then the weight function
G can be determined. As what he calls an “illustration”, he considers
the cases of Wien’s distribution law (13) and Planck’s law (14), sketch-
ing very briefly how the familiar discontinuous distributions correspond-
ing to each law can be recovered. For the Planck law, of course, he
recovered (16a). Elsewhere in his paper he gave the weight function
for the Wien law,

(26) G(g) = 8(q) + 8(g — 1) + (1/2) 8(g = 2) + - -
+{IMélg—r)+---

Ehrenfest’s case by case treatment of each of his results does not
give us any unified overview of their origin. We can approach such an
overview in a suggestive but informal way as follows. Invertmg Ehren-
fest’s equation (25) we recover

@) 0(e) = exp( - | Cflo) do
2

=1- f Cf(o)do+ %(ch(a) da') +

The elements of Ehrenfest’s results pertain to the members of the
power series expansion. Recalling that Q(c) is the Laplace transform
of the weight function G(q), we can invert terms in this power series
to give us terms in an expression for G(q).

The zeroth-order term is the constant 1. It inverts to give us 8(q),
the discontinuity at ¢ = 0 arising earlier from the requirement of fi-
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niteness of energy density and common to all results in III-2 and III-
3. The first-order term — [ Cf(o) do yields the additional terms in G(q)
that are discussed in Ehrenfest’s results III-3. If f(o) diminishes as
1/0™, for large o, then its integral is proportional to 1/¢”"! and it
provides a polynomial term ¢"~? in the expression for G(g) in addition
to 8(g)." This immediately gives us (16B). If we consider the cases of
n=4 and n =4 + ¢, for ¢, a small increment, we can arrive at (16A)
and its g* term. Finally, if we take f(o) = M - exp(—Lo), we find
JCf(o) do is proportional to exp(—La). Its inversion yields the second
discontinuous weight 8(q — L) at ¢ = L of (16C").

7. FOWLER’S CODA

Fowler (1936, p. 200) sketched briefly an interesting coda to the results
on the necessity of quantum discontinuity. He applied the methods
used above to a very simple system, that of a volume V of black body
radiation. Assuming only that the system obeys the Stefan-Boltzmann
law and the general statistical model, Fowler was able to infer that
there still must be a discontinuity in the system’s weight function w at
E = 0. Taking the system’s mean energy to be

(2) E=oVT =

’
k4 1_4

we can recover P(7) by applying the formula in the first part of (22),
arriving at:

2
Vi oVl 1fcV\1
®(1) =ex (_a' —)=1+——+—(—) —+
() = e\ 3 37 21\3k*) 7°
Inverting term by term we recover the weight function:
oVE: 1(aV\E®
28 E)=8(E +——+—(——)—+
@) wE) = A * o Y au\se) S

The first term shows the discontinuity at £ = 0. The remaining terms,
as Fowler remarks, are “‘too complicated to give us much information™.
We have in summary form:
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I1I-4  Stefan-Boltzmann law (2)
General statistical model for a volume of black body radi-
ation.

Quantum discontinuity (28) for black body radiation.

8. ASSESSMENT OF INDUCTIVE RISK

In Section 1.3, I described how the inductive risk that one takes in
inferring quantum discontinuity by means of the argument schemes III
is located in the premises. I now review briefly the nisk taken in adopting
each of the premises.

Planck law (14): The inevitability of experimental error makes it impos-
sible for a finite data set to guarantee a particular formula. As late as
1913, there was still discussion of the possibility of alternative formulae
performing as well as Planck’s (14).”° Results in III-2, III-3, and III-4
show that even a minimally acceptable distribution law — one that only
yields finite total energy density — forces a discontinuity at E = 0 and
that the discontinuity bccomes more like that of (16) as the law ap-
proaches the Planck law (14) in form. Notice that a law such as Wien’s
(13), which differs markedly from Planck’s (14) in the domain of small
(v/T), requires discontinuities at E =0, hv, 2hv. . ., as in (26).

Radiation oscillator density formula (4): This result is generated by an
essentially geometric argument in which the wave length of a radiation
oscillator is required to fit an integral number of times into the enclosing
cavity (see, for example, Bohm, 1951, Chap. 1). The derivation would
be difficult to assail, for it assumes essentially no properties for radiation
other than the notion of wave length. Even then, other derivations are
possible that rely essentially only on the Lorentz invariance of the
overall theory (Norton, 1987, §5).

Planck resonator formula (5): This formula was derived by Planck
using the full resources of classical electrodynamics. If the formula is
essentially dependent on classical electrodynamics, then it cannot be
used consistently in a derivation of a result that entails the falsity of
the classical theory. This reservation was stated by Poincaré (1912, pp.
29-30) in concluding his derivation of III-2a.?' The safest course would
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be to dispense with the formula and limit the analysis to radiation
oscillators alone, in which case quantum discontinuity will still emerge.
Einstein (1909a, p. 188), however, felt that one could retain the formula
in the quantum domain in spite of its classical origins, for the equation
pertains only to the time average of quantities. The classical theory, he
noted, yielded correct results for time averaged quantities, as its success
in geometric optics showed.?

Wien displacement law (3) and Stefan—Boltzmann law (2): There was
little scope for doubting these laws. Apart from thermodynamic con-
siderations, derivation of the Wien displacement law required only the
assumption that the frequency of radiation was Doppler shifted on
reflection from a moving mirror. If this was doubted, the result could
also be derived from the zero rest mass of radiation. Similarly, aside
from thermodynamic considerations, the Stefan-Boltzmann law fol-
lowed from the assumption that isotropic radiation exerted a pressure
equal to one-third its energy density, a result that followed immediately
from its zero rest mass. Alternatively, the law could be arrived at
directly by an integration of the Wien displacement law (see Norton,
1987).

General statistical model: That the gross behavior of a system of black
body radiation represented a statistical average and, therefore, that the
analysis of the system required the methods of a statistical mechanics
followed from a beautiful thought experiment of Einstein (1909a, pp.
189-90). He considered a system of black body radiation able to ex-
change energy with a kinetic gas by means of a movable mirror. If the
radiation pressure failed to exhibit statistical fluctuations, there would
be an uncontrolled transfer of energy from the radiation to the gas,
resulting in a violation of the second law of thermodynamics.

Once the need for a statistical treatment is clear, the crucial probabil-
ity distribution law (7) follows essentially only from the assumption
that the observed gross behavior of the system coincides with its most
probable behavior. To recover the law (7), the standard methods intro-
duced by Boltzmann suffice except that one is freed from the need to
make the most troublesome assumption of Boltzmann’s approach, the
equal probability of each of his complexions. The prior probability of
the various micro-states, as expressed in the weight function w(E) =
v(v, E), is precisely what the investigation is intended to determine!
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Thus the weight function is left undetermined and the prior probability
of a system with frequency v having energy in the range E to E + dE
is set by definition as w(E) dE = y(v, E) dE. A slight modification of
the standard calculation then yields the probability distribution (7) as
the most probable. For this derivation, see Ehrenfest (1911, §3).
There remained one other option. One could accept that black body
radiation is a statistical phenomenon but escape (7) and the equiparti-
tion theorem in a classical analysis by insisting that the black body
radiation we observe has not come to equilibrium. This view was ex-
plored thoroughly by Jeans before he abandoned it to champion the
quantum theory. Jeans, following similar accounts by Lorentz, sought
to recover the properties of black body radiation from an analysis of
the mechanism of emission of radiation by accelerated charges. After
he finally abandoned this work, Jeans (1914, pp. 28-29) listed four
objections to accounts of this type. Three of them noted how the
electron collision time parameter of the specific model discussed would
have to behave in ways incompatible with known results about electrons
and their motion if justice were to be done to observation. The other
revealed a serious difficulty for any non-equilibrium account. To re-
cover the independence of the properties of black body radiation from
the nature of the material emitting it, one would have to assume implau-
sibly that the collision time parameter is the same for all substances.
Any non-equilibrium account would be expected to find difficulty in
freeing the final results from the specific properties of the emitter.
This remarkable independence follows, however, immediately from the
simplest thermodynamic analysis once equilibrium is granted. Indeed a
non-equilibrium account must forgo the entire tradition of thermodyn-
amic analysis of black body radiation dating back to Kirchhoff. Jeans
(1905c, pp. 309-11) even had to resist the applicability of the second law
of thermodynamics to black body radiation. Yet the non-equilibrium
account must still explain all the successes of the equilibrium approach.
Finally, it must be stressed that the body of results described in this
paper do not exhaust the evidence for quantum discontinuity or the
pathways taken from the evidence to the theory. Evidence for the
theory was derived from numerous phenomena, and inductive argument
schemes of many types have been used to display the import of that
evidence. At the time Ehrenfest’s and Poincaré’s papers were pub-
lished, the success of the quantum theory in accounting for the behavior
of specific heats at low temperatures was especially important. By the
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early 1920s, Jeans (1924), in the more confident second edition of his
Report on Radiation and the Quantum Theory, described four groups
of phenomena as providing evidence for the new theory: black body
radiation, the spectra of elements, the photoelectric effect, and the
specific heats of solids. He summarized the bearing of the evidence
from these four areas using an argument form that Salmon (1984, pp.
213-27) identified in Perrin’s work on the reality of atoms, an argument
to a common cause. If one looks at the values of Planck’s constant £
that are computed via the quantum theory from data in each of the
four areas, one arrives at essentially the same value, making clear,
Jeans (1924, p. 61) concluded, ““that they agree in pointing to the same
new system of quantum-dynamics”.

9. CONCLUSION

The underdetermination thesis tells us that theory remains underdeter-
mined by any body of evidence, no matter how large, rich, and diverse.
If it were true, the theoretician seeking to build a theory on a body of
evidence might reasonably expect to be faced with a plethora of theo-
ries, all of which do justice to the evidence. Yet this is not the common
experience. When the available evidence is substantial, theoreticians
consider themselves lucky to find any theory that does justice to the
evidence and, if they do find one, the construction of competitors
with any long-term viability proves well-nigh impossible. Perhaps this
phenomenon is due to prejudice, social conditioning, stupidity, defer-
ence to dictatorial authority, or a host of other distractions that are
traditionally deplored as non-scientific. What this study shows, how-
ever, is that, at least in the instance of quantum discontinuity, whichever
of these forces were in operation, the weight of evidence was sufficient
to force the unique determination of a particular result, no matter how
unpalatable that result might be to the community of physicists. Perhaps
what is exceptional about this instance is that the arguments forcing
the unique determination can be presented in such a compact manner;
and that we have been able to see beyond an inadequate caricature of
the evidential case to the fuller case that lies hidden in forgotten texts
and journals. Otherwise, I do not believe that the case is exceptional.
Rather, it merely illustrates a commonplace of the lore of science, the
power of a sufficient body of evidence to determine a unique theory.”
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NOTES

' As usual, E is energy, & Planck’s constant, n a non-negative integer, and » frequency.
% For further discussion of these two forms of inference and their relation to the underde-
termination thesis, see Norton (1994). For an analysis of their importance in Einstein’s
discovery of general relativity, see Norton (1989). See also Dorling (1973; 1987).

* The emergence of quantum discontinuity has been treated extensively in the history of
science literature. See, for example, ter Haar (1967), Jammer (1966), Kangro (1976),
and Kuhn (1978).

* The analysis follows that of Einstein (1907), which was applied to the latter approach
only.

5 The point was soon noted by, for example, Jeans (1905b). Kuhn (1978) has argued
that Planck did not recognize the decisive role of quantum discontinuity in his early
works.

® The notational convenience of the Dirac (1991, §15) delta function, &8(x), which repre-
sents the discontinuous concentration of unit weight on x = 0, was not available in 1910
and was not used in the work of Jeans, Poincaré, Ehrenfest, Fowler, and others discussed
below. Its use in this paper greatly simplifies the statement of results concerning quantum
discontinuity.

7 Of course these results are just a single thread of the complex web of the reception of
quantum discontinuity. For broader discussion see Garber (1976) and Hendry (1980).

8 It is not clear that he intended to make a skeptical point.

® Other systems appeared to display similar flexibility. Thomson (1907), for example,
worked with a classical account of heat radiation as produced by the acceleration of
charged particles. He computed (p. 230) how laws governing the motion of these particles
would have to be modified in order for the theory to yield the Planck law. Larmor (1909,
1910) also contains suggestions for constructing a derivation of the Planck law free of
quantum discontinuity.

19 See Dorling (1987) for a reconstruction of Einstein’s argument as a demonstrative
induction.

' The translation is based on Einstein (1989, pp. 390-91).

2 For a recent account of Jeans’s views on radiation, see Hudson (1989).

" T need hardly point out that this last step is where Jeans’s argument lacks rigor. The
claim might well be correct. Because it is central to Jeans's argument, however, it ought
to be established with more than this token wave of an arm.

!4 For an account of Poincaré’s involvement with the quantum theory, a synopsis of the
results he established and of their influence, see McCormmach (1967). The proceedings
of the Solvay conference are in Eucken (1914).

'> The argument just sketched is imprecise, since it assumes that term by term inversion
commutes with convergence of the infinite series. For a more precise but more opaque
treatment, see Poincaré (1912) and a more rigorous version in Fowler (1921) that employs
a Stieltjes’s integral in place of (20) to allow for the discontinuous behavior of w.

!¢ For a discussion of this paper, its background and reception, see Klein (1970, pp. 245-
53).

7 Ehrenfest’s version of (25) was actually a little more complicated. He reserved the
function G(q) for the continuous part of the weight function and added a sum term to
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allow for the discontinuous weights Gy, Gy, G,... at ¢ = go, q1, g2 . . . SO that he set
Q(o) = Z;-0exp(—0q,) G, + [¢ exp(—aq) G(q) dg and a similar expression for P(c).

18 Notice that the novelty of (16C) is that G(g) must be zero in the interval 0 < g < L.
' Conveniently we can set the lower limit of integration of fCf(o)do at a sufficiently
high value to obliterate that part of f(o) that differs significantly from 1/¢".

% See the remarks of A. E. H. Love as cited in Jeans (1914, pp. 25-26). See also
Warburg’s, and Ruben’s contributions in Eucken (1914, pp. 65-70, 72-75) and Section 2
of Eucken’s appendix.

# In Norton (1987) I argue that the old quantum theory was not fatally compromised
by the inclusion of formulas like (5), since such results could also be generated plausibly in
a more general theory compatible with both classical and quantum behavior of radiation.
2 Einstein (1906, p. 203) had been less sure of this argument for retaining the formula.
# I am grateful to an anonymous referee for helpful criticism.
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