
Time Reversal Invariance and Irreversibility

1. The standard approach to time reversal invariance for dynamical systems
State space �. A process P is a parameterized curve s(t) in �. So a

process that describes the evolution from ti to tf is given by P : t 7! s(t);
ti � t � tf . The �reversal�operation is an involution R : s 7! Rs (R2s = s).
Then the time reversed process is P � : t 7! T s(t) := (Rs)(�t); �tf � t � �ti.
A theory is said to be time reversal invariant i¤ P � satis�es the laws of the
theory whenever P does.
Remarks: 1) Natural to call a process P irreversible when its time reverse

P � is forbidden by the laws. 2) Irreversibility is decided by the theory, not
by what we can do by manipulation. 3) The above analysis does not apply to
thermodynamics since it gives no dynamics. 4) The above analysis is empty
until the reversal operation is speci�ed. This has to be done on a case-by-case
basis. The usual procedure is to start with classical mechanics and to try to
handle the other cases by correspondence to the start case. 5) In the above
approach the time orientation is left �xed. In the approach of Malement,
Stud. Hist. Phil. Mod Phys. 35 (2004): 295-315, the time reversal operation
involves reversing the time orientation. On this conception how does one test
time reversal invariance in the lab?

Example: Newtonian mechanics. s(t) = (x(t); p(t)) and (Rs)(t) = (x(t);�p(t)).
With this de�nition, the time reverse process P � is what you would see if you
ran the movie of P backward. With the familiar velocity-independent force
laws, Newtonian mechanics is time reversal invariant.

2. Thermodynamics
(a) Kelvin-Planck sense of reversibility: the idea is that a process P is

reversible if it can be completely undone, i.e. there is another process that
will restore the initial state of the system and of the auxiliary apparatus
used to manipulate the system. Contrarywise, Kelvin-Planck irreversibility
means that the ravages of time cannot be undone. Letting s stand for the
thermodynamics state characterized by the values of macroscopic variables,
e.g. pressure, volume, temperature) and z stand for the variables that char-
acterize the auxiliary system, reversibility of P : (si; zi) ! (sf ; zf ) means
that there is a P 0 : (sf ; zf )! (si; zi). The implicit understanding is that P 0

need not retrace the intermediate states of P ; also P 0 should be �available
in nature,�i.e. it is a process that, in principle, we could bring about.
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(b) Sometimes a thermodynamic process is said to be reversible if it is
quasi-static, i.e. it proceeds so slowly that the system can be considered, up
to negligible error, to remain in equilibrium.
Remarks: 1) Senses (a) and (b) are not equivalent. 2) Suppose that the

underlying microdynamics is time reversal invariant. Is this compatible with
the existence of irreversible thermodynamical porcesses in the Kelvin-Planck
sense?

3. Time reversal invariance in QM
The state is speci�ed by a vector  (actually a ray) in a Hilbert space H.

The dynamics is given by the Schrödinger equation

Ĥ = i}
@ 

@t

where Ĥ is the Hamiltonian operator (the quantum counterpart of the energy
of the classical system). The reversal operation R for simple systems is �xed
by correspondence with classical mechanics. The quantum counterparts of
the classical quantities x and p are operators x̂ and p̂ on H. We want to
implement R by �nding an operator R̂ such that (i) R̂x̂R̂ = x̂ and R̂p̂R̂ = �p̂,
and (ii) R̂ preserves the commutation relations [x̂; p̂] = i}. For single spinless
particle, these requirements �x R̂ to have the form ÛK̂ where Û is a unitary
operator and K̂ is complex conjugation (this is representation dependent).
Example: Take the case of a single spinless particle moving in one di-

mension, and use the wave function representation, i.e.  2 L2C(R) (square
integrable complex valued function on R). Then R̂ is just complex conju-
gation, and if P :  (0) !  (t) describes a wave packet moving, say, to the
right, then the time reverse process P � :  �(�t) !  �(0) describes a wave
packet moving to the left.

Lemma: The following three conditions are equivalent:

(i) if  (t) solves the Schrödinger equation, then so does T (t) :=
R̂ (�t)
(ii) R̂Ĥ = ĤR̂

(iii) the transition probability from state  1 to state  2 in time
�t is always equal to the transition probability from R̂ 2 to R̂ 1
in the same �t.
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Property (iii) is useful in experimental tests of time reversal invariance.

4. Time reversal invariance in classical electromagnetic theory
Maxwell�s equations:

rxB � @E

@t
= j, rxE + @B

@t
= 0

r � E = �, r �B = 0
Plausibility argument: The charge density shouldn�t change under time re-
versal. So if E is created by charge, it shouldn�t change either. Think of a
current j due to the motion of a particle with charge q; then j = qv. And
since v changes sign under time reversal, so does j. Think of the B �eld cre-
ated by the current �owing through a wire. Under time reversal the current
moves in the other direction, so B should change sign under time reversal.
Collecting these results (� ! �, j ! �j, E ! E, B ! �B) we see that
Maxwell�s equations are time reversal invariant.
Criticism: This procedure implicitly assumes that Maxwell�s equations

are time reversal invariant; we can infer from that assumption how E and B
must transform. But if we weren�t sure from the beginning that Maxwell�s
equations are time reversal invariant, how could we infer the transformation
rules for the �eld? An elegant and tight argument is given by Malament, op.
cit.

5. David Albert�s challenge to the standard view of time reversal invariance
Albert thinks that the accounts given in Secs. 3 and 4 are wrong: classical

electromagnetic theory and elementary QM are not time reversal invariant
and, therefore, �there have been dynamical distinctions between past and
future written into the fundamental laws of physics for a century and a half
now�(2000, p. 21).
If this were right it would be earth shaking. What is his analysis of time

reversal invariance, and how does it permit him to draw this conclusion?

6. Implications of time reversal invariance
Sachs, The Physics of Time Reversal Invariance cites only one example

of how time reversal invariance �gures in the solution of a problem in classical
dynamics:
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Painléve�s theorem (aka Bad News for Cat�s Theorem). Suppose
that a cat is composed entirely of particles between which only
conservative forces act. If the initial state s(0) of the cat has it
upside down and if the initial velocities of all of the cat�s particles
vanish (and, thus, (Rs)(0) = s(0)), then the cat in free fall cannot
land on its feet.

In QM and QFT time reversal invariance has important applications.
Example: Kramer�s degeneracy. From the involutionary character of the
reversal operator, R̂ and  must be equal (up to a phase factor). This,
together with R̂ = ÛK̂, imply that R̂R̂ = �Î. Consider and eigenstate  of
energy: Ĥ = � . By time reversal invariance, Ĥ(R̂ ) = R̂(Ĥ ) = �(R̂ ),
i.e. R̂ is also an energy eigenstate with the same energy �. But when R̂R̂ =
�Î, R̂ and  are orthogonal. Therefore, the eigenvalue � is degenerate.
Time reversal invariance of laws L does not imply that in any history

t 7! s(t) satisfying the laws the past and future are mirror images, i.e s(�t) =
(Rs)(+t). Given determinism and the assumption that the initial state s(0) is
reversal invariant, i.e. (Rs)(0) = s(0), the implication does hold. In classical
mechanics, (Rs)(0) = s(0) implies that the velocities of the particles vanish
at t = 0. In classical electromagnetism it implies that B(0) = 0 = j(0). In
QM it implies that ÛK̂ (0) = exp(i�) (0). In the case of a spinless particle,
this comes to  �(0) = exp(i�) (0), which implies that the expectation value
of p̂ at t = 0 is 0.
Time reversal invariance implies that future pointing and past pointing

determinism stand or fall together. Thus, if we can use the laws to make
(deterministic) inferences about the past, then we can use them to make
(deterministic) inferences about the future, and vice versa.
In classical physics one can give examples where time reversal invariance

fails and where determinism holds, say, in the future direction but not in the
past direction.
It is hard to see how such an asymmetry can hold in QM (sans state

vector reduction). To do quantum dynamics we need an essentially self-
adjoint operator Ĥ. Then V̂ (t) := exp(�}Ĥt), 1 < t < +1, is a strongly
continuous one-parameter group of operators. V̂ (t) and V̂ �1(t) are inference
engines to the future and the past. Can there be an example of a time-
independent self-adjoint Ĥ such that R̂Ĥ 6= ĤR̂?
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7. The failure of time reversal invariance in weak interactions
In QFT the imposition of standard assumptions (Lorentz invariance, lo-

cality, ...) entails that the interactions are invariant under the combination
of CPT (C = charge conjugation, P = parity, and T = time reversal). Ex-
periments show that the decay of neutral kaons violates CP . Thus, assuming
CPT , T must be violated. More recently, it has been claimed that direct
violations of T have been observed: they claim to observe di¤erences in the
transition probabilities in (iii) of the above Lemma.

8. Really dumb questions
All the basic laws of physics are invariant under spatial rotations. Why

then is the state of the world rotationally asymmetric? Dumb question be-
cause for rotationally invariant laws expressed as di¤erential equations it is
typically the case that the set of rotationally invariant solutions is of �measure
zero.�So it would be surprising to �nd ourselves in a rotationally invariant
world.
All the basic laws of physics (with one exception mentioned below) are

time reversal invariant. Why then are the temporal processes in our world
so asymmetric? Dumb question for exactly parallel reasons.
Nevertheless, some temporal asymmetries seen so pervasive or important

they seem to call for explanation� the so-called �arrows of time�being ex-
amples. If an asymmetry cannot be traced to an asymmetry in the laws it
must be due, at least in some important ways, to inital/boundary conditions.
The devil is in the details.

9. Implications of the failure of time reversal invariance
The failure of time reversal invariance in weak interactions is often brushed

aside on the grounds that it cannot have connection with the temporal asym-
metries we care about. Even if this is true (and it may not be), it ignores
two profound implications:
(i) at least locally, the spacetime that supports such laws must be time

oriented
(ii) assuming that laws are �universal,�the spacetime that supports such

laws must be time globally time orientable.
[Glitch in the argument: Need for an �up to a CPT transformation,�unless
one takes seriously the violation of CPT invariance by black hole evapora-
tion.]
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10. Black hole evaporation
Claim: Black hole evaporation leads to a pure-to-mixed state transition,

a violation of both T and CPT invariance.

11. Are anti-particles just particles traveling backward in time?
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