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 The primary goal of this first part is to argue for a view of induction that I call the 
“material theory of induction.”1 This first chapter will give a synopsis and illustrations of the 
theory. Later chapters will elaborate and support the view.  

0.	The	Terms	“Induction”	and	“Inductive	Inference”	
 This is a book about induction and inductive inference. Since these terms may mean 
different things to different people, it is worth fixing at the outset what is meant by them here. 
Traditionally, induction has had a narrow meaning. At its narrowest, it refers to “induction by 
simple enumeration,” the inference from “Some As are B” to “All As are B.” This is an example 
of what is known as “ampliative inference,” for we have amplified the instances to which our 
knowledge applies. The premise applies just to the few cases of As at hand; the conclusion 
applies to all. I take this idea of amplification in its most general sense to be what induction is 
about. I shall use “induction” and “inductive inference” as the general terms for any sort of 
ampliative inference. That is, they are licit inferences that lead to conclusions stronger 
deductively than the premises or even just conclusions that differ from those that can be inferred 
deductively from the premises. Therefore the terms embrace what is sometimes called 
“abductive inference,” which is an inference to something that explains an otherwise puzzling 
phenomenon. 
 A still broader form of induction commonly goes under the name of “confirmation 
theory.” It typically has no inferences with premises and conclusions. Rather it looks at degrees 

                                                
1 For earlier accounts, see Norton (2003, 2005). 
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of support between propositions. The best-known and dominant form is probabilistic support. 
The conditional probability, P(H|E), represents the total inductive support an hypothesis accrues 
from all evidence, including our background knowledge, written as E. One then tracks how the 
support between hypothesis and evidence changes as the evidence is changed. This form of 
analysis will be included under the terms “induction” and “inductive inference.” 
 My use of the terms “inference” and “infer” will follow what I take to be the traditional 
usage and the one that is still most common. That is, an inference from proposition A to 
proposition B is a logical relation between the two propositions as sanctioned by some logic. 
When we infer from A to B we merely trace through that logical relation. The usage is analogous 
to that of “add.” When we add 7 to 5 to arrive at 12, we are merely tracing through the relation 
5+7=12 among the three numbers as authorized by ordinary arithmetic. 
 This usage is to be contrasted with a psychologized notion of the term “inference” that 
will not be employed here. Under this alternative view, to say that we infer from proposition A to 
proposition B merely records a fact of our psychology: that we proceed from a belief in A to a 
belief in B, without a requirement that this transition is authorized by some logic. While I 
understand the distinction is important to those who work in the psychology of belief, it seems to 
me a troublesome redefinition of a term when its normal usage is already well established. Could 
not another word have been found? Perhaps the redefinition is supported by the grammar of the 
use the term that presupposes an agent that infers. A similar redefinition might insist that saying 
“we add 7 to 5 to arrive at 12” merely reports our belief in the summation with no supposition 
that it conforms with arithmetic. I would find that redefinition equally troublesome.2 
 Throughout this volume, unless some context demands a momentary exception, I will 
restrict notions of inference and logic to relations of deductive and inductive support between 
propositions, independently of our beliefs and thought processes. 

                                                
2 Harman (2002, p. 173) gives a clear statement of the psychologized notion of inference that is 
not employed in this text: “Inference and reasoning are psychological processes leading to 
possible changes in belief (theoretical reasoning) or possible changes in plans and intentions 
(practical reasoning). Implication is more directly a relation among propositions.” This usage is 
incompatible with the long-standing and pervasive usage of “rules of inference” as designating 
licit manipulations and argument schemas, such a modus ponens and various syllogisms. See, for 
example, Boole (1854, Ch. XV) and Copi (1967, p.36 and inside back cover). 
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1.	The	Formal	Approach	to	Induction	
 My contention is that the broad literature on induction is built on faulty foundations. It 
has long sought as its most basic goal to develop inductive inference as a formal system akin to 
deductive logic and even ordinary arithmetic. What is distinctive about these systems is that they 
are non-contextual, universal and governed by simple rules. If we have six cartons of a dozen 
eggs each, arithmetic tells us that we have 72 eggs overall. It also tells us that if we have six 
troupes of a dozen acrobats, then we have 72 acrobats overall. Arithmetic tells us that when it 
comes to counting problems like this we can ignore almost everything except the numbers 
appearing in the descriptions. We extract those numbers and then see if our arithmetic provides a 
schema that covers them. In this case, we find in our multiplication tables that 

6 x 12 = 72 
That is really a schema that says (amongst other things) 

If you have 6 groupings of 12 individuals, then you have 72 individuals overall. 
It is a schema or template since it has empty slots, indicated by the words “grouping” and 
“individuals” in italics; and we generate truths about specific systems by inserting appropriate, 
specific terms into the slots. Insert “carton” and “egg” and we generate a numerical fact about 
eggs. Insert “troupe” and “acrobat” and we have a numerical fact about acrobats. 
 This example illustrates the key features typically sought in an inductive logic. It is to be 
non-contextual, universal and formal. The numerical facts of arithmetic are non-contextual—that 
is, independent of the context. In abstracted form, they hold for eggs, acrobats and every other 
sort of individual. The rules are universal; they don’t come with restrictions to particular 
domains. It is the same arithmetic for eggs and acrobats. And the rules are formal in the sense 
that they attend only to the form of the sentence asserting the data: six …. of 12 ….. The 
matter—eggs or acrobats—is ignored. 
 Deductive logic has developed similarly as a universal, non-contextual formal theory; and 
it enjoys extraordinary success. It has been a reasonable and attractive project to try to find a 
similar account of inductive inference. A universal formal theory of induction would enable us to 
focus attention just on the specifically inductive-logical parts, ignoring all the material 
complications of the much larger inductive enterprise. And we would hope eventually to 
generate great theorems of tremendous power and scope, perhaps rivaling those of arithmetic and 
deductive metalogic. 
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2.	Problems	of	the	Formal	Approach	
 However it is a failed project. The simple formal rules that worked so well for deductive 
inference have no counterpart in inductive inference. In antiquity, we were quite confident of the 
deductive schema 

All A’s are B. 
Therefore, some A’s are B. 

Yet its inductive counterpart, enumerative induction, 
Some A’s are B. 
Therefore, all A’s are B. 

was already the subject of doubt and even ridicule in antiquity. Inductive logic never really 
caught up. While deductive inference has settled into the grey maturity of arcane theorem 
proving, inductive inference has remained an erratic child. For philosophers, the words 
“induction” and “problem” are routinely coupled. 
 There are, as we shall see later, a plethora of modern accounts of induction. But none 
succeed with the simple clarity of deductive logic. We should infer inductively, we are told, to 
the best explanation. But we are given no comparably precise account of what makes an 
explanation better or even what an explanation is. Efforts to make these notions precise open 
more problems than they solve. Or we are told that all of inductive logic is subsumed by 
probability theory. A later part of this book is devoted to arguing that the resulting theory has 
failed to provide a universal account of inductive inference. The probabilistic enterprise has 
become so many-headed that no single formula captures the difficulty. The account is sometimes 
too strong and imposes properties on inductive inference it should not have. It is sometimes used 
too permissively so that any inductive manipulation one might conceive is somehow embraced 
by it. It is almost always too precise, fitting exact numbers to relations that are not that exact. 
 So how are we to think about inductive inference? A formal theory of induction 
distinguishes the good inductive inferences from the bad by means of universal schemas. In its 
place, I urge a material theory of induction. According to it, what separates the good from the 
bad inductive inferences are background facts, the matter of the inference of the inference, as 
opposed to its form. Or, to put it another way, we locate what authorizes an inductive inference 
not in some universal, formal schema, but in facts that prevail in the domain of the inference. 
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3.	Inductions	on	Crystal	Forms3	
 An example will make the problems of the formal accounts clearer and the idea of a 
material theory of induction more concrete. We shall consider an elementary inductive inference 
in science that is so routine that we may even fail to notice that it is an induction. Let us say that 
a chemist prepares a new salt of some metal and notes its particular crystalline form. It is routine 
for the chemist to report the form not merely as the form of this sample, but as the form of this 
salt generally. For crystals have quite regular properties and crystals of different substances have 
characteristic differences. Nonetheless, it is an inductive inference from the one sample to all. 
Even if it is easy to overlook its inductive character, we should expect a good treatment of it 
from an account of inductive inference. 
 To develop the example, we need to appreciate that adequate reporting of the crystalline 
structure of a new salt is somewhat delicate. For the individual crystals of one salt may have 
many different shapes. In the early history of work on crystals, it proved to be quite hard to find 
a simple and robust system of classification. That complication will prove to be important for 
inductive inference. 
 Crystallographic analysis now categorizes crystal forms according to the axes 
characteristic of the shape. The simplest of the seven crystallographic systems is the cubic or 
regular system. The crystals of common table salt, sodium chloride, fall into this system. It is 
characterized by three perpendicular axes of equal length. A cube conforms to this system; it 
takes no great geometrical insight to see that a cube has these three perpendicular axes of equal 
length. The same is true of a regular octahedron, which also conforms to the system. Sodium 
chloride normally crystallizes in cubes. However in special environments, such as in the 
presence of urea, it can crystalize as octahedra. 
 One might imagine that the cube and the octahedron are the only shapes that crystals in 
the cubic system can adopt. Matters are more complicated. There are many more shapes in this 
system. The mineral spinel lies within the cubic family and forms octahedral crystals. However 
spinel can also form many mis-shapen octahedral crystals, as shown in Figure 1.  
 

                                                
3 My thanks fo Pat Corvini for correcting errors in an earlier version of this section and also 
Section 8 below. 
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Figure 1. Mis-shapen Octahedra4 

 
Their octahedral character is arises from their faces being parallel to those of a fictional regular 
octahedron, which we might imagine secretly buried within the crystal.  
 Crystals have natural cleavage planes. A crystal cube of sodium chloride will cleave 
along planes parallel to cube’s surfaces. The mineral fluorspar represents an unusual case. It is in 
the cubic family and crystalizes in cubes. However it cleaves along planes that eventually expose 
an octahedral shape. Figure 2 shows successive cleavages 
 

 
Figure 2. Cleaving Fluorspar5 

 
During the process, we pass through many, more complicated shapes of cubes with corners 
removed to different extents. The shape on the right of Figure 2 is such an intermediate form. 
These multi-faceted shapes and many more are licit forms for certain crystalline substances 
within the cubic system.  
 All these shapes are different from the crystalline shapes permitted to barium chloride, 
for barium chloride is monoclinic. That means that its crystals are characterized by three unequal 

                                                
4 Redrawn after Miers (1902, p. 11, Fig. 9 and 10). 
5 Redrawn after Miers (1902, p. 14, Fig. 17 and 18). 
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axes, two of which intersect at an oblique angle and the third is perpendicular to them. Instead of 
a cube, its primitive form, the simplest crystal shape, is a right prism with a parallelogram base. 
This is shown in Figure 3, where the parallelogram is the rearmost face. Alternatively, one may 
generate the shape by starting with a right prism with a rectangular base and inclining it to one 
side (hence “mono-cline”). In Figure 3, the inclination is towards the right of the figure. 
 

 
Figure 3. Primitive Form of the Monoclinic System 

 
The range of crystal shapes allowed in the monoclinic system is related to this form, in the same 
way that those allowed in the cubic system are related to a cube. 
 When a new metallic salt is prepared, the chemist will simply assert that such-and-such is 
the form of the salt’s crystals. This is an inductive inference and one of breathtaking scope. On 
the strength of just a few samples, the chemist is quite prepared to infer the crystal system of all 
samples of the salt: 

This sample of salt A belongs to crystallographic system B. 
Therefore, all samples of salt A belong to crystallographic system B. 

4.	Curie	and	Radium	
 Perhaps the most famous of all episodes in crystal formation was Marie Curie’s 
separation of radium by fractional crystallization from uranium ore. The massive labor of 
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extracting radium from the pitchblende ore is the stuff of scientific legends, Nobel Prizes and a 
1943 MGM movie. The radioactive elements, polonium, radium and actinium, exist in such trace 
quantities that several tons of uranium ore residue had to be treated to recover just a few 
decigrams. A decigram, a tenth of a gram, is a mere speck. The process of recovering the radium 
was arduous. From each ton of ore, after much processing, about eight kilograms of barium 
chloride was recovered. Radium chloride is present in it as a trace impurity, revealed by its great 
radioactivity. 
 The final separation of the radium chloride from the barium chloride is difficult to 
achieve since radium and barium behave in similar ways chemically. The separation depends on 
the fact that radium chloride is less soluble in water than barium chloride. If the barium chloride 
in solution is concentrated by boiling and cooling until it forms crystals, those crystals will 
harbor more radium chloride. The solution remaining above the crystals has a fifth the 
radioactivity of the original, Curie reported. While that seems like a large increase, the quantity 
of radium present is so tiny that it falls far short of what is required for substantial separation. 
Curie needed to repeat the process over and over; redissolving and recrystallizing to form more 
fractions; recombining them according to their radioactivity; and doing it again and again. In all 
she needed to carry out several thousand crystallizations. 
 All this is described in her doctoral dissertation (Curie, 1904), presented to the Faculté 
des Science de Paris in June 1903. There, she reported on the analytic work carried out in the few 
years before, with her husband, Pierre Curie. The feature of the radium chloride that attracted 
most attention was its powerful radioactivity. In spite of the thousands of crystallizations 
performed, the crystallographic properties of radium chloride barely rated a mention. In the 
ninety four pages of the dissertation, there are only a few complete sentences on the 
crystallographic form (Curie, 1904, p. 26) and they bleed off into less certain reports on the 
colors of the crystals that, she suspects, may prove of practical use in the separation: 

The crystals, which form in very acid solution, are elongated needles, those of 
barium chloride having exactly the same appearance as those of radium chloride. 
Both show double refraction. Crystals of barium chloride containing radium are 
colourless, but when the proportion of radium becomes greater, they have a 
yellow colouration after some hours, verging on orange, and sometimes a 
beautiful pink. This colour disappears in solution. Crystals of pure radium 
chloride are not coloured, so that the colouration appears to be due to the mixture 
of radium and barium. The maximum colouration is obtained for a certain degree 
of radium present, and this fact serves to check the progress of the fractionation. 
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 I have sometimes noticed that formation of a deposit composed of crystals 
of which one part remained uncoloured, whilst the other was coloured, and it 
seems possible that the colourless crystals might be sorted out. 

Curie and, soon, others separated out only minuscule quantities of radium. Yet, that radium 
chloride forms crystals just like those of barium chloride entered the literature quite quickly. In 
his 1913 survey of radioactive substances, Rutherford (1913, p. 470) reported: 

Radium salts crystallise in exactly the same form as the corresponding salts of 
barium. The crystals of radiferous barium chloride several hours after preparation 
usually assume a yellow or rose tint. The intensity of this colouration depends on 
the relative proportions of barium and radium present in the crystal. Nearly pure 
radium chloride crystals do not show this colouration, indicating that the presence 
of barium is necessary. 

The facts are reported as having quite general scope, even though the instances of observed 
radium chloride crystals must have been very few, given the enormous labors needed to create 
them in tiny quantities. Nonetheless, both Curie and Rutherford seem quite certain of the 
generalization. Rutherford’s report looks like little more than a shorter paraphrase of Curie’s 
remark. 

5.	A	Formal	Analysis	
 If we approach inductive inference formally, how are we to accommodate this induction? 
We need only investigate a few simple formal attempts to see just how poor is the formal 
analysis. The inference looks like a type of enumerative induction with the schema: 

Some (few) A’s are B. 
Therefore, all A’s are B. 

Yet this alone cannot be what authorizes the induction. For almost every substitution for the As 
and Bs would yield a feeble induction. To get an induction of the strength seen by Curie and 
Rutherford, we have to be very selective in what is substituted for A and B. The As have to be 
specific chemical types, such as radium chloride or barium chloride, as opposed to the hundred 
and one other types of stuff that Curie found in her vats. More importantly, the induction works 
only for very carefully chosen properties B. There are very many ways of describing crystal 
forms. Virtually none of them support a strong inductive inference. 
 To revert to the simpler example, one may find some particular crystal of common salt is 
a perfect cube. However no chemist would risk the induction to all crystals of common salt 
having exactly that shape. It was only after serviceable systems of crystallography were 
introduced that the right property was found.  Individual crystals of common salt fall into the 
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cubic or regular system and that property can be inserted into the schema of enumerative 
induction to form the generalization. 
 This problem of finding the right descriptions challenged generations of 
crystallographers. Indeed, for a long time, many held that crystal forms admit no simple 
systematization so that exactly this sort of induction would be denied. The scientist, historian and 
philosopher of science William Whewell published in the mineralogical literature. His History of 
the Inductive Sciences (1837, Vol. III, Book XV, Ch.1-2) gives a lively account of these 
hesitations and their clarifications by Romé de Lisle and René Just Haüy after 1780. 
 These difficulties make it a matter of some delicacy to specify in formal terms just what 
property of the radium chloride crystals can be generalized. Curie and Rutherford above used 
parasitic locutions: the crystals of radium chloride are the same as those of barium chloride. 
Hence Marie Curie, in her 1911 Nobel Prize address, chose a technical locution to describe the 
crystal form of radium chloride 

In chemical terms radium differs little from barium; the salts of these two 
elements are isomorphic, while those of radium are usually less soluble than the 
barium salts. 

Isomorphism is a term of art then and now used to describe the circumstance in which two 
different substances have very close chemical and crystalline properties. (See, Miers, 1902, p. 
213.)  It saved Curie the need of describing in more detail the precise structure possessed by the 
salts of radium. It was familiar knowledge for chemists that barium chloride has such and such a 
monoclinic crystalline form. The declaration of isomorphism tells us that radium chloride has it 
too. 
 If the schema of enumerative induction is to function as a general logic, these restrictions 
on just what may be substituted for A and B have to be abstracted, regularized and formalized 
and then included in the schema. The problem is that the restrictions that must be added are so 
specific that one despairs of finding a general formulation. Presumably a general logic cannot 
append clauses of the form: 

“…and, if A is a substance that manifests in crystalline form, 
then B must be one of the known crystal forms 

 as sanctioned by modern crystallography.” 
This is a little short of offering a huge list in which we inventory the specific inferences that are 
allowed. That is not a logic, but merely a catalog whose guiding rationale is hidden. 
 A more promising approach is to draw on a popular philosophical notion devised for this 
sort of application: we require that A and B must be natural kind terms. These are terms adapted 
to the divisions arising in nature (“is crystallographically regular”); as opposed to artificial 
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divisions introduced by humans (“looks like a cubist sculpture”). The hope is that we succeed in 
delimiting good inductive inferences by restricting the schema explicitly to natural kind terms. 
 The approach fails at multiple levels. First it fails because the good inductions on crystal 
forms are still narrower. It is surely a natural kind term for a crystal to be a perfect cube, one of 
the five Platonic solids. Yet an induction on common salt that uses the property fails to be a good 
induction by the standards of the crystallographers. Second, the schema is only viable if one can 
give a general formula that specifies what is a natural kind term. The familiar characterizations 
of natural kind terms include that the terms support induction. (Bird and Tobin, Section 1.1) This 
means that we are allowed to generalize relations found in a few cases to hold between natural 
kind terms. If we append this characterization of natural kind terms to the schema of enumerative 
induction, the schema is rendered circular. For to require that the schema can only be used on 
terms A and B that support induction is to say in fancy words that the schema only works when it 
works. Another common characterization of natural kind terms is that they appear in natural 
laws. If we try to include this characterization in the specification of the schema, we face similar 
circularities when we try to state just what we mean by “law.” Are they true relations that obtain 
between natural kinds? 

6.	A	Bayesian	Attempt6	
 This last section sought to embellish the simple scheme of enumerative induction to 
convert it into a serviceable scheme with universal application. These efforts were unsuccessful. 
Might a different approach that employs probabilistic analysis fare better? What if we seek help 
from Bayesian analysis? We seek a vindication of the inference from some few A’s are B to all 
A’s are B that relies essentially on the probabilistic character of relations of support. It should 
not merely adopt antecedently some version of the idea that the proposition “all A’s are B” 
accrues support from the proposition that “some A’s are B”; and then just restate it in 
probabilistic language. We saw that precisely that idea proved unsustainable in the last section. 
Merely translating the idea into probabilistic language would only serve to hide the difficulties 
behind a veil of numbers and formulae. In addition we should like the probabilistic analysis to 
show us that some few A’s are B can provide strong support for all A’s are B.  
  There are many ways that one can give Bayesian analyses of this problem. Let me sketch 
just one. We write H for the hypothesis that a newly prepared salt belongs to some particular 
crystallographic system. We write E for the evidence that a number of samples are each observed 
to belong to that class. If there are n samples, we can write E = E1& E2&…& En, where Ei 

                                                
6 I thank Nick Huggett for helping me to think through revisions to this and the next section. 
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asserts the evidence in the i-th case. The probability of interest is P(H|E), the probability of the 
hypothesis H given the evidence E. It represents the inductive support afforded to H by E, if we 
think of the probabilities objectively. Or it is the belief we have in H given that we know E, if we 
interpret the probabilities subjectively. We are interested in seeing how the posterior probability 
P(H|E) compares with the prior probability, P(H); that is, we seek how the probability of H 
changes when we incorporate our learning of evidence E. Those changes will tell us the 
evidential import of E. An increase in probability is favorable evidence; a decrease is 
unfavorable. 
 We can compute these changes by means of Bayes’ celebrated theorem. In a form 
suitable for this application, it asserts 

P(H|E)
P(~H|E)  = 

P(E|H)
P(E|~H)   

P(H)
P(~H)  

We will not compute P(H|E) directly, but only how incorporating E alters the balance of 
probability between the hypothesis H and its negation, ~H. That is, we can see how the ratio of 
prior probabilities, P(H)/P(~H) changes to P(H|E)/P(~H|E) = r. From this last ratio, P(H|E) can 
be recovered as 

P(H|E) = 
r

 r+1  

 Bayes’ theorem tells us that the controlling quantities are the two likelihoods, P(E|H) and 
P(E|~H). The first is easy to compute. It expresses the probability that we have the evidence E if 
the hypothesis H is true. The hypothesis H says that all samples belong to a particular 
crystallographic system. Hence the n samples at hand must belong to that system. So the 
probability is unity that we have evidence E: P(E|H) = 1.  
 The other likelihood P(E|~H) is much harder to determine. How probable, it asks us, is 
the evidence if the hypothesis is false? Answering that requires some creative imagination for we 
have no precise prescription for the ways that the hypothesis might fail. The likelihood will vary 
depending on how we judge the hypothesis might fail. If the only possibility for failure is that the 
salt belongs to one of the other crystallographic classes, then there is no possibility of the 
evidence E obtaining. Then P(E|~H)=0. Inserting this into Bayes’ theorem leads to P(H|E) = 1; 
the hypothesis is maximally probable. 
 However things are not quite so simple. E can be reported if there are observational 
errors, so that the evidence is misreported. Or it may turn out that the salt is dimorphous or even 
polymorphous. That means that the salt can crystallize into two or more the systems. So there is 
some chance, perhaps small, perhaps large, that the evidence Ei obtains, even if H is false. 

 We will set these concerns aside. Let us set that probability to q so that P(Ei|~H)=q and 

suppose that each of the samples is taken under independent conditions, under the supposition of 
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the falsity of H. Then the obtaining of each Ei is probabilistically independent of the others and 

the probability of the conjunction is just a simple product of terms: 
P(E|~H) = P(E1& E2&…& En|~H) = P(E1|~H).P(E2 |~H). … .P(En|~H) = qn 

Bayes’ theorem now becomes 
P(H|E)

P(~H|E)  = 
1

qn    
P(H)

P(~H)  

Here we have a nice limit result. As n becomes large, qn can be brought arbitrarily close to 0, as 
long as q<1. Hence the ratio of likelihoods 1/ qn becomes arbitrarily large, so that the ratio r = 
P(H|E)/P(~H|E) also grows arbitrarily large. That corresponds to the posterior, P(H|E) =r/(r+1) 
coming arbitrarily close to unity. And that means that the support for or belief in H approaches 
certainty. This limiting result is comforting, for it means that we do not need to worry about the 
particular values that we might assign to the priors. Whatever influence their values may have 
had on the final result is “washed out” by the limit process. That is for the better, since the prior 
probabilities P(H) and P(~H) would have to be plucked from the air. 

7.	What	is	Wrong	With	It	
 If one inclines to numerical and algebraic thinking, this may seem like a very satisfactory 
analysis. It has brought mathematical precision to what first seemed like an intractable problem. 
There is even a little limit theorem in which priors are washed out. All that is an illusion. There 
are few if any gains in the analysis. However the harm done is great, since we have convinced 
ourselves that we have solved a great problem, when we have not. Rather any positive result 
achieved has little to do with the probabilistic properties supposed for relations of inductive 
support, but everything to do with choices we make externally to the analysis. We shall see that 
the long term results are determined by our antecedent choice of prior probabilities, which prove 
to be narrowly constrained to two extreme, dogmatic possibilities. The short term results depend 
critically on arbitrarily chosen numbers. Finally the necessary condition for any successful result 
is choosing a description of the hypotheses and evidence delicately tuned to the properties of the 
system. Without this description, inductive success is impossible. With it, success is assured for 
virtually any approach. 

7.1	External	Inductive	Content	

 First, the analysis is heavily dependent on judgments of probability that are supplied 
externally to the analysis. That is, we must set prior probabilities that presume either a dogmatic 
skepticism or an unreasonable credulity concerning the universal hypothesis H. There is no other 
option. 
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 To avoid the danger that these externally specified assumptions prejudge the result, we 
might require a prior probabilistic independence of the individual items of evidence, E1, E2, …, 

En. That avoids an antecedent assumption that they are connected by the universal hypothesis H. 

That is, we would have 
P(E) = P(E1& E2&…& En) = P(E1) P(E2) & …& P(En) = sn 

where for simplicity I have assumed an equal probability 0<s<1 for each P(Ei). The result is 

immediately disastrous. A version of Bayes theorem now tells us that 

P(H | E) = P(E |H )
P(E)

P(H ) = 1
sn
P(H )  

As the number of instances n increases, sn decreases and can be brought arbitrarily close to zero; 
which means that 1/sn can be made arbitrarily large. Since P(H|E) can never exceed unity, 
probabilistic consistency requires that we can no longer choose our prior probability P(H) freely. 
We must have P(H) ≤ sn. Since sn can be brought arbitrarily close to zero with large enough n, 
we must somehow choose a prior probability P(H) close enough to zero that anticipates in 
advance the number of items of evidence that may appear. The only secure value is a zero prior 
probability, P(H) = 0.  In this worst case, we preclude learning from evidence, since P(H) = 0 
forces P(H|E) = 0 no matter what evidence E is presented. We must commit to a prior skepticism 
about the universal hypothesis H. 
 It is entirely reasonable to respond that this shows that presuming prior probabilistic 
independence of the individual items of evidence, E1, E2,…, En is not benign after all. The 

assumption of independence encodes a dogmatic skepticism concerning the universal hypothesis 
H. However the alternative is equally troublesome. If we now admit the possibility of a prior 
probabilistic dependence among the items of evidence, we commit to unreasonable credulity 
concerning the universal hypothesis H. Here is why. 
 To avoid prior skepticism about H, we must free ourselves of the need to set P(H) 
arbitrarily close to zero. We do this by ensuring that P(E) = P(E1& E2&…& En) does not 

become arbitrarily small as n grows large. Expand P(E) as 
P(E) = P(E1& E2&…& En) 

= P(En | E1& E2&…& En-1) P(En-1 | E1& E2&…& En-2) … P(E2 | E1) P(E1) 

We preclude P(E) becoming arbitrarily small by requiring that P(En | E1& E2&…& En-1) 

approaches unity in the limit as n grows large. This requirement says that conditioning on the 
evidence E1, E2,…, En-1 requires the limiting probability of En to be arbitrarily close to unity.  

That is close to assuming H itself. For informally it says that being an instance of H is 
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projectable in this sense: if we have seen n-1 instances of H, with increasing n, we approach 
probabilistic certainty that the next, nth item will also be an instance with H. 
 The credulity toward H lies in the permissiveness of this result. It turns out that we 
approach probabilistic certainty not just for the next instance of H, but for the next N instances of 
H after it, no matter how large N is. For a simple variant of the last calculation shows that the 
conditional probability 

P(En & En+1 & … & En+N | E1& E2&…& En-1) 

must also approach unity as n and N grow large. Our confidence in projectability is not limited 
just to the universal hypothesis H, but to any hypothesis of which the items of evidence are an 
instance, no matter how curious the hypotheses. The hypothesis may be that all samples of 
radium chloride are prepared by Marie Curie; or all are in Paris; or that all are in the Northern 
hemisphere. 
 In sum, we cannot simply present the evidence as bare data and have the Bayesian 
analysis tell us its import. We have to add prior probabilities and there is no benign way to set 
them. We must choose antecedently between those that commit us to a dogmatic skepticism or to 
an unreasonable credulity. This difficulty of Bayesian analysis has long been recognized.7 
Jeffrey (1983, p. 194) was sufficiently disturbed by it that he concluded: 

…willingness to attribute positive [prior] probability to a universal generalization is 
tantamount to willingness to learn from experience at so great a rate as to tempt one 
to speak of “jumping to conclusions.” 

This example illustrates a quite general result reviewed in Chapter 12 below: formal analyses 
within a calculus of inductive inference cannot be freed from their dependence on externally 
supplied inductive content. 

7.2	Curie	Did	Not	Take	a	Large	n	Limit	

 Second, the analysis has solved the wrong problem. Curie was sure of the result already 
from just a few samples. She did not need to look at n samples and ponder the result as this n 
grew arbitrarily large. This “small n” result can be addressed in the Bayesian system, but it 
requires us to insert numbers. We need concrete values for q and for the priors P(H) and P(~H) 
in order to see if the analysis supports Curie’s analysis. Which are the right values? Can we find 
them? Or are our selections just hunches driven by dim feelings of what is reasonable. 
 We now must face the awkward problem of all Bayesian analysis: it introduces specific 
probability numbers, while no such numbers are in evidence in the inductive practice. Just which 
value is appropriate for P(Ei|~H)? Is it 0.1? Or 0.5? What of the prior probabilities? If we think 

                                                
7 For a brief review, see Norton (2011, pp. 430-31). 
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of the probabilities as measuring objective degrees of support, then we have no good basis for 
assigning the prior probabilities and the whole small n calculation will rest on a fabrication. If we 
think of probabilities subjectively so that they are merely reflections of our freely chosen 
opinion, we are no better off. The hope, in this case, is that the accumulation of evidence will 
wash out the individual prejudices we introduced by arbitrary stipulation of our prior belief. This 
washing out does not happen precisely because we are limited to the small n analysis. 
 More generally, this “solving the wrong problem” is an infraction committed repeatedly 
in Bayesian analyses. There are a few simple, exemplar computations and the exercise in 
Bayesian analysis is to modify the problem actually posed in successive steps until it resembles 
one of them. In this case the original problem is transformed into the problem of distinguishing a 
double-headed coin (hypothesis H) from a coin that has probability q of showing a head 
(hypothesis ~H). We are given the evidence E of n independent tosses all of which show heads. 
 These first two problems are familiar and generally addressed by making the analysis 
more complicated. If selecting appropriate likelihoods or prior probabilities is troublesome, then 
reassure a skeptical reader that further Bayesian analysis would surely vindicate exactly the 
selections needed to get the result promised. My prediction, however, is that this maneuver will 
not solve the problem. It will merely enlarge the analysis and exile these same problems to 
remote corners, where more will appear to accompany them. The problems will just be harder to 
see because the analysis will have become so much enlarged and so much more complicated. 

7.3	Finding	the	Right	Description	

 The third problem is, in my view, the most serious. The Bayesian analysis began by 
declaring the hypothesis that the salt has crystals belonging to a certain crystallographic system 
and that the observed instances all conformed to this system. Once that description is given, the 
most important part of the inductive analysis is over. Once we know that these are the terms in 
which the problem should be described, then almost any analysis will succeed. Enumerative 
induction will quickly return something like Curie’s result. Or, looking ahead to other accounts 
of induction, we can declare the evidence a severe test of the hypothesis; or best explained by the 
hypothesis. 
 Until we are able describe things in these terms, no analysis will work, including the 
Bayesian. The alternative descriptions will either be too coarse or too fine. If they are too coarse, 
the sorts of hypotheses investigated and affirmed under Bayesian analysis will likely end up as 
banal. We may affirm that radium chloride forms crystals, for example. If the descriptions are 
too fine, we will likely find that no hypothesis is well supported by the evidence. If, for example, 
we give too detailed a description of the crystal form, then the several cases at hand will differ 
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sufficiently so that no single description fits and so that we do not even have a compatible 
hypothesis to set for H in the analysis. 
 The damage done by the Bayesian analysis is that it obscures exactly the most important 
part of the inductive analysis with a smokescreen of numbers and theorems. The essential part of 
the analysis was the recognition that the hypothesis and the evidence need to be described in 
terms of a narrow and hard won vocabulary of crystallographic theory. The elaborate 
computations of the Bayesian analysis mislead us into thinking that inductive problems are 
solved by manipulating probabilities and by proving theorems in the probability calculus. It is a 
seductive aura of precision that is to be resisted if we are to understand inductive inference. 
 It is widely acknowledged that the real work lies in finding the appropriate system of 
classification. In introducing crystallography as a “classificatory science,” Whewell (1837, pp. 
212-13, his emphasis) stresses that finding this appropriate description is the object of the 
science: 

Our classification of objects must be made consistent and systematic, in order to 
be scientific; we must discover marks and characters, properties and conditions, 
which are constant in their occurrence and relations; we must form our classes, 
we must impose our names, according to such marks. We can thus, and thus 
alone, arrive at that precise, certain, and systematic knowledge, which we seek; 
that is, at science. The object, then, of the classificatory sciences is to obtain 
fixed characters of the kinds of things; the criterion of the fitness of names is, 
that they make general propositions possible. 

Finding the right system of classification is what makes generalization possible.8 

8.	A	Material	Analysis	
 Formal analysis presumes that one isolates the transition from knowledge of a single case 
to all cases as a problem in inductive logic; and that we establish the cogency of the transition by 
displaying its conformity with formal principles. Examples are conforming the transition with an 
abstract schema of enumerative induction or, in the probabilistic case, with Bayes’ theorem. 

                                                
8 Looking ahead, a probabilistic analysis could avail itself of the Weakened Häuy’s Principle that 
I argue warrants the inference materially. The analysis would derive directly from the principle 
that there is a high probability that all samples of radium chloride crystals are monoclinic, 
conditioned on the fact that Curie’s few samples are monoclinic. This is merely a probabilistic 
restatement of the final result already achieved.  Probabilistic analysis has added nothing beyond 
the illusion of quantitative precision. 
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Hence the inference from a single sample to all, is immediately beset with the familiar problems 
that have troubled induction for millennia. They sustain the weary sense among philosophers that 
induction, trouble and woe all go together. 
 Chemists at the start of the 20th century, pondering the crystalline structure of matter, 
would likely not have sensed that their passage from one sample to all was problematic. Indeed 
they are unlikely to have thought of it in the abstract terms of theories of inductive inference at 
all. The century before had seen vigorous investigation into the question of just how properly to 
characterize the crystalline forms so that the passage from properties of one sample to all may be 
effected. Curie and Rutherford, if called on to defend this transition, would not have recited 
passages from logic books. They would have pointed to background knowledge then shared by 
all competent chemists. 
 The foundations of the successful approach were laid by René Just Haüy in the late 18th 
and early 19th century. His approach was based on the idea that each distinct substance that 
forms crystals is built up from many, primitive geometrical nuclei, all of the same geometric 
shape. The mineral galena, in this theory, is built from minute cubes. In his treatise published at 
the time Curie was working on radium, Henry Miers (1902, p. 21) illustrated Haüy’s account as 
in Figure 4:9 

B A

C

              
Figure 4. Haüy’s Account of Crystalline Shapes 

The oblique face ABC of a galena crystal in Figure 4 is, at the smallest scale, really many 
staircases of these cubes. But that scale is so small that we perceive a perfectly smooth surface. 
 An account10 contemporary to Haüy summarized the theory (Accum, 1813, p. 110): 

                                                
9 The figure on the left is redrawn from Mier’s Fig. 38 and the figure on the right is a 
reproduction of Mier’s Fig. 37. 
10 This account is more succinct that Haüy’s own synopsis of Haüy (1807, pp. 86-101). 
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He [Haüy] has also shewn that all crystals, however complicated their form may 
be, contain within them a primitive geometrical nucleus, which has an 
invariable form in each chemical species of crystallisable material. 

From this theory came the essential result that every substance was characterized by a unique 
primitive form (Accum, p. 117) 

The diversity of primitive forms ought therefore to be regarded as a certain 
indication of a difference in nature between two substances and the identity of 
primitive form indicates identity of composition, unless the nucleus is one of 
those solids which have a marked character of regularity; such as the cube, the 
regular octahedron, &c. 

The essential qualification is that sometimes two substances may be composed of nuclei of the 
same form; this was likely to happen for crystals built from regular solids like cubes. This was a 
quite essential qualification since Accum could list numerous cases of substances with the same 
crystalline form. Accum (1813, p. liv) listed ten substances based on the cube, for example. 
Among them are native gold, native silver, native copper, gray cobalt ore, leucite, common salt, 
galena and iron pyrites. 
 A century later, Haüy’s system had received multiple adjustments and his basic 
supposition was commonly Bowdlerized as (Anon, p. 365 under “crystallography): 

The Abbë Reny Just Hauy, whom Dr Tutton designates the “father of modern 
crystallography,” has enunciated the great principle that to every specific 
substance of definite chemical composition capable of existing in the solid 
condition there appears a crystallizing form peculiar to and characteristics of 
that substance. 

The view outlined was not so much a principle as a simple consequence of his theory; and 
Haüy’s theory, as outlined by Accum, did not insist that each crystalline substance had its own 
“peculiar,” that is, unique, form. 
 For our purposes, the essential point is that, if a chemist were to accept Haüy’s theory, 
then one good sample of a crystalline substance is sufficient to identify the crystallographic 
system to which all crystals of that substance must belong. We have the inference: 

(Haüy’s Principle) Each crystalline substance has a single characteristic crystallographic 
form. 
This sample of salt A has crystallographic form B. 
(Therefore, deductively) All samples of salt A have crystallographic form B. 

This is the crudest version of how chemists pass from a single sample to all. What is notable is 
that it is no inductive inference at all. The inference is deductive and authorized by early 
crystallographic theory. 
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 Of course this is an extreme case and a purely deductive passage was possible only 
during a brief window of a few decades of the early years of Haüy’s crystallographic theory. The 
theory soon encountered anomalies. The shapes Haüy postulated for his nuclei could not always 
be stacked so as to properly fill space. Whewell (837, p. 235) reports the collapse of Haüy’s 
physical theory: 

…and when Haüy, pressed by this difficulty, as in the case of fluor-spar, put his 
integrant molecules together, touching by the edges only, his method became an 
empty geometrical diagram, with no physical meaning. 

A still more serious problem was the recognition mentioned above that the one crystalline 
substance may for crystals belonging to two, three or many crystallographic systems—called 
“dimorphism,” “trimorphism” and “polymorphism” respectively. It was not clear how merely 
stacking the nuclei of the same shape could yield these different shapes. Mineralogy texts of the 
early 20th century routinely reported examples. Ford’s (1912, p. 80) list is presented more as a 
reminder of what everyone supposedly knew, than as a surprising novelty: 

Carbon in the forms of graphite and diamond, calcium carbonate as calcite and 
aragonite, iron sulphide as pyrite and marcasite are familiar examples of 
dimorphism. The two minerals in each case differ from each other in such 
physical properties as crystallization, hardness, specific gravity, color reactions 
with acids, etc. Titanium oxide, TiO2, is trimorphous, since it occurs in the three 

distinct minerals, rutile, octahedrite and brookite. 
This means that Haüy’s principle of the earlier deduction was not true, for there were cases of 
one substance routinely manifesting in several different crystalline forms. 
 However the idea of a strict regularity in the crystal forms manifested by one substance 
remained. So we might render a corrected version of the earlier inference as 

(Weakened Haüy’s Principle) Generally, each crystalline substance has a single 
characteristic crystallographic form. 
This sample of salt A has crystallographic form B. 
(Therefore, inductively) All samples of salt A have crystallographic form B. 

We now have an inductive inference. The warranting principle is what I have called the 
“weakened Haüy’s Principle.” What makes it inductive is the insertion of the word “generally.” 
It licenses us to proceed from one sample to all, but not with certainty. 
 One might imagine that this “generally” is, finally, a manifestation of some universal 
inductive logic. Perhaps its schema is: 

Generally X. 
Therefore X in this case. 
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While we may find many instances of propositions of the form “Generally…,” they are not 
manifestations of a unique inductive logic. In each case, the word “generally” will have a 
meaning peculiar to the context. In this case “generally” means “in so far as polymorphism does 
not interfere.” So the nature of the risk one takes in accepting the conclusion will differ with each 
context.11 
 This is one illustration of how background knowledge drives inductive inferences and 
how that background knowledge is deeply entangled with inductive practices. Once one knows 
to look for it, the extent of the entanglement is quite profound. Another notion that was well 
established at the time Curie worked the isomorphism, mentioned earlier. This was then defined 
more precisely as (Ford, 1912, p. 79): 

A series of compounds which have analogous chemical compositions and 
closely similar crystal forms are said to make an isomorphous group. 

An early celebrated instance was a triumph of crystallographic analysis. Whewell (1937, pp. 
226-28) reports confusion over the crystalline substance “heavy spar.” Haüy found that its 
cleavage angles varied by three and a half degrees, according to the origin of sample. One was 
from Sicily and one from Derbyshire. That was a great perplexity and a dire threat to Haüy’s 
theory since the same nuclei could not accommodate even such a small change of angle. It turned 
out that the two samples were of different substances. The Sicilian was barium sulphate; and the 
one from Derbyshire strontium sulfate. Barium and strontium are both alkaline earth metals in 
the same column of the periodic table and have similar chemistry. They also form crystals that 
are very similar although, as was essential to this story, not perfectly identical. They are a classic 
case of isomorphism. 
 When Curie remarked that the radium chloride formed crystals having “exactly the same 
appearance” as barium chloride, it would have been with full knowledge that the chemistry of 
radium mimicked closely that of barium. Indeed that mimicry is what made the separation of the 
two hard. Hence the familiar idea of isomorphism would have indicated that the crystals of the 
two chlorides should be similar. All that was really left to affirm was how close the similarity 
would be. It was, Curie found, “exactly the same.” 

                                                
11 While the inferences may look formally similar, they will be quite different if applied to 
crystals or to astronomy. Take the proposition: Generally, orbiting objects in our solar system 
orbit in the same direction as the earth. From it, we may infer with a small risk, that this recently 
discovered asteroid will orbit in that same direction. The risk we are taking is distinct from that 
taken in crystallography. We are risking the possibility that this asteroid was not formed by the 
same processes that formed most other objects in our solar system. 
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 Immediately after Curie’s work, the chemical and crystallographic similarity of radium 
and barium was immediately investigated and affirmed. Runge and Precht (1903) used 
spectrographic and atomic weight measurements to the locate radium with the other alkaline 
earth metals, magnesium, calcium, strontium and barium. The expected similarity of crystalline 
forms was found by direct measurement of the bromides of barium and radium. (Soddy, 1907, 
p.332) reported 

F. Rinne … has published a careful comparison of the crystallographic relation 
between the bromides of radium and barium and has shown that radium 
bromide crystallises in the monoclinic system and is isomorphous with and 
crystallographically closely related to barium bromide 

To report the isomorphism of barium and radium became standard in the literature. 
 We can now appreciate the great subtlety of Curie’s inference. As long as the background 
theories of crystallography are to be trusted, the possibility of polymorphism was the principal 
risk taken in generalizing the crystalline form of radium chloride from one sample to many. 
Hence Curie and Rutherford were quite sanguine to report the radium salts’ crystalline form as 
an isomorphism with barium salts. For, if there was any polymorphism of the radium salt, they 
could reasonably expect a similar polymorphism to arise with the barium salt. So, with or 
without polymorphism, their result would stand. With that canny formulation, the result could be 
asserted with the confidence they showed. The only real danger was a failure of the isomorphism 
and, given the multiple points of agreement between barium and radium, that was easy to 
discount. 
 Let us take stock. Our starting point was a simple inductive inference from a few crystal 
samples to all samples. It is the sort of simple induction that should be explicated easily by an 
inductive logic. In particular, we would expect the logical analysis to tell us why this particular 
inference from a “some” to an “all” is so strong as to be essentially unquestioned. On closer 
inspection we found that appearance quite deceptive. The strength of the passage from “some” to 
“all” in this particular case had little to do with issues identifiable by a formal logic. It had all to 
do with background chemical knowledge. The confidence the chemists had for the inference 
resulted from the care with which Curie and Rutherford located it within a complicated network 
of chemical ideas that had been devised over the previous century precisely to admit such 
generalizations. 

9.	Main	Ideas	of	a	Material	Theory	of	Induction	
 This last case exemplifies how I believe we should understand inductive inference. Let 
me collection the main ideas: 
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 Inductive inferences are warranted by facts not formal schema. 
What makes the inductive inference a good and strong one is not conformity with some universal 
formal schema. It is facts pertaining to the subject matter of the induction; hence the warrant is 
“material” and not formal. Curie already knew of the closeness of the chemical properties of 
barium and radium. She knew of the well-established isomormphism that arose in such cases and 
indicated a closeness of the corresponding crystalline structures. Those facts assured her that the 
few cases she had observed of similarity of radium and barium chloride crystals could be 
generalized. 
 The essential idea here is that facts can serve a dual role, both as statements of fact and 
warrants of inference. That idea is actually quite familiar. In deductive logic, the conditional “If 
A then B.” Serves that dual role. It can serve as a factual premise in an argument; or we can take 
the same argument and understand its role as warranting a deductive inference from A to B. 
 In chemistry, the facts that play this dual role look, loosely, like “Generally, X.” For 
example, “Generally, salts that are chemically analogous have similar crystalline structures.” 
This is both a fact in chemistry and an authorization to infer that radium salts and barium salts 
will have similar crystalline structures because of their chemical similarity. The inference is 
authorized all the more strongly when Curie found a single sample of radium chloride crystals 
that, as expected, exactly resembles barium chloride crystals. That diminished the possibility of 
smaller but superficially detectible differences. The inference is inductive since the chemical 
facts do not deductively entail Curie’s inference. That is the import of the “generally.” It 
accommodates the ways the inference can still fail that are peculiar to this particular chemical 
example. 
 All induction is local. It is contextual. 
The chemical facts that authorize these inductive inference are truths of a particular domain of 
chemistry. They warrant a local mini-logic, peculiar to the context, in which evidence of 
chemical similarity and of a few samples warrants the generalizations indicated. This local mini-
logic resembles the universal schema of enumerative induction. But the resemblance is 
superficial. There will, no doubt, be other domains in which other facts will warrant inferences 
that also resemble enumerative induction. The inferences of each domain will be distinct, 
carrying their own unique restrictions that do not derive from a universal schema, and bearing 
their own unique form of inductive risk. 
 Inductive inference is generically variegated and imprecise. 
The imprecision here designates a lack of formal properties such as appear in mathematical 
theories of inductive inference. The inductive inferences on crystalline structure surveyed above 
are characterized as “strong” or “reliable” or “very certain.” These terms have a meaning only 
within the crystallographic context. Inferences to a unique crystallographic system are prone to 
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failure if the salt displays polymorphism. The inference is “strong” just to the extent that 
polymorphism can be discounted. 
 Terms like these are variegated in that they have meanings peculiar to their contexts. The 
term “strong” will have one meaning in crystallography, another in some branch of physics and 
another in some subfield of astronomy. What is missing generically is any precise means of 
comparing the strengths of inferences deemed as “strong” in crystallography and in some disjoint 
domain, such as physics or astronomy. We also lack precise means for calibrating the difference 
between, say, “strong” and “very strong” within a single domain. This stands in contrast with 
contexts in which probabilities are applicable. The probability of at least one head in ten coin 
tosses is 1/1024 = 0.99902. In another domain, we may find that the probability that a parent 
passes on some specific genetic trait is 0.99. The two probabilities are comparable. The first 
exceeds the second by 1% and this slight difference will manifest eventually in slight frequency 
differences among many repeated trials. 
 The qualification “generically” allows that there are important exceptions. Background 
facts may sometimes authorize a precise, mathematical calculus of inductive inference. The most 
familiar case arises when we perform inductive inferences specifically on systems governed by 
probabilistic facts. Such systems include those undergoing radioactive decay, or the forensics of 
DNA or games of chance in a casino. Later chapters will describe systems in which other, non-
probabilistic calculi of inductive inference are warranted. These precise calculi are only 
applicable when definite background facts warrant them. 
 The material theory does not authorize the default application of numbers to measure 
strengths of inductive support. It may be appealing to some to presume such numbers as a 
default. A probabilistic analysis can supply a definite number—say 0.99—whose closeness to 
unity gives the sought for quantitative measure. As satisfying as it may be, without specific 
background facts to authorize them, applying these numbers is an exercise in spurious precision. 
It forces variegated notions of strength of support into a single, uniform mold that supposedly 
enables comparisons across domains. It neglects the domain specific meaning for the strength of 
inductive support in each domain. To demand a single number or a single universal term to 
characterize inductive strengths across all domains invents a uniformity that is not found in the 
variegated character of inductive inference. 
 Inductive risk is assessed and controlled by factual investigation. 
When one makes an inductive inference, one takes an inductive risk and one seeks both to assess 
and to minimize the risk taken. In a formal theory of induction, that assessment of the risk 
becomes an assessment of the reliability of the inference schema used. If we infer to the best 
explanation, we then need to ask how reliable it is to do that. We are faced immediately with an 
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intractable problem. There is no simple answer to this question; and likely no serviceable, 
complicated answer either. 
 In a material theory of induction, things are quite different. The warrant for an induction 
is a fact and we assess and then control the inductive risk by exploring and developing the fact. 
Let us imagine that we notice only that a few radium chloride crystals resemble those of barium 
chloride. The inference to a broader resemblance might then be warranted by a chemical fact that 
salts manifest only a few crystalline forms. The strength of the inductive inference depends 
essentially on the correctness of that fact and just how many forms are admitted by the “few.” 
All that can be checked by further investigation and just that is the normal business of research 
chemists. They developed theories of how crystals are constituted to enable a better 
understanding of which crystalline forms will appear in which circumstances. These 
investigations assure us that two salts will manifest similar crystalline forms if they are 
chemically similar; and this conclusion is in turn grounded in both other observations and a 
theoretical argument. Since radium and barium are chemically very similar, the chlorine atoms in 
a barium chloride crystal will permit the barium atoms to be replaced by radium atoms with 
minimum alteration to crystal structure. 
 We assess and control inductive risk by learning more facts. These new facts both 
provide new premises for inductive inference and also new warranting facts. What was an 
intractable problem for a formal theory of induction has become a routine problem in exploring 
the factual realm of chemistry for a material theory. 
 Inductive inference is material at all levels. 
The crystallographic example explored here looks at particular sorts of inductive inferences at a 
specific level of refinement. One may wonder what happens if we take a more fine-grained view 
that looks even more narrowly at very specific inferences; or if we take a coarser view that looks 
at inductive practice at a more general level. Might we find a formal account of inductive 
inference succeeding there? Might we find that, at levels of great refinement, the glue that 
inductively binds the corpuscles of analysis is formal? Or that, at a very general level, a 
universal, formal theory emerges that can unify the diversity of the particular cases. 
 The claim is that a material theory prevails at all levels. Of course, at all levels there will 
be inferences that loosely fit with one or other formal theory. We have seen in the 
crystallographic case that the inferences resemble enumerative induction. We should expect such 
loose fits, else the formal theories could not have survived at all in the literature. However, they 
will always be loose fits and, I maintain, closer examination will reveal that material facts are 
warranting them. 
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10.	Does	The	Material	Theory	Say	that	Inductive	Inference	is	Really	

Deductive?	No!	
 No. No. NO. It does not say that. This is perhaps the most frequent misreading of the 
material theory and it can be put to rest here. The material theory maintains the distinction 
between the two forms of inference. In deductive inference, the truth of the premises assures the 
truth of the conclusion. In inductive inference, understood materially or otherwise, the premises 
only lend support to the conclusion. Inductive inference is not deductive inference. 
 The misreading of the material theory has it affirming that inductive inference is really 
some form of disguised deductive inference. My sense is that this misreading comes from a 
similarity between the material theory and another approach to inductive inference. In this other 
approach, we note that good inductive inferences are also deductive fallacies. For example, we 
take as a premise: 

This sample of salt A has crystallographic form B. 
and from it infer 

All samples of salt A have crystallographic form B. 
This is a deductive fallacy. We could imagine that the argument is really, secretly, a valid 
deductive argument, but we do not see it because one or more the premises are unstated. That 
would make the argument an “enthymeme,” a valid inference with unstated premises. In this 
case, a suitable unstated premise would be the strong form of Haüy’s Principle: 

Each crystalline substance has a single characteristic crystallographic form.  
With this added premise, the inference becomes deductively valid. In this other approach, all 
inductive inference is treated this way. They are treated as failed deductions that are repaired by 
supplying missing or unstated premises It is not how the material theory treats inductive 
inference, however. 
 If we transform the inductive inference to a deductive inference by adding such premises, 
we have generated what is known as a “deduction from the phenomena.” The best-known 
examples are given in Book III of Newton’s Principia, where he shows how to infer deductively 
from the phenomena of celestial motions to the basic ideas of his theory of gravitation. His 
examples are so important that inferences of this type are often called “Newtonian deduction 
from the phenomena.” 
 In admitting these cases, the material theory does allow that some inductive inferences 
may turn out to have been deductive inferences all along, once we make the background facts 
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explicit.12  However—and here is the key observation—this deductive outcome is an extreme 
and relatively rare case. Most commonly, it does not arise. When we identify the warranting 
facts, they supply an inductive warrant only. The strong form of Haüy’s Principle is false. The 
correct weakened form of Haüy’s Principle merely asserts that: 

Generally, each crystalline substance has a single characteristic crystallographic form. 
That crucial word “generally” makes all the difference. It reminds us that the original principle 
fails if there is polymorphism. In accepting the conclusion we take the risk that polymorphism, if 
present after all, will undo the conclusion. That is, the warrant supplied by the weakened form of 
the principle is not strong enough to assure us of the conclusion with deductive certainty. The 
distinction between deductive and inductive inference is maintained. 
 

---oOo--- 
 The chapters to come will elaborate and illustrate these claims further through 
examination of a sequence of inductive inference forms employed in the literature: the 
replication of experiment, analogical inferences, inferences grounded in notions of simplicity and 
inference to the best explanation. They will be followed by an extensive investigation into the 
limitations of the Bayesian approach. Where the present chapter has developed the material 
theory of induction by means of an example, the next chapter will develop the general arguments 
for it. 
 
Note added March 15, 2020. 
Commentaries on the draft chapters of this book have been collected for an issue of Studies in 
History and Philosophy of Science. It has become apparent from those commentaries that the 
draft chapters had not adequately distinguished two question that arise within the material theory 
of induction. They are: 
 

(inductive-logical) 
Question: Which inductive inferences are licit? 
Answer: Those that are warranted by a (true) fact. 
 

                                                
12 That is not a bad outcome at all. We thought that we must take an inductive risk in accepting 
the conclusion of the original inference. However we learn that background facts assure us that 
no inductive risk is taken in accepting the conclusion. The inference has become deductive and, 
in effect, we have already taken any needed inductive risk when we accepted the background 
assumptions. 
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(epistemic) 
Question: How can we know that a specific inductive inference is licit? 
Answer: We must be assured of the truth of the appropriate warranting fact. 
 

The first question is answered by matters of fact that obtain independently of any human beliefs, 
knowledge or awareness. The answer to the second question depends on the answer to the first 
question. To know that some candidate inference is licit, we need to know the warranting fact. 
Gaining that knowledge can sometimes be troublesome. We may have to conjecture which is the 
warranting fact. In that case, we cannot be assured that the associated inference is licit until 
further investigation assures us that we have conjectured a factual truth. 
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