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1. Fear of Circles 

 The non-hierarchical structure of relations of inductive support admits circularities. They 

are inevitable once we examine a large enough set of these relations. The circles may be small, 

when two propositions mutually support. The circles may be large, when extended chains of 

relations of support eventually connect back to their starting points. Some will find the mere 

presence of these circles, in itself, disturbing. They do so, apparently, with good reason. In 

debates, philosophical or not, defeat is assured if your opponent can expose your reasoning as 

circular. In formal structures, circularities are vicious and they must be eliminated, often by the 

most elaborate of novel theorizing. The damning verdict is automatic and unanswerable. You 

have found a circularity? There is no need to waste any more thought on the enterprise. It  

fatally flawed. The perpetrator of a circularity may be expected to resort to all manner of 

sophistry. But escape is impossible and the ultimate collapse of the enterprise is inevitable. 

 Such is the fear of circles, horror circulorum. This chapter is written for those in its grip. 

The goal is to provide them therapy. For the horror is based on an oversimplified view of 

circularities. It neglects the many forms that circularities can take. Some are as fatal as this dark 

view fears. Many are benign and, we shall see, others are even essential to a theoretical structure. 

To ban them unilaterally would restrict unnecessarily the scope of our theorizing. To show this, 

the chapter provides a small classification of circularities, according to how they affect the logic 

of the structure in which they appear. It will show that the circularities of relations of inductive 

support are benign and even essential. 

 There are three categories. First are the “vicious” circularities to be explored in Section 2. 

They lead to logical inconsistencies and underwrite the dark view of circularities as fatal defects. 
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When such circularities arise in inductive structures, they are transient and eliminated by suitable 

adjustments to the propositions in the structure. The second, explored in Section 3, are 

circularities in structures whose content is left indeterminate. These may merely be failed 

arguments or intermediate stages of development on the way to the third type. Or, if they are 

ineliminable, they may be the basis of a convention. In the third case, described in Section 4, the 

circularities are part of a well-behaved structure whose content is uniquely defined, without 

contradiction. This is the case of the relations of inductive support of a mature science. A final 

Section 5 summarizes how the circularities in relations of inductive support appear in the 

taxonomy. The mechanism identified in the next Chapter 4, “The Uniqueness of Domain-

Specific Inductive Logics,” leads to a convergence towards inductive structures with univocal 

import. 

 That benign circularities are possible is the tonic that can cure horror circulorum. It tells 

us that mere identification of a circularity in some system is a starting point, not an endpoint. If 

you want to take the next step and damn the system for the circularity, there is a positive 

obligation on you to establish that the specific form of circularity present is harmful. This cannot 

be done, I believe, for the circularities in a mature science. They are benign. 

2. Vicious Circularity 

 A vicious circularity, as I shall use the term here, is a set of circular relations in some 

formal structure that leads to a contradiction. 

2.1 The Idea 

 The term “vicious circle” has long been familiar in treatises on logic. Kirwan (1807) 

already found its usage established. Curiously, the formal definition he gave was merely of 

question begging, “petitio principii,” which is described in more detail below in Section 3. 

Kirwan wrote of (pp. 441-42, his emphasis): 

… that mode of argumentation called the vitious circle [sic], in which one point is 

proved by another, and this other is proved solely by the first; so that the proofs are 

mutual and under the same point of view. 

That what is described is really question begging is made quite clear by Munro’s (1850) treatise 

whose exposition follows Kirwan’s closely. Munro (1850, p. 231) illustrated the circle as: 
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The whole of Dr. Brown’s elaborate lectures on the nature of virtue amounts to 

nothing more than a vicious circle. We approve of actions, because they are right; 

and they are right, because we approve of them. 

More curiously, Kirwan’s own example was of a circle that produced a contradiction. His 

definition of “vitious circle” is immediately illustrated by the self-refutation of skeptics: 

… Thus the sceptics argue, that we ought to doubt of every thing, because human 

reason is fallible, and may deceive us. And since reason may deceive us, we should 

doubt of the validity of the reasons that induce us to doubt. 

 The idea of a vicious circle as essentially leading to a contradiction was cemented by 

Bertrand Russell’s work in mathematical logic. In reflecting on Cantor’s proof that there can be 

no greatest cardinal number, he arrived at what came to be known as Russell’s paradox. It is 

given an early elaboration in Russell (1903, Ch. X), “The Contradiction.” The paradox concerns 

sets and their members. Some sets may have other sets as their members. Naively, we easily 

accept that some may even be members of themselves. A set of sets can be a member of itself, 

for example. But what of those sets that are not members of themselves? What of the set of all 

such sets? The supposition that there is such a set immediately produces a contradiction. If it is a 

member of itself, then it is not a member of itself. But if it is not a member of itself, then it is a 

member of itself. The contradiction arises essentially through the circular relationship between 

the set and its members. 

 While the paradox looks at first like a minor annoyance that is easy to circumvent, it was 

immediately recognized as a deep problem for set theory and the foundations of mathematics. 

For it shows that sets could not be defined merely as the extension of any property. That is, we 

could not say “Consider the set of all things that have property P.” where property P, expressed 

as some formula, could be freely chosen.1 The most searching and elaborate investigations were 

needed to give set theory a non-contradictory foundation. One avenue was the development of 

the axioms of Zermelo-Fraenkel set theory. Russell’s path led to the theory of types, found in his 

joint work with Alfred North Whitehead, Principia Mathematica. There Russell and Whitehead 

reinforced the odious character of vicious circles. The first named section in Volume I, Chapter 2 

 
1 This troublesome principle has been called “the intuitive principle of abstraction” in Stoll 

(1963, p. 6). 
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was entitled “The Vicious-Circle Principle” and one of its formulations was (Russell and 

Whitehead, 1910, p. 40) “Whatever involves all of a collection must not be one the collection.” 

Breaches of this principle, they announced, were to be called “vicious-circle fallacies.” 

 The vicious circle of Russell’s paradox derived from its imprudent use of self-reference. 

Such imprudence proved to be a fertile source of analogous paradoxes. Russell (1908) provided a 

convenient compendium. It began with the now classic Epimenides (p. 222): 

Epimenides the Cretan said that all Cretans were liars, and all other statements 

made by Cretans were certainly lies. Was this a lie? The simplest form of this 

contradiction is afforded by the man who says “I am lying;” if he is lying, he is 

speaking the truth, and vice versa. 

Its structure matches that of Kirwan’s example of the self-refuting skeptics. The inventory 

continued with Russell’s set paradox and a list of other related paradoxes familiar to readers of 

the literature, including Berry’s paradox, Richard’s paradox and the Burali-Forti contradiction. 

These paradoxes provided the impetus for a century of philosophical work on truth in the 

foundations of formal logic. It was designed to find ways of precluding paradoxical sentences 

like “This sentence is false.” or finding unparadoxical ways of including them. The 

contradictions that follow from self-reference became one of the most powerful tools of formal 

logic. They are the basic device used in Gödel’s famous demonstration of the incompleteness of 

arithmetic. 

 To philosophers who have any interest in formal matters, all this is so elementary as to 

have become part of “what everyone knows.” At the same time, these foundational investigations 

have forged an automatic and enduring link between circularity and contradiction. And so the 

horror circulorum is established. 

2.2 Vicious Circles in the Material Theory of Induction? 

 Are the circularities of inductive support vicious? Nothing compels it. As we shall see 

below, one can have circularities that are not vicious, that is, that produce no contradictions. 

Such are the circles arising among the relations of inductive support for mature sciences. The 

inductive support of these mature sciences is secure and even unassailable; and they would not 

be so if contradictions could be found within them. 

 This is the situation with the evidential support of a mature science. However, prior to 

this mature stabilization, contradictions can and do arise among the relations of support. 
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Developing sciences are commonly built upon hypotheses, whose evidential grounding has not 

been secured. Sometimes these hypotheses fail and that failure manifests in contradictions. In 

1917, Einstein presented the first relativistic cosmology, using the assumption that the universe 

is static. His hypothesis was soon contradicted by Hubble’s discovery of the recession of the 

galaxies. 

 These contradictions are not manifestations of an ineliminable, foundational flaw in the 

very idea of inductive support. They are unlike the vicious circularities of naïve set theory, 

whose circularities forced us to reconceive the very idea of a set and of the truth of propositions. 

Rather they are a natural part of the work of fallible investigators. The structures they produce 

are fallible but malleable, and it is a routine part of investigations to reform the structures to 

eliminate them. Einstein discarded his assumption of a static universe, while other theorists 

began to explore the dynamic, expanding universes compatible with general relativity. These 

contradictions and adaptations are of no more concern than an accounting error in a budget. 

Perhaps a receipt was mistyped, or an expense neglected. It is a simple but tedious exercise to 

find the error and correct it. There has been no fundamental breach of a principle of arithmetic 

that would forever preclude the use of budgets. 

 The radiocarbon dating of historical artifacts, described in Chapter 10, “Mutually 

Supporting Evidence in Radiocarbon Dating,” shows how these contradictions arise within a 

circle and are remedied. Artifacts are dated by two means. The first derive from traditional 

historical analysis. The second derive from the measurement of the radioactive 14C (“carbon 

14”) content of the artifact. What results are two sets of propositions, one historical and the other 

radiocarbon. Each should support the other. When radiocarbon dating methods were first 

explored, it soon became apparent that there were recalcitrant discrepancies in the dating 

provided by the two means. That is, there were contradictions within the circular relations of 

mutual support among the radiocarbon dates and historical dates. 

 The elimination of these contradictions became a major focus of research in radiocarbon 

dating methods. Radiocarbon dating depends essentially on knowing the original 14C content of 

the artifact. That content is halved for each 14C half-life of 5730 years. It was natural to suppose 

that these original levels match those of artifacts formed today. It soon became apparent that this 

assumption was the source of the contradictions. These levels have varied over historical times. 

Theoretically grounded reconstruction of these original levels proved unworkable. Instead, these 
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levels were reconstructed by means of the historically known age of artifacts. The corrections 

needed were collected in a calibration curve, such as is shown in the later chapter. Using such 

curves, the radiocarbon and historical datings of artifacts were adapted to one another in the 

precise manner needed to eliminate the contradiction. After that adaptation, each set of datings 

could be used to check and affirm the other. The circularity among the two sets of propositions 

remained, but without contradictions. 

 In a similar vein, the structures of inductive support for a mature science can be disrupted 

by new, empirical discoveries. The disruption manifests as contradictions that can be removed by 

adjustments to the inductive structure. This is the common dynamic of scientific revolutions. 

Newton’s seventeenth century mechanics prevailed for over two centuries. Its inductive support 

was, apparently, unassailable. One of its basic results was that the velocity of a uniform observer 

was to be added or subtracted from that of any propagation to recover the velocity the observer 

would find for it. The new evidence of Maxwell and Lorentz’s nineteenth century 

electrodynamics destabilized Newton’s mechanics. For, under Einstein’s careful scrutiny, the 

electrodynamics revealed that light propagation violated this simple Newtonian result. The speed 

of propagating light was always the same, no matter the uniform motion of the observer.  

 The contradiction was resolved when Einstein realized that space and time themselves, at 

high speeds, do not behave as Newton had concluded. The evidence and relations of evidential 

support leading to Newton’s theory were not discarded. Rather their limited scope was now 

recognized. They could be applied only to systems moving at much less than the speed of light. 

This restriction was readily implemented. Newton drew the evidence for his mechanics from the 

motions of ordinary falling bodies, moons and planets. These are all bodies whose speeds are 

much less than that of light. The evidential base of Einstein’s special relativity embraced that of 

Newton’s mechanics for small speeds and that of electrodynamics for higher speeds. 

3. Indeterminate Circularities 

 A less troublesome form of circularity arises when the circles produce no contradictions 

but leave the structure indeterminate. The indeterminacy may not be obvious, since the analysis 

may be offered as determinate. 
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3.1 Begging the Question 

 A familiar example, known since Aristotle, is circular reasoning, “begging the question”2 

or the petitio principii. It is a form of reasoning that pretends to establish a conclusion, while 

only giving the illusion of doing so. Richard Whately’s Elements of Logic gives what seems to 

be a standard definition for nineteenth century work.3 Alerting us in a preface (“advertisement”) 

that he uses square brackets “[…]” to indicate equivalent meanings, he tells us (1856, p. 184) 

… “petitio principii” [“begging the question,”] takes place when a premiss, whether 

true or false, is either plainly equivalent to the conclusion, or depends on it for its 

own reception. 

He continues to note the delicacy of the identification. For unobjectionable deductive inferences 

will have this this character in case a premise entails the conclusion and conversely. Such is the 

case for inferences that demonstrate the equivalence of two physical conditions, such as the 

equivalence of the “Thomson” and “Clausius” forms of the second law of thermodynamics. To 

be worthy of the label petitio principii, there must be some sense that the inference is used 

deceptively, to pretend that more is gained than really is. Whately (1856, p. 222) notes 

“Obliquity and disguise being of course of most importance to the success of petitio principii…” 

 Examples are easy to find. One is a religious figure or tract for which infallibility is to be 

concluded, since the figure or tract themselves declare their infallibility. The more interesting 

cases of begging the question arise when the circularity is sufficiently hidden that its presence is 

easily overlooked. Mill (1882, p. 574; his emphasis) provides an example: 

Plato, in the Sophistes, attempts to prove that things may exist which are 

incorporeal, by the argument that justice and wisdom are incorporeal, and justice 

and wisdom must be something. Here, if by something be meant, as Plato did in fact 

mean, a thing capable of existing in and by itself, and not as a quality of some other 

thing, he begs the question in asserting that justice and wisdom must be something ; 

if he means any thing else, his conclusion is not proved.  

 
2 This is the original sense, to which I adhere. A recent usage gives the expression the meaning 

“inviting the question.”  
3 Mill (1882, p. 571) reports Whately’s treatment extensively. 
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Another more extended example, I contend, arises in the many demonstrations of probabilism: 

Dutch book arguments, decision theoretic representations, the accuracy-based scoring rule 

argument, and so on. In The Material Theory of Induction, Chapters 10 and 11, I argue that all 

these proofs proceed by employing premises in which the basic assumptions of probabilism are 

already present in disguised form. When their presence is identified, the demonstration collapses. 

It then becomes easy to see that arbitrary adjustments to the rules of the betting scenario, to the 

properties of the preferences assumed or to the scoring rule used, can lead to variant, non-

probabilistic calculi. 

 For present purposes, the essential fact is that circular reasoning simply fails to determine 

the conclusion sought. Nonetheless, the conclusion sought may be true, or it may be false.  

3.2 Circularities that Produce Conventions 

 Similar indeterminacy-producing circularities arise among magnitudes in science. The 

indeterminacy is then often taken as evidence that the magnitude of some quantity can be set as a 

convention. Perhaps the best-known examples arise in relativity theory and in geometry. In his 

1905 special relativity paper, Einstein argued that we could not affirm the simultaneity of 

spatially separated events, factually, by light signals (or, analogously, by any other means). For 

any scheme that uses light signals to ascertain the relative timing of such events requires that we 

know how fast light propagates in one direction. A natural scheme requires, for example, that we 

know that light propagates at the same speed from a place A to a place B as it does in the reverse 

direction. Yet to know this, we must be able to determine how quickly light propagates from one 

place to another. This determination requires that we can already compare the timing of events at 

these two places. 

 Einstein (1920, pp.22-23) summarized our predicament: “It would thus appear as though 

we were moving here in a logical circle.”4 The significance of this circle is that there are no 

independent facts separately for the simultaneity of spatially separated events and the speed of 

light propagating between them. Rather we can choose freely as a convention either the 

simultaneity relation or this speed. Then the other is determined. Here is how Einstein (p. 23, his 

emphasis) put it: 

 
4 “Man scheint sich also hier in einem logischen Zirkel zu bewegen.” 
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That light requires the same time to traverse [the forward path] as for [the reverse 

path] is in reality neither a supposition nor a hypothesis about the physical nature of 

light, but a stipulation which I can make of my own free will in order to arrive at a 

definition of simultaneity. 

Einstein’s foremost expositor in this matter, Hans Reichenbach (1958, pp. 126-27), summarized 

a more extensive analysis of the same circularity as: 

Thus we are faced with a circular argument. To determine the simultaneity of 

distant events we need to know a velocity, and to measure a velocity we require 

knowledge of the simultaneity of distant events. The occurrence of this circularity 

proves that simultaneity is not a matter of knowledge, but of a coordinative 

definition, since the logical circle shows that a knowledge of simultaneity is 

impossible in principle. 

Under Poincaré and Einstein’s inspiration, Reichenbach (1958, §30) argued for a structurally 

analogous convention he called the “relativity of geometry.” It depends on a similar logical 

circle. One can determine that the geometry of a space is Euclidean or otherwise by the 

expedient of surveying it with measuring rods. The essential condition is that the rods are rigid 

ones that measure distances truly. The complication, Reichenbach urged, is that rods may be 

acted upon by what he called “universal forces” that equally distort all bodies. This complication 

creates the circle. We cannot know which universal forces, if any, are acting on a rod unless we 

already know the true geometry of the space. The circle is resolved by declaring that we may 

select the geometry of space conventionally. We merely posit the universal forces needed so that 

our rod measurements give us that geometry. 

 For completeness, I should mention that both conventionality theses were hotly debated 

in the later part of the twentieth century, without any clear resolution. Those opposed to the 

conventionality claims urged that there were other non-conventional means to break the circles. 

We do not need to take sides in this debate for present concerns.5 All we need to see is that these 

 
5 However, I incline towards the anti-conventionalist view. For an elaboration, see the chapter 

“The  Conventionality of Simultaneity” and “Geometric Morals” in my online text, Einstein for 

Everyone, http://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/index.html Reichenbach’s 

supposition of universal forces is troublesome since, if the mode of analysis is accepted, 
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circular dependencies among physical quantities can leave the quantities indeterminate. Even a 

fairly modest empiricism must be troubled by the idea of quantities whose values cannot be 

determined by any physical measurement or observation. If the indeterminacy is sustained, the 

comfortable resolution is to assert that there is no physical fact for these values. They may be 

chosen arbitrarily, that is, as a convention. 

3.3 Indeterminate Circularities in Relations of Inductive Support 

 It is quite possible for this sort of circularity to arise among relations of inductive support. 

If they prove to be ineliminable, then we might expect an empirically-minded scientist to 

proceed as above. If we are sure that no evidence can break the circle, we have concluded that 

these are propositions whose truth is immune to evidential scrutiny. Such propositions are 

leading candidates for conventional stipulation. Indeed conventional stipulation will, by the 

supposition of the case, make no difference empirically.  

 The more common situation is the one that arises in the examples of circular 

dependencies recounted in the earlier chapters and explored in greater detail in later chapters. 

The circularities may initially be such as to leave the quantities of interest indeterminate. 

However further investigation brings new facts to bear that break the circularity. Indeed, a focus 

on exactly such investigations can become a major stimulus for further research. We have seen 

this dynamic repeatedly. 

 Dalton’s original proposal of his atomic theory was trapped in a circle, as detailed in 

Chapter 11. To know the correct molecular formulae of substances, he needed to know the 

relative weights of the atoms combined in them. But he could only know those relative weights if 

he already knew the molecular formulae. This meant that his theory was compatible with water 

having a huge array of different molecular formulae: H2O, HO, HO2, and many more. He was 

free to stipulate any of them, without fear that the meager evidence at his disposal would 

contradict his choice. He chose HO. Indeed, had the circularity proved unbreakable, we might 

eventually have settled onto a curious sort of atomic theory in which the relative masses of the 

atoms could be set arbitrarily, much as we arbitrarily set the zero point for the potential of a 

Newtonian gravitational field. As we now know, this freedom was transient. It still took over half 

 
analogous suppositions can be used to establish the conventionality of any physical magnitude 

that is measured by some instrument. 
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a century of further work to bring enough additional facts to bear to break the circle and recover 

H2O. 

 The determination of celestial distances involved similar indeterminacy-producing 

circularities. Our earliest efforts to determine the distance to the moon and sun were troubled by 

one. We could measure the angular sizes of these bodies, so that, if we knew their diameters, we 

could infer the distances to them. However, we needed to know just these distances to determine 

their diameters. Chapter 12, “The Use of Hypotheses in Determining Distances in Our Planetary 

System,” describes how diligent analysis by ancient astronomers was able to break the circularity 

and produce estimates of the diameters and distances. 

 Another circularity of a similar type appeared in Hubble’s classic 1929 paper on the 

recession of the nebulae. Hubble had apparent brightness measurements for 46 nebulae. To 

convert these to distances, he needed to know the absolute brightness of these nebulae. Then, 

using the fact that brightness diminishes with the inverse square of distance, the distances to the 

nebulae are recovered by comparing how bright the nebulae seem with how bright they really 

are. However, for 22 of them, Hubble lacked absolute brightness determinations. Indeed, absent 

other information, to know their absolute brightness, he needed first to know how distant they 

are. This closes the circle, leaving the distances to these 22 nebulae indeterminate. As recounted 

in Chapter 7, “The Recession of the Nebulae,” Hubble brought further statistical considerations 

to bear to break the circularity and recover determinate, if fallible, distances for these 22 nebulae. 

 In sum, this sort of indeterminacy-producing circularity can arise among relations of 

inductive support. It presents no foundational challenge to the very notion of inductive support. 

There are many possibilities, none foundationally troublesome. The circularities may be broken 

by further scientific investigations. If ineliminable, they may prove to arise from conventions. Or 

they may be ineliminable simply because of a paucity of evidence. Certain sorts of historical 

facts are obvious candidates. We might like to know many details of some ancient civilization. 

However, if sufficient archaeological evidence has not been preserved, we have no choice but to 

settle for indeterminacy, not of the facts but of what the evidence can determine about them. That 

is just how it should be. 
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4. Determinate Circularities 

 The most benign circularities are those that arise in determinate structures. Then none of 

the issues of contradiction or indeterminacy arise. This sort of circularity is widespread and so 

familiar that they rarely arouse complaints. 

4.1 Elementary Examples 

 Simple computations of determinate magnitudes often involve circularities. An easy 

example is computation of the black area “B” and the white area “W” of the yin-yang symbol. 

From the symmetry of the figure we have 

B = W 

It is one half of a circular dependency. Assuming the total figure has unit area we also have 

W = 1 - B 

This is the second half of the circular dependency. There is nothing troublesome in the 

circularity. The two equations are solved uniquely to give 

B = W = 1/2 

 A slightly fancier computation is the standard way that the following infinite sum is 

evaluated: 

S = 1/2 + 1/4 + 1/8 + 1/16 + … 

In a familiar manipulation, the sum is doubled to yield 

2S = 1 + 1/2 + 1/4 + 1/8 + … = 1 + S 

This last equation expresses a circular dependence, but is readily solved to give us the sum S = 1.  

 The only danger in this otherwise benign computation is that we must antecedently be 

assured that the infinite sum does have a definite, finite value. Even if we are not assured that the 

sum is finite, the circularity can still give us a determinate result. Consider 

S = 1 + 2 + 4 + 8 + … 

It is doubled to yield 

2S = 2 + 4 + 8 + 16 + … =  S – 1. 

This circular equation in S has two solutions. S = -1 can be discarded if we preclude a negative 

sum. The applicable solution is S = infinity. 

 Finally, we might ask whether these circularities could mislead us when the sum sought 

is badly behaved. Such is the case with the Grandi’s series, whose sum we might try to write as: 
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S = 1 – 1 + 1 – 1 + … 

Of course, there is no such sum. The partial sums oscillate indefinitely between 0 and 1. If we 

proceed formally, we might write  

S = 1 – 1 + 1 – 1 + … =  1 – (1 – 1 + 1 – …) = 1 - S 

This circular equation in S has a unique, finite solution, S = 1/2. This value cannot be the 

ordinary arithmetic sum of Grandi’s series, for there is no such sum. However, if we consider 

generalized notions of summation that might be applied here, we could then take this circular 

dependency as part of the conditions of adequacy of the generalized notion. An example of such 

a generalized notion is the Cesàro sum. It proceeds by taking the arithmetic average of the first n 

terms in the series. The sum of the entire series is just the limit of this average as n goes to 

infinity. The Cesàro sum for the Grandi series is 1/2.6 

4.2 An Extreme Example 

 These examples of benign circularity have been elementary. They serve to show, 

however, that circularities within well-defined structures are common and unremarkable. At the 

other extreme, we can have similarly benign circularities in quite exotic structures. Most striking 

of these is one that directly challenges the historical stimulus of horror circulorum, Russell’s 

Vicious-Circle Principle. The principle prohibits circularities, such as sets that are members of 

themselves. In response, the edifice of modern set theory, as exemplified in the Zermelo-

Fraenkel system, was built precisely to preclude such circularities. 

 All this changed with the appearance of Peter Aczel’s non-wellfounded set theory or 

hyperset theory. It provides an account of sets that allows for just the sort of circularities 

prohibited by Russell’s principle, but without inducing his paradoxes. The details of the theory 

go well beyond what can be reviewed here. Most briefly, the approach drops the Foundation 

Axiom of the Zermelo-Fraenkel system and replaces it with the Anti-Foundation Axiom. The 

import of the transition can be seen in the case of the simplest circularity in set membership. 

Following Barwise and Etchemendy (1987, pp. 37-41), it is the set W, defined circularly by the 

fact of its self-membership: 

W = {W} 

 
6 In another approach, we consider S(a) = 1 – a + a2 – a3 + a4 - … = 1/(1+a) for 0<a<1. We 

define S(1) = Limaà1 S(a) and it does have the value 1/2. 
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That is, the set W is defined as that set that has itself as its sole member. If we substitute for W, 

we can rewrite the set as W = {{W}}. Continuing, we have  W = {{W}} = {{{W}}} = 

{{{{W}}}}. A full substitution leads to an infinite nestling of set memberships: 

W = {{{{{{{ …}}}}}}} 

Precisely this infinite nestling of set memberships is prohibited by Zermelo and Fraenkel’s 

Axiom of Foundation. All such nestlings, according to it, must terminate finitely. Aczel’s Anti-

Foundation Axiom allows it because it can be given a definite graph theoretic representation7 

and, moreover the axiom asserts its uniqueness. 

 In this set W, we have just the sort of circularity that should trigger horror circulorum, a 

set that is its own member. However, that very circularity defines a determinate, unique structure 

in non-wellfounded set theory. 

4.3 Intermediate Examples 

 Between these elementary and exotic instances of benign circularities, there are many 

more instances, all of them part of unremarkable, routine science. A great achievement of 

nineteenth century physics was Maxwell’s electrodynamics. Its basis, in modern formulation, are 

the four vector differential equations knows as “Maxwell’s equations.” In the simplest case of 

electric and magnetic fields in vacuo, these equations fix the electric field strength vector E and 

the magnetic field strength vector H. Using the older Gaussian system of units (in which the 

equations are simpler) and standard notational conventions, the first two equations are just 

Ñ.E = 0 and Ñ.H = 0 

These equations do not govern how the fields evolve in time, such as when electromagnetic 

waves propagate. Their time evolution is recovered from the next two equations, which exhibit a  

tight circular dependence. The third is 

ÑxH =  (1/c) ∂E/∂t 

It asserts that a strengthening electric field produces a rotational magnetic field, whose lines of 

force form circles around those of the electric field. The fourth equation is 

ÑxE = - (1/c) ∂H/∂t 

 
7 It is just W ® W ® W ® W ® ... 
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It asserts an analogous process: a strengthening magnetic field produces a rotational electric 

field, whose lines of force form circles around those of the electric field. 

 This circular dependence among quantities like E and H is common. A second and much 

more elaborate set of circularities arises in Einstein’s gravitational field equations for his general 

theory of relativity. They are used to determine the basic quantity of the theory, the metric 

tensor. It is, expressed in coordinate based components, a matrix of 10 quantities: gik = (g00, g01 

= g10, g02 = g20, … , g33). These ten quantities are fixed by Einstein’s ten, second order, 

coupled, non-linear partial differential equations. Through their coupling, they harbor an 

elaborate set of circular interdependencies among the components gik. 

 While circularity is inherent in both Maxwell’s equations and the Einstein’s equations, 

they produce quite determinate structures. That is, allowing for standard gauge freedoms, they 

both admit well-posed initial value problems. Loosely speaking, that means that if we determine 

the configuration of fields for the present moment, then their evolution into the future is uniquely 

determined. We have no trouble using these equations to determine precisely how radiowaves 

propagate and how black holes form. 

4.4 Determinate Circularities among Relations of Inductive Support 

 Circularities among physical quantities arise routinely as a benign feature of determinate 

structures in physical theories. Similarly, it is routine for the structures of inductive relations in a 

science to harbor circularities, even as the bearing of those relations is univocal. Such is the most 

common case among the examples of circularities in inductive structures seen in this chapter and 

elsewhere in this book. For example, Dalton’s original atomic theory was beset with a 

circularity. Subsequent research removed it and gave us determine molecular formulae and 

atomic weights. The ancient circularities that troubled the determination of distances to celestial 

bodies were resolved, so that we now have very precise determinations of them. Hubble’s 1929 

analysis was hampered by a circularity that precluded the direct determination of distances to 22 

of the 46 nebulae in his data set. After further investigations, the distances to these closer nebulae 

are no longer in any doubt. While radiocarbon and historical dating of artifacts enter into circular 

dependencies, we now have sufficient cross-checking of the methods that the original 

uncertainties have been eliminated. 
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5. Conclusion 

 Circularities arise routinely among rich structures of evidential support. They are no mere 

accident. Rather they are part of what enables a mature science to establish the familiar solidity 

of its evidential support. For those in the grip of horror circulorum, their presence is a source of 

concern and doubt. In this chapter, I have sought to demonstrate that this fear is unfounded.  

 Some circularities are worrisome. Such are the vicious circularities whose contradictions 

forced us to abandon the naïve notion of a set and to develop elaborate theories of truth. We saw 

in Section 2 that there can be circularities that produce contradictions in relations of inductive 

support. However, they are not of the same type that would force us to abandon the very idea of 

inductive support. They are transient difficulties that are resolved by further investigations. 

 Other circularities do not produce contradictions but leave their structures 

underdetermined. That is troublesome only if it is pretended otherwise. It is this deception that 

renders begging the question objectionable. Otherwise, these circularities can be employed 

usefully to establish the conventionality of a physical magnitude. In the case of relations of 

inductive support, these indeterminacies can arise in intermediate stages of investigation. If they 

prove ineliminable, it may be that we have found a hidden convention; or it may be just that 

insufficient evidence exists for us to learn definitively about the target system.  

 Most commonly, the indeterminancies are eliminated by further investigations. They lead 

to an inductive structure with univocal import that is characteristic of a mature science. As 

Section 4 recounts, in this they are like many of the circularities among physical quantities in 

science that are untroubled by indeterminacies. That they arise commonly in mature sciences is 

not happenstance. In the next chapter, “The Uniqueness of Domain-Specific Inductive Logics,” I 

will argue that this uniqueness results from a definite mechanism. If there are competing 

systems, the competition is unstable. If one system gains an advantage by learning facts 

favorable to it but weakening its competitor, it follows from the material conception of inductive 

inference that this strengthens the inductive reach of the first, while diminishing that of the 

competitor. As long as further evidence is available and investigators pursue it, this instability is 

self-reinforcing and leads to the unique admissibility of the first system. 
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