ON THE ELECTRODYNAMICS OF MOVING
BODIES

By A. EINSTEIN

ally understood at the present time—when applied

to moving bodies, leads to asymmetries which do not
appear to be inherent in the phenomena. Take, for example,
the reciprocal electrodynamic action of a magnet and a con-
ductor. The observable phenomenon here depends only on
the relative motion of the conductor and the magnet, where-
as the customary view draws a sharp distinction between the
two cases in which either the one or the other of these bodies
is in motion. For if the magnet is in motion and the con-
ductor at rest, there arises in the neighbourhood of the
magnet an electric field with a certain definite energy, pro-
ducing a current at the places where parts of the conductor
are situated. But if the magnet is stationary and the con-
ductor in motion, no electric field arises in the neighbour-
hood of the magnet. In the conductor, however, we find an
electromotive force, to which in itself there is no correspond-
ing energy, but which gives rise—assuming equality of
relative motion in the two cases discussed—to electric currents
of the same path and intensity as those produced by the
electric forces in the former case.

Examples of this sort, together with the unsuccessful at-
tempts to discover any motion of the earth relatively to the
“light medium,” suggest that the phenomena of electro-
dynamics as well as of mechanics possess no properties corre-
sponding to the idea of absolute rest. They suggest rather
that, as has already been shown to the first order of small
quantities, the same laws of electrodynamics and optics will

be valid for all frames of reference for which the equations of
37

IT is known that Maxwell’s electrodynamics—as usu-
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mechanics hold good.* We will raise this conjecture (the
purport of which will hereafter be called the ‘ Principle of
Relativity ") to the status of a postulate, and also introduce
another postulate, which is only apparently irreconcilable
with the former, namely, that light is always propagated in
empty space with a definite velocity ¢ which is independent
of the state of motion of the emitting body. These two
postulates suffice for the attainment of a simple and consistent
theory of the electrodynamics of moving bodies based on
Maxwell’s theory for stationary bodies. The introduction of a
“ luminiferous ether "’ will prove to be superfluous inasmuch
as the view here to be developed will not require an ‘ab-
solutely stationary space’ provided with special properties,
nor assign a velocity-vector to a point of the empty space in
which electromagnetic processes take place.

The theory to be developed is based—like all electro-
dynamics—on the kinematics of the rigid body, since the
assertions of any such theory have to do with the relation-
ships between rigid bodies (systems of co-ordinates), clocks,
and electromagnetic processes. Insufficient consideration of
this circumstance lies at the root of the difficulties which the
electrodynamics of moving bodies at present encounters.

I KINEMATICAL PaART

§ 1. Definition of Simultaneity

Let us take a system of co-ordinates in which the
equations of Newtonian mechanics hold good.t In order to
render our presentation more precise and to distinguish this
system of co-ordinates verbally from others which will be
introduced hereafter, we call it the “ stationary system.”

If a material point is at rest relatively to this system of
co-ordinates, its position can be defined relatively thereto by
the employment of rigid standards of measurement and the
methods of Euclidean geometry, and can be expressed in
Cartesian co-ordinates.

If we wish to describe the motion of a material point, we

* The preceding memoir by Lorentz was not at this time known to the
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give the values of its co-ordinates as functions of the time.
Now we must bear carefully in mind that a mathematical
description of this kind has no physical meaning unless we
are quite clear as to what we understand by “time.” We
have to take into account that all our judgments in which
time plays a part are always judgments of simultaneous
events. 1If, for instance, I say, “ That train arrives here at
7 o’clock,” I mean something like this: *“ The pointing of
the small hand of my watch to 7 and the arrival of the train
are simultaneous events.” ¥

It might appear possible to overcome all the difficulties
attending the definition of ‘‘time’’ by substituting * the
position of the small hand of my watch ” for * time.” And
in fact such a definition is satisfactory when we are concerned
with defining a tine exclusively for the place where the
watch is located ; but it is no longer satisfactory when we
have to connect in time series of events occurring at different
places, or—what comes to the same thing—to evaluate the
times of events occurring at places remote from the watch.,

‘We might, of course, content ourselves with time values
determined by an observer stationed together with the watch
at the origin of the co-ordinates, and co-ordinating the corre-
sponding positions of the hands with light signals, given out
by every event to be timed, and reaching him through empty
space. But this co-ordination has the disadvantage that it is
not independent of the standpoint of the observer with the
watch or clock, as we know from experience. We arrive at
a much more practical determination along the following line
of thought.

If at the point A of space there is a clock, an observer at
A can determine the time values of events in the immediate
proximity of A by finding the positions of the hands which
are simultaneous with these events. If there is at the point
B of space another clock in all respects resembling the one at
A, it is possible for an observer at B to determine the time
values of events in the immediate neighbourhood of B. But
it 1s not possible without further assumption to compare, in

* We shall not here discuss the inexactitude which lurks in the concept
of simultaneity of two events at approximately the same place, which can
only be removed by an abstraction.
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respect of time, an event at A with an event at B. We have
go far defined only an “A time” and a “B time.” We
have not defined a common ‘ time ” for A and B, for the
latter cannot be defined at all unless we establish by definition
that the ‘ time” required by light to travel from A to B
equals the “time” it requires to travel from B to A.
Let a ray of light start at the *“ A time ” ¢, from A towards
B, let it at the *“ B time" ¢g be reflected at B in the direction
of A, and arrive again at A at the * A time ” ¢g’

In accordance with definition the two clocks synchronize
if

tg - ta = t'A — ip.

We assume that this definition of synchronism is free
from contradictions, and possible for any number of points ;
and that the following relations are universally valid :—

1. If the clock at B synchronizes with the clock at A, the
clock at A synchronizes with the clock at B.

2. If the clock at A synchronizes with the clock at B and
also with the clock at C, the clocks at B and C also syn-
chronize with each other.

Thus with the help of certain imaginary physical experi-
ments we have settled what is to be understood by synchron-
ous stationary clocks located at different places, and have
evidently obtained a definition of * simultaneous,” or ‘‘ syn-
chronous,” and of “time.” The ‘“time” of an event is
that which is given simultaneously with the event by a
stationary clock located at the place of the event, this clock
being synchronous, and indeed synchronous for all time deter-
minations, with a specified stationary clock.

In agreement with experience we further assume the
quantity

2AB

Ta-ta O

to be a universal constant—the velocity of light in empty
space.

It is essential to have time defined by means of stationary
clocks in the stationary system, and the time now defined
being appropriate to the stationary system we call it * the
time of the stationary system.”


John Norton


John Norton
Bad translation: “…latter can be defined if we establish…”�
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§ 2. On the Relativity of Lengths and Times

The following reflexions are based on the principle of
relativity and on the principle of the constancy of the
velocity of light. These two principles we define as
follows —

1. The laws by which the states of physical systems
undergo change are not affected, whether these changes of
state be referred to the one or the other of two systems of co-
ordinates in uniform translatory motion.

2. Any ray of light moves in the * stationary ” system of
co-ordinates with the determined velocity ¢, whether the ray
be emitted by a stationary or by a moving body. Hence

light path
titne interval

velocity =

whgre time interval is to be taken in the sense of the definition
in § 1.

Let there be given a stationary rigid rod; and let its
length be ! as measured by a measuring-rod which is also
stationary. We now imagine the axis of the rod lying
along the axis of z of the statiodary system of co-ordinates,
and that a uniform motion of parallel translation with velocity
v along the axis of z in the direction of increasing z is then
imparted to therod. We now inquire as to the length of the
moving rod, and imagine its length to be ascertained by the
following two operations :—

(a) The observer moves together with the given measur-
ing-rod and the rod to be measured, and measures the length
of the rod directly by superposing the measuring-rod, in
just the same way as if all three were at rest.

(b) By means of stationary clocks set up in the stationary
system and synchronizing in accordance with § 1, the ob-
gerver ascertains at what points of the stationary system the
two ends of the rod to be measured are located at a definite
time, The distance between these two points, measured by the
measuring-rod already employed, which in this case is at rest,
is also a length which may be designated *‘ the length of the
rod.”

In accordance with the principle of relativity the length
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to be discovered by the operation (a)—we will call it “the
length of the rod in the moving system "—must be equal to
the length 7 of the stationary rod.

The length to be discovered by the operation (b)) we will
call “ the length of the (moving) rod in the stationary system.”
This we shall determine on the basis of our two principles,
and we shall find that it differs from 1.

Current kinematics tacitly assumes that the lengths deter-
mined by these two operations are precisely equal, or in other
words, that a moving rigid body at the epoch ¢ may in geo-
metrical respects be perfectly represented by ¢he same body
at rest in a definite position.

We imagine further that at the two ends A and B of the
rod, clocks are placed which synchronize with the clocks of
the stationary system, that is to say that their indications
correspond at any instant to the “time of the stationary
system ” at the places where they happen to be. These clocks
are therefore ‘“ synchronous in the stationary system.”

We imagine further that with each clock there is a mov-
ing observer, and that these observers apply to both clocks
the criterion established in § 1 for the synchronization of two
clocks. Let a ray of light depart from A at the time * ¢,, let
it be reflected at B at the timc ¢p, and reach A again at the
time ¢'y. Taking into consideration the principle of the con-
stancy of the velocity of light we find that

TAB '
tg — ta = —=-and 'y - fg =
B YT e A BT ek

where r,p denotes the length of the moving rod—measured
in the stationary system. Observers moving with the moving
rod would thus find that the two clocks were not synchronous,
while observers in the stationary system would declare the
clocks to be synchronous.

So we see that we cannot attach any absolute signification
to the concept of simultaneity, but that two events which,
viewed from a system of co-ordinates, are simultaneous, can
no longer be looked upon as simultaneous events when en-

* ¢« Time " here denotes * time of the stationary system ™ and also * posi-
tion of hands of the moving clock situated at the place under discussion.”
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visaged from a system which is in motion relatively to that
system.

§ 3. Theory of the Transformation of Co-ordinates and
Times from a Stationary System to another System
in Uniform Motion of Translation Relatively to the
Former

Let us in ‘“stationary” space take two systems of co-
ordinates, i.e. two systems, each of three rigid material lines,
perpendicular to one another, and issuing from a point. Let
the axes of X of the two systems coincide, and their axes of
Y and Z respectively be parallel. Let each system be provided
with a rigid measuring-rod and a number of clocks, and let
the two measuring-rods, and likewise all the clocks of the two
systems, be in all respects alike.

Now to the origin of one of the two systems (k) let a con-
stant velocity v be imparted in the direction of the increasing
z of the other stationary system (K), and let this velocity be
communicated to the axes of the co-ordinates, the relevant
measuring-rod, and the clocks. To any time of the stationary
system K there then will correspond a definite position of the
axes of the moving system, and from reasons of symmetry
we are entitled to assume that the motion of © may be
such that the axes of the moving system are at the time ¢
(this “¢ " always denotes a time of the stationary system)
parallel to the axes of the stationary system.

‘We now imagine space to be measured {rom the stationary
system K by means of the stationary measuring-rod, and also
from the moving system k¥ by means of the measuring-rod
moving with it; and that we thus obtain the co-ordinates
z, y, 2, and &, n, { respectively. Further, let the time ¢ of
the stationary system be determined for all points thereof
at which there are clocks by means of light signals in the
manner indicated in § 1; similarly let the time = of the
moving system be determined for all points of the moving
system at which there are clocks at rest relatively to that
system by applying the method, given in § 1, of light signals
between the points at which the latter clocks are located.

To any system of values z, ¥, 2, ¢, which completely defines
the place and time of an event in the stationary system, there
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belongs a system of values §, 9, ¢, 7, determining that event
relatively to the system %, and our task is now to find the
system of equations connecting these quantities.

In the first place it is clear that the equations must be
linear on account of the properties of homogeneity which we
attribute to space and time,

If we place 2’ = x - o, it is clear that a point at rest in
the system % must have a system of values z’, v, 2, inde-
pendent of time. We first define 7 as a function of z', ¥, 2,
and &. To do this we have to express in equations that 7 is
nothing else than the summary of the data of clocks at rest
in system %, which have been synchronized according to the
rule given in § 1.

From the origin of system % let a ray be emitted at the
time 74 along the X-axis to z’, and at the time 7, be reflected
thence to the origin of the co-ordinates, arriving there at the
time 7,; we then must have % (r, + 7,) = 7, or, by inserting
the arguments of the function 7 and applying the principle
of the copstancy of the velocity of light in the stationary
system :—

’

gl}(o 0,0,+7(0,0,0, t+—~ +‘—*->i|='r(z',0.0,t+c:f—v>.

- ¢+
Hence, if 2’ be chosen infinitesimally small,

(1 1 )b'r__Bﬂr 1
1}E_—v-‘-c-i-v 2o YiTuw
or

T v oT

w T e e Y

It is to be noted that instead of the origin of the co-ordin-
ates we might have chosen any other point for the point of
origin of the ray, and the equation just obtained is therefore
valid for all values of z', ¥, 2

An analogous consideration—applied to the axes of Y and
Z—it being borne in mind that light is always propagated
along these axes, when viewed from the stationary system,
with the velocity o/(c? - v?), gives us

oT
55 = O az =0
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Since 7 is & linear function, it follows from these equations
that
= (t - 2 z’)
T=a pom—

where a is a function ¢(v) at present unknown, and where
for brevity it is assumed that at the origin of &, 7 = 0, when
t =0.

With the help of this result we easily determine the
quantities £, 5, ¢ by expressing in equations that light (as re-
quired by the principle of the constancy of the velocity of
light, in combination with the principle of relativity) is also
propagated with velocity ¢ when measured in the moving
system. For a ray of light emitted at the time = = 0 in the
direction of the increasing £

E=crorf = ac(t - f v"x')'

But the ray moves relatively to the initial point of %, when
measured in the stationary system, with the velocity ¢ - v,
80 that

z
= {.
c— v

If we insert this value of ¢ in the equation for £, we obtain

¢,
E-- @5

In an analogous manner we find, by considering rays moving
along the two other axes, that

cT = ac(t L z')
n PR

when

Thus
[ [
n = amy a.nd t = amz.

Substituting for 2’ its value, we obtain
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T = ¢@)B(t - vz/c?,
£ = o)B(x ~ vi),
1 = ¢y,

¢ = ¢z,

1
£ = Ja-vay

and ¢ is an as yet unknown function of ». If no assumption
whatever be made as to the initial position of the moving
system and as to the zero point of 7, an additive constant is
to be placed on the right side of each of these equations.

We now have to prove that any ray of light, measured in
the moving system, is propagated with the velocity c, if, as
we have assumed, this 1s the case in the stationary system ; for
we have not as yet furnished the proof that the principle of
the constancy of the velocity of light is compatible with the
principle of relativity.

At the time ¢ = 7 = 0, when the origin of the co-ordinates
is common to the two systems, let a spherical wave be
emitted therefrom, and be propagated with the velocity ¢ in
system K. If (z, y, 2) be a point just attained by this wave,
then

where

zt + Yyt + 2t = P

Transforming this equation with the aid of our equations
of transformation we obtain after a simple calculation

E+n+ =

The wave under consideration is therefore no less a
spherical wave with velocity of propagation ¢ when viewed
in the moving system. This shows that our two funda-
mental principles are compatible.*

In the equations of transformation which have been de-
veloped there enters an unknown function ¢ of v, which
we will now determine.

For this purpose we introduce a third system of co-ordin-

* The equations of the Lorentz transformation may be more simply de-
duced directly from the condition that in virtue of those equations the re-
lation 2? + y° + 3? = c%? shall have as its consequence the second relation
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ates K, which relatively to the system % is in a state of
parallel translatory motion parallel to the axis of X, such that
the origin of co-ordinates of system % moves with velocity
- v on the axis of X, At the time ¢ = 0 let all three origins
coincide, and when ¢ = 2z = y = z = 0 let the time ¢ of the
system K'be zero. We call the co-ordinates, measured in
the system K, ', ¢, 2/, and by a twofold application of our
equations of transformation we obtain

t = ¢(~ )B( - v)(r + vElc®) = $(v)P( - V)¢,
7' = ¢(- v)B( =~ v)E + v1) = $(v)P( - V)7,
Y =¢(- v)y = $(v)p( - )y,
Z = $(- v)¢ = $(0)$( - v)z.
Since the relations between z’, 3, 2 and z, y, 2 do not
contain the time ¢, the systems K and K’ are at rest with re-
spect to one another, and it is clear that the transformation
from K to K’ must be the identical transformation. Thus

$(0)p( - v) = L.

We now inquire into the signification of ¢(v). We give our
attention to that part of the axis of Y of system % which lies
between £ =0, =0, ¢{=0and £ =0, =, ¢! =0. This
part of the axis of Y is arod moving perpendicularly toits axis
with velocity » relatively to system K. Itsends possess in K
the co-ordinates

l
x‘-vt,yl—m—),zl-o
and Zy = vt, 1y, = 0,2 = 0.

The length of the rod measured in K is therefore I/¢(v) ; and
this gives us the meaning of the function ¢(v). From
reasons of symmetry it is now evident that the length of a
given rod moving perpendicularly to its axis, measured in
the stationary system, must depend only on the velocity and
not on the direction and the sense of the motion. The
length of the moving rod measured in the stationary system
does not change, therefore, if ¥ and - v are interchanged.
Hence follows that I/¢(v) = I/p( - v), or

$@) = ¢( - v).

It follows from this relation and the one previously found
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that ¢(v) = 1, so that the transformation equations which
have been found become

T = B(t - vz/c?),
B(w - 'l)t),

N Y,
£ =2z,

B =1//A - v¥c)

§ 4. Physical Meaning of the Equations Obtained in Re-
spect to Moving Rigid Bodies and Moving Clocks

where

We envisage a rigid sphere * of radius R, at rest relatively
to the moving system %, and with its centre at the origin of
co-ordinates of k. The equation of the surface of this sphere
moving relatively to the system K with velocity v is

£+ 9+ 2 =R

The equation of this surface expressed in z, y, 2 at the time
t=0is
a:2

Ja-FoE Y

A rigid body which, measured in a state of rest, has the form
of a sphere, therefore has in a state of motion—viewed from
the stationary system—the form of an ellipsoid of revolution
with the axes

+ 22 = R2

RJ/(A - v¥c), R, R.

Thus, whereas the Y and Z dimensions of the sphere (and
therefore of every rigid body of no matter what form)do not
appear modified by the motion, the X dimension appears
shortened in the ratio 1:,/(1 - v¥c?, i.e. the greater the
value of v, the greater the shortening. For » = ¢ all moving
objects—viewed from the  stationary” system—shrivel up
into plain figures. For velocities greater than that of light
our deliberations become meaningless; we shall, however,
find in what follows, that the velocity of light in our
theory plays the part, physically, of an infinitely great
velocity.

* That is, a body possessing spherical form when examined at rest.
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It is clear that the same results hold good of bodies at rest
in the “ stationary ” system, viewed from asystem in uniform
motion.

Further, we imagine one of the clocks which are qualified
to mark the time ¢ when at rest relatively to the stationary
gystem, and the time T when at rest relatively to the moving
system, to be located at the origin of the co-ordinates of k,
and so adjusted that it marks the time 7. What is the rate
of this clock, when viewed from the stationary system ?

Between the quantities «, ¢, and 7, which refer to the
position of the clock, we have, evidently, z = v¢ and

1 .
IR CEc
Therefore,

=t S - et =t - A - JA - et

whence it follows that the time marked by the clock (viewed
in the stationary system) isslow by 1 - /(1 - v%*¢?) seconds
per.second, or—neglecting magnitudes of fourth and higher
order—by 4v?/c?.

From this there ensues the following peculiar consequence.
If at the points A and B of K there are stationary clocks
which, viewed in the stationary system, are synchronous; and
if the clock at A is moved with the velocity v along the line
AB to B, then on its arrival at B the two clocks no longer
synchronize, but the clock moved from A to B lags behind
the other which has remained at B by #tv¥/c* (up to magni-
tudes of fourth and higher order), ¢ being the time occupied
in the journey from A to B.

It is at once apparent that this result still holds good if
the clock moves from A to B in any polygonal line, and also
when the points A and B coincide.

If we assume that the result proved for a polygonal line
is also valid for a continuously curved line, we arrive at this
result : If one of two synchronous clocks at A is moved in a
closed curve with constant velocity until it returns to A, the
journey lasting ¢ seconds, then by the clock which has
remained at rest the travelled clock on its arrival at A
will be #tv?/c? second slow. Thence we conclude that a
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balance-clock * at the equator must go more slowly, by a
very small amount, than a precisely similar clock situated at
one of the poles under otherwise identical conditions.

§ 5. The Composition of Velocities

In the system % moving along the axis of X of the system
K with velocity v, let a point move in accordance with the
equations
E=w57177=w7,7)§= 0;

where wé and w, denote constants.

Required : the motion of the point relatively to the system
K. If with the help of the equations of transformation de-
veloped in § 3 we introduce the quantities z, y, 2, ¢ into the
equations of motion of the point, we obtain

wg + v
= L7
1+ 'vwE/c2’
VA - Y
Yy="1+% vwy/c? w,t,
z =0

Thus the law of the parallelogram of velocities is valid ac-
cording to our theory only to a first approximation. We set

v (F) + @),

w? = wg + wy?,
a = tan 1! wyfwz,

[

a is then to be looked upon as the angle between the velocities
v and w. After a simple calculation we obtain

V= (¥ + w® + 20w cos a) - (vw sin a/c?)?]
1 + vw cos a/c? :

It is worthy of remark that v and w enter into the expression
for the resultant velocity in a symmetrical manner, If w also
has the direction of the axis of X, we get

v+ w

V= 1 + vw/c*

* Not & pendulum-clock, which is physically a system to which the Earth
belongs. This case had to be excluded.
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1t follows from this equation that from a composition of two
velocities which are less than ¢, there always results a velocity
less than ¢. For if we set v =¢c - x, w =¢ - A, xand A
being positive and less than ¢, then

- 2t — &k - A
V=620—x-—k+x)»/c <e

It follows, further, that the velocity of light ¢ cannot be
altered by composition with a velocity less than that of light.
For this case we obtain

c+ w
V—1+w/c=‘c‘

‘We might also have obtained the formula for V, for the case
when » and w have the same direction, by compounding
two transformations in accordance with § 3. If in addition
to the systems K and k figuring in § 3 we introduce still
another system of co-ordinates X' moving parallel to %, its
initial point moving on the axis of X with the velocity w, we
obtain equations between the quantities z, ¥, 2, ¢t and the
corresponding quantities of k', which differ from the equations
found in § 3 only in that the place of “v’ is taken by the
quantity
vEw
1 + vw/c*’

from which we see that such parallel transformations—neces-
sarily—form a group.

We have now deduced the requisite laws of the theory of
kinematics corresponding to our two principles, and we pro-
ceed to show their application to electrodynamics.

II. ELECTRODYNAMICAL PART

§ 6. Transformation of the Maxwell-Hertz Equations for
Empty Space. On the Nature of the Electromotive
Forces Occurring in a Magnetic Field During Motion

Let the Maxwell-Hertz equations for empty space hold
good for the stationary system K, so that we have



