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PREFACE

The title of this work is to be taken seriously: it is a small book for
teaching students to read the language of determinism. Some prior
knowledge of college-level mathematics and physics is presupposed, but
otherwise the book is suitable for use in an advanced undergraduate or
beginning graduate course in the philosophy of science. While writing I
had in mind primarily a philosophical audience, but I hope that
students and colleagues from the sciences will also find the treatment of
scientific issues of interest.

Though modest in not trying to reach beyond an introductory level
of analysis, the work is decidedly immodest in trying to change a
number of misimpressions that pervade the philosophical literature. For
example, when told that classical physics is not the place to look for
clean and unproblematic examples of determinism, most philosophers
react with a mixture of disbelief and incomprehension. The misconcep-
tions on which that reaction is based can and must be changed. In
addition to embodying falsehoods about the implications of modern
physics for the truth of the doctrine of determinism, the literature also
fails to convey a sense of how determinism actually works or fails to
work in physics; how delicate the doctrine is in some respects, requiring
a host of enabling assumptions for it to stand a chance of being true,
and yet how robust it is in other respects, not only surviving but
absorbing and growing stronger from potential counterexamples; how
straightforward and mundane it is in some ways, and yet how subtly
and exquisitely connected it is to a complex of issues about the nature
of space and time, about the ultimate furniture of the universe, and
about the concept of physical possibility. Further, the meaning of
determinism is often mangled in the process of philosophical ax-
grinding, the worst offenders being those Libertarians who, fearful that
determinism will undermine human freedom and dignity, are careful to
define it so that it can’t be true. And finally, and most distressingly of
all, the literature conveys the false impression that outside of the
quantum domain determinism is a dead issue, whereas in fact it
continues to throw off new problems and challenges for philosophy and
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for science. The main burdens of this Primer, then, are to say what
determinism is and to describe in a way that is both introductory and
realistic the problems and prospects of determinism in various branches
of modern physics and at the same time to reveal how advances in
understanding those problems and prospects are bound up with
advances in mathematics, physics, philosophy of science, and meta-
physics. I do not claim to have succeeded but only to have made a long
overdue start on this neglected task. The challenge of completing the
task will have to be left to abler hands.

It is not possible for me to name all of the people who have helped
me in my struggle to come to grips with determinism. But I would be
remiss if I did not give special thanks to C. A. Anderson, A. Fine, R.
Geroch, C. Glymour, M. Hamermesh, P. Kitcher, D. Malament, and L.
Markus. 1 am grateful to D. Reidel and R. Bogdan, editor of D. M.
Armstrong (Dordrecht: D. Reidel, 1984), for permission to use material
which appeared in my article “Laws of Nature: The Empiricist
Challenge.” Finally, I am proud to say that I was not supported by
a Grant or any form of largesse, public or private.

November, 1985 J. E.

PP

CHAPTER I

INTRODUCTION

With earth’s first clay they did the last man knead,
And there of the last harvest sowed the seed.
And the first morning of creation wrote

What the last dawn of reckoning shall read.

Determinism is a perennial topic of philosophical discussion. Very little
acquaintance with the philosophical literature is needed to reveal the
Tower of Babel character of the discussion: some take the message of
determinism to clear and straightforward while others find it hopelessly
vague and obscure; some take determinism to be intimately tied to
predictability while others profess to see no such bond; some take
determinism to embody an a priori truth, others take it to express a
falsehood, and still others take it to be lacking in truth value; some take
determinism to undermine human freedom and dignity, others see no
conflict, and yet others think that determinism is necessary for free will;
and on and on. Here we have, the cynic will say, a philosophical topic
par excellence!

Without any touch of cynicism one may ask what yet another tour of
this Babel can hope to accomplish, save possibly to add another story
to the Tower. My answer is not at all coy. Essential to an understanding
of determinism is an appreciation of how determinism works or fails to
work in physics, the most basic of all the empirical sciences; but it is
just this appreciation I find lacking in the philosophical literature. My
complaint does not center on technical niceties, though they become
crucial at various junctures, but on the larger picture which emerges
from the philosophical and the popular science literature. Classical
physics is supposed by philosophers to be a largely deterministic affair
and to provide the paradigm examples of how determinism works.
Relativity theory, in either its special or general form, is thought
merely to update classical determinism by providing for Newtonian
mechanisms relativistic counterparts that are no less and no more
deterministic. And it is only with the advent of the quantum theory that
a serious challenge to determinism is supposed to emerge; the challenge
is not simply that quantum mechanics is prima facie non-deterministic

1



2 CHAPTER I

but that “no hidden variable” theorems show that, under plausible
constraints, no deterministic completion of the quantum theory is
possible.

This picture is badly out of focus. Newtonian physics, I will argue, is
not a paradise for determinism; in fact, Newtonian worlds provide
environments that are quite hostile to determinism, and some of the
alleged paradigm examples of Newtonian determinism are not examples
of determinism at all, at least not without the help of props which
sometimes have a suspiciously artificial and even question-begging
character. The special theory of relativity rescues determinism from the
main threat it faces in Newtonian worlds, and in special relativistic
worlds pure and clean examples of determinism, free of artificial props,
can be constructed. However, the general theory of relativity poses
new and even graver challenges, challenges which are currently being
addressed on the frontiers of scientific research. The quantum theory,
of course, poses challenges of its own; but the first and foremost
challenge is not to the truth of the doctrine of determinism but to its
meaning in quantum worlds where the ontology may be nothing like
that presupposed in the Newtonian and relativistic formulations of the
doctrine.

Before we can have a Treatise on determinism, we need a Primer; we
need first to learn how to spell and read the language of determinism
before attempting lofty dissertations. The plan of this primer is as
follows. In Ch. II 1 briefly review some of the many philosophical
attempts to define determinism, and I propose a conception which,
though vague, is nonetheless useful as a starting point for the discussion
of classical and relativistic physics. Ch. III surveys the trials and tribula-
tions that determinism faces in Newtonian worlds. Ch. IV is devoted to
special relativistic physics and shows how this context makes possible
the fulfillment of the classical dream of determinism, a dream which is
disturbed by nightmares in Newtonian worlds. Ch. V interrupts the
discussion of specific developments in physics to get a better fix on the
crucial but troublesome notion of laws of nature. Ch. VI discusses
the connections among determinism, mechanism, and effective com-
putability. Computability is initially taken in Turing’s sense and various
results about the preservation of computability of initial data under
deterministic evolution are reviewed; but it is also urged that deter-
ministic systems give rise to a much broader notion of effective
computability of which Turing’s is but a special case. Ch. VII charts the
relation of determinism to various time symmetries of laws, especially

[ R
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time reversal invariance, periodicity, and time translation invariance.
Ch. VIII offers some suggestions for understanding the concepts of
randomness and chaos and the conditions under which random and
chaotic behavior are and are not able to peacefully coexist with
determinism. Ch. IX introduces the notion of instability, or sensitive
dependence on initial conditions, and shows how it forms one of the
bridges leading from determinism on the micro-level to apparent
randomness on the macro-level. Chs. X and XI complete the survey of
the implications of modern physics for determinism by discussing in
turn the general theory of relativity and the quantum theory. Finally,
Ch. XII offers a few comments on the determinism-free will con-
troversy. My main aims here are to show what is at stake and to
diagnose the reasons why the issues have seemed so intractable.

As befits a primer, not much is demanded of the reader in terms of
scientific knowledge, for while a large number of illustrative examples
are drawn from mathematical physics, their presentation is designed to
make clear the import with only the minimum of technical detail. At the
same time it has to be recognized that determinism has been fruitful in
suggesting mathematical problems, and the success or failure of deter-
minism can in turn depend on the delicate details of these problems. I
try to indicate where this is so and refer the reader who wants to learn
more to the relevant scientific literature. The real demand is on the
reader’s tolerance for gear shifting, for the presentation often swings
from traditional philosophy of science to mathematics to speculative
metaphysics and back to practical physics. These are not strands which
can be woven neatly together, but as I will try to show, all of them must
be grasped simultaneously if we are to get a real feel for determinism.

Whether or not the reader agrees with the specific conclusions and
morals I draw, I hope that he will come away with an appreciation of
how exquisitely subtle a doctrine determinism is; how robust it is in
some ways and how fragile it is in others; and, most of all, how exciting
and how alive it is, despite the attempts of philosophers to relegate it to
museum status.

SUGGESTED READINGS

Wesley Salmon’s (1971) “Determinism and Indeterminism in Modern Science” provides
a quick and very readable survey of the received philosophical opinion on this topic.
Some useful historical background can be found in Richard Taylor’s (1967) article
“Determinism” in the Encyclopedia of Philosophy.



CHAPTER 11

DEFINING DETERMINISM

Clearly our first problem must be to define the issue,
since nothing is more prolific of fruitless controversy
than an ambiguous question.

(Bertrand Russell, “Determinism and Physics”)

Russell’s advice seems the essence of good sense. But in trying to heed it
we find ourselves in a Catch-22 situation: we cannot begin to discuss the
implications of physics for the truth of the doctrine of determinism until
we know what determinism is; on the other hand, no precise definition
can be fashioned without making substantive assumptions about the
nature of physical reality, but as we move from classical to relativistic to
quantum physics these assumptions vary and the definition of deter-
minism must, to some degree, covary with them.

If we cannot begin with a definition that is at once precise and
general, then either precision or generality must be dropped. My
suggestion is the seemingly perverse one that initially we drop both. The
starting definition I will recommend is vague — as befits a vague
doctrine — and is aimed towards classical physics — as befits the
historical origins of the doctrine. The advantage of this approach is that
it provides a common thread linking disparate material; all of the
detailed, technical conceptions to be discussed in succeeding chapters
can be seen as attempts to make precise the basic intuitive idea or else
to modify it so as to fit some new development in physics.

1. CLASSICAL DETERMINISM: THE VISION AND THE CONTEXT

Before turning to various attempts to define determinism, it is important
to have before us the vision which these definitions seek to capture. A
most vivid rendering of the vision was given by William James in an
1884 lecture to the Harvard Divinity School:

What does determinism profess? It professes that those parts of the universe already
laid down absolutely appoint and decree what the other parts shall be. The future has no
ambiguous possibilites hidden in its womb: the part we call the present is compatible
with only one totality. Any other future complement than the one fixed from eternity is

4
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DEFINING DETERMINISM 5

impossible. The whole is in each and every part, and welds it with the rest into an
absolute unity, an iron block, in which there can be no equivocation or shadow of
turning. (1956, p. 150)

The context of this vision is what I will call the classical world picture.
Exactly what this means will be discussed in detail in the next chapter,
but for now suffice it to say that the spatio-temporal structure of
the world is assumed to embody an absolute or observer-independent
simultaneity; ‘the world-at-a-given-time’ is, therefore, an invariantly
meaningful concept. Further, at each instant, the state of the world is
fully characterized by specifying the values of relevant physical
magnitudes — instantaneous values of the positions and velocities of
particles, instantaneous values of electric and magnetic field vectors, and
the like. The context of this vision is thus broad enough to encompass
both particles and fields, materialistic and non-materialistic ontologies.
Determinism as it is understood here does not assume materialism or
mechanism in any narrow sense; indeed, the magnitudes to be con-
sidered may be ones traditionally taken as ‘mentalistic’, and all that is
required is that they be physicalistic in the minimal sense that they have
a spatio-temporal representation.

2. WHAT DETERMINISM IS NOT: CAUSE AND EFFECT

Just as it is hard to make bricks without straw, so it is hard to do
philosophy without straw men. Unfortunately, there are no out and out
straw-man definitions of determinism. But there are some venerable
definitions which are worthy of some philosophical bayonet practice
and which also have the more positive virtue of pointing the way
towards more adequate definitions.

Perhaps the most venerable of all the philosophical definitions holds
that the world is deterministic just in case every event has a cause. The
most immediate objection to this approach is that it seeks to explain a
vague concept — determinism — in terms of a truly obscure one —
causation)If we can achieve an analysis of determinism without explicit
appeal to the notion of cause and effect, then that analysis is to be
preferred to the one in question. A related objection concerns the lack
of a perspicuous connection between the causation definition and
James’ sense of determinism. In one direction the connection can be
made tight: if the world displays Jamesian determinism then the “Every
event has a cause” can be vouchsafed by taking (as Laplace suggested —

+



6 CHAPTER II

see below) the state of the world at any moment as the cause of the state
to follow. But in the other direction the connection is obscure: How
does it follow as a result of every event’s having a cause that the future
has no ambiguous possibilities hidden in its womb? Perhaps the cause-
effect relation can be explained in such a way that this implication
becomes transparent; but it is that explanation we want and not the
evocative but obscure formula “Every event has a cause.” There is a
reasonably precise explanation of cause-effect in terms of a causal chain
or signal, i.e., the propagation of a disturbance, say, in the form of the
continuous transmission of a quantity of mass or energy through space;
but this explanation does not yield the desired result. Imagine a
materialistic world consisting of massive particles whose trajectories are
straight lines except where the trajectories happen to intersect. Every
interesting event or happening in this world is a happening to a particle,
viz., a change of position, a collision, etc. And every such event has a
cause in terms of the earlier events on the causal chain or chains on
which it lies. Yet this world may or may not be deterministic in James’
sense; for it seems consistent with the description I have given that many
future complements are compatible with the present state of this world.!

The proponent of the “Every event has a cause” formula may
complain that I have not used an appropriate sense of ‘cause’, an
appropriate one being one on which the formula has the force of “Every
event has a cause and same causes always produce the same effects.” Or
alternatively, it might be conceded that the second half of the expanded
formula does not follow from the meaning of ‘cause’ and simply has to
be postulated. In either case I would agree that the expanded formula
comes much closer to supplying a sufficient condition for determinism.,
But I also believe that the valid kernel of the expanded formula can be
retained while stripping off the chaff of ‘cause’, ‘effect’, and ‘produce’.

In philosophical parlance ‘causality’ is an ambiguous term, referring
both to determinism and to the cause-effect relation. I suggest that this
term either be shelved or else that it be reserved for determinism while
‘causation’ is used to name whatever goes on when one event causes
another. The remainder of this book is devoted to a discussion of
causality with only a few hesitant and apologetic references to causation.

3. PREDICTABILITY: LAPLACE’S DEMON

Pierre Simon Laplace offered a definition of determinism which

DEFINING DETERMINISM 7

starts with a causal flavor but ends by equating determinism with
predictability.

We ought to regard the present state of thc universe as the effect of its antecedent state
and as the cause of the state that is to follow. An intelligence knowing all the forces
acting in nature at a given instant, as well as the momentary positions of all things in the
universe, would be able to comprehend in one single formula the motions of the largest
bodies as well as the lightest atoms in the world, provided that its intellect were
sufficiently powerful to subject all data to analysis; to it nothing would be uncertain, the
future as well as the past would be present to its eyes. The perfection that the human
mind has been able to give to astronomy affords but a feeble outline of such an
intelligence. Discoveries in mechanics and geometry, coupled with those in universal
gravitation, have brought the mind within reach of comprehending in the same analytical
formula the past and the future state of the system of the world. All of the mind’s efforts
in the search for truth tend to approximate the intelligence we have just imagined,
although it will forever remain infinitcly remote from such an intelligence 2

While Laplace’s approach comes closer to the mark than does the
previous one, the appeals to an ‘intelligence’ (or ‘demon’ as it is often
called) and to the concept of knowledge ought to sound warning bells.
Depending upon what powers we endow the demon with, we get
different senses of determinism. Endow it with the powers of the latest
Cray computer or even with the powers of a universal Turing machine
and we get a fairly interesting sense of determinism; but we also get a
sense in which it is fairly certain that the universe is ‘non-deterministic’
in that future states are not always computable from present states, and
this may be so even if the universe fulfills James’ vision (see Ch. VI).
Endow the demon with God-like powers and this difficulty is overcome,
but only at the expense of the opposite difficulty; for now the demon
will be able to foresee the future — to it no future event will be
uncertain — but this foresight may be a reflection of its precognitive
abilities rather than any deterministic feature of the world.

It could be replied that the intent of Laplace’s definition is in the right
direction and all that needs to be done is to cleanse it of any reference
to a predictor. I applaud this sentiment, but I would go even further in
recomnmending that the notion of prediction with all of its epistemo-
logical connotations be dropped altogether. The history of philosophy is
littered with examples where ontology and epistemology have been
stirred together into a confused and confusing brew. The Jamesian
vision we are seeking to capture is an ontological vision; whether it is
fulfilled or not depends only on the structure of the world, independ-
ently of what we do or could know of it. Of course, ontological
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determinism does have epistemological implications and these will be
discussed in the appropriate places. But let us not confuse the implica-
tions of the doctrine with the doctrine itself. And let us resist the
temptation to manufacture ‘senses’ of determinism. Producing an
‘epistemological sense’ of determinism is an abuse of language since we
already have a perfectly adequate and more accurate term — prediction
— and it also invites potentially misleading argumentation — e.g., in
such-and-such a case prediction is not possible and, therefore, deter-
minism fails. The most notorious form of this argument is due to Sir
Karl Popper.

4. PREDICTABILITY: POPPER’S DEMON

‘Scientific determinism’ in Popper’s sense is

the doctrine that the state of any closed physical system at any given future instant of
time can be predicted, even from within the system, with any specified degree of
precision, by deducing the prediction from theories, in conjunction with initial
conditions whose required degree of precision can always be calculated (in accordance
with the principle of accountability) if the prediction task is given. (1982, p. 36)

Popper’s basic demand is that Laplace’s demon should be construed
“not as an omniscient God, merely as a super-scientist”. This means that

The demon, like a human‘ scientist, must not be assumed to ascertain initial conditions
with absolute mathematical precision; like a human scientist, he will have to be content
with a finite degree of precision. (1982, p. 34)

Also, the demon must be able to predict from within the system; that is,
the demon is not construed as a disembodied spirit but, like a human
scientist, must be assumed to belong to and to interact with the system
whose future it is trying to predict. The ‘principle of accountability’ is
imposed to assure that the required degree of precision for the initial
conditions can be known beforehand so that a prediction which fails to
meet the specified error limits cannot be dismissed on the grounds that
the initial data were not accurate enough.

Actually, the first part of Popper’s demand is sufficient by itself to
allow Popper to reach the conclusion that, contrary to widespread
belief, classical physics exhibits systems which are not deterministic. I
myself reach a similar conclusion, but for quite different sorts of cases
and for quite different reasons. This matter will be taken up in some
detail in the following chapter. The point I wish to emphasize here is
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that the examples Popper uses to illustrate his conclusion serve only as a
reductio of his definition of determinism. The combination of a strong
form of instability, where small changes in initial conditions can give rise
to large changes in future states, and the inability of the demon to
ascertain initial conditions with mathematically exact precision can lead
to a breakdown in prediction. But the proper conclusion to be drawn
from this result is not that determinism fails but rather that determinism
and prediction need not work in tandem; for the evolution of the system
may be such that some future states are not predictable (at least not
under Popper’s strictures) although any future complement than the one
fixed from eternity is impossible. Hadamard, the authority whom
Popper cites on these matters, puts the point this way: if the future state
does not depend continuously on the initial state, then “Everything takes
place, physically speaking, as if the knowledge of ... [the initial] data
would not determine the unknown function” (1952, p. 38). Popper’s
definition cancels the crucial “as if”.

Popper’s view is particularly awkward in the case of classical
statistical mechanics because it has the effect of brushing aside one of
the central foundations problems; namely, how can the ‘random’ and
‘chaotic’ behavior exhibited on the macro-level by, say, a box of gas be
reconciled with the micro-determinism of the gas molecules? After
many decades of research, it has become apparent that a large part of
the answer lies precisely in instability (see Ch. IX).

Why is such an acute philosopher as Sir Karl bent on using such a
wrong-headed conception of determinism? (For those unfamiliar with
the history of philosophy, I note that analogous questions arise for every
Great Man.) Popper’s avowed purpose in The Open Universe is to
“make room within physical theory ... for indeterminism” (1982, p.
xxi). By construing determinism in terms of finite prediction tasks,
Popper is able to achieve his goal, but the form of indeterminism he
generates does not resolve the ‘nightmare of physical determinism’ of
which he spoke so eloquently in “Of Clouds and Clocks.” If physical
determinism holds and the antecedent state of the universe suffices to
fix the future physical state, including all of our movements and thus all
of our actions, then “all our thoughts, feelings, and efforts can have no
practical influence upon what happens in the physical world: they are, if
not mere illusions, at best superfluous by-products (‘epiphenomena’) of
physical events” (1972, p. 217); the whole world with everything in it
would be a huge automaton and we would be “nothing but little cog-
wheels, or at best sub-automata, within it” (p. 222). But if that is the
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nightmare, it would seem to persist even after it has been shown that the
deterministic unfolding of physical events cannot be exactly charted by a
Popperian demon because, for example, the unfolding is unstable.

Nor can Popper’s definition of ‘scientific determinism’ be justified by
combining the desire to make determinism a scientific doctrine with
Popper’s thesis that falsifiability provides the demarcation between
science and nonscience. Also needed is the notion that to be falsifiable
determinism must be construed as an assertion about finite prediction
tasks, a notion which is contrary to the spirit of Popper’s original liberal
interpretation of the falsifiability criterion.

Unlike Popper and his kindred spirits in logical empiricism, I am not
afraid to attach the label ‘metaphysical’ to the doctrine of determinism;
indeed, it seems to me that determinism as James, Laplace, and others
understand it is both ‘scientific’ and ‘metaphysical’. Like Popper, I am
interested in how scientific evidence, reasoning, and inference can be
brought to bear on the doctrine of determinism. But the ties that bind
determinism to hard empirical evidence (however that is taken) are far
too complex, subtle and tenuous to be encapsulated in a tidy formula
couched in terms of falsifiability, verfiability, testability, or the like.
Nevertheless, I hold that the evidential grounding of determinism is not
mysterious, or at least it is no more mysterious than the grounding of
many other high level scientific claims, viz., that total energy is
conserved or that the temporal evolution of the world is time reversible.
And the ‘scientific’ status of these claims surely does not turn on
construing them as claims about prediction tasks that can be carried out
by embodied super-scientists interacting with the systems whose futures
they are trying to predict.

5. RUSSELL’S DEFINITION

Russell’s essay “On the Notion of Cause” can usefully be viewed as an
attempt to carry out the recommended cleansing of Laplace’s definition
of its epistemological components so as to produce a purely ontological
formulation. Here is the upshot of Russell’s housecleaning.

A system is said to be ‘deterministic’ when, giving certain data, e, e,, . . ., €, at times ¢,
b, ..., I, respectively, concerning this system, if E, is the state of the system at any time
t, there is a functional relation of the form

E =f(e,t.e5t,...,€,1L,)
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The system will be ‘deterministic throughout the given period’ if ¢, in the above formula,
may be any time within that period . ... If the universe, as a whole, is such a system,
determinism is true of the universe; if not, not. (1953, p. 398)

This seems cogent enough at first reading, but the definition has, as
Russell goes on to show, a very counterintuitive upshot. To illustrate,
imagine a very simple universe containing a single dimensionless
particle, and suppose that the state of the particle at any instant ¢ is
specified by its position coordinates x,, y,, z,. The motion of the particle
through space can be as complicated as you like as long as it can occupy
only one place at a time. Then, as a matter of mathematical fact, there
must exist functions f}, f;, f; such that x, = fi(¢), y, = A(¢), 2, = fi(1).
The example can be made more realistic by adding other particles and
additional state variables, but the essential point remains the same. In
Russell’s own words:

It follows that, theoretically, the whole state of the material universe at time ¢ must be
capable of being exhibited as a function of ¢. Hence our universe will be deterministic in
the sense defined above. But if this be true, no information is conveyed about the
universe in stating that it is deterministic. (1953, p. 401)

Combining Russell and Popper, we have the first intimation of the
Scylla and Charybdis between which determinism is forced to sail: tack
one way in defining determinism and determinism wrecks on obvious
falsity; tack the other way and it wrecks on triviality. Much of the later
chapters will be devoted to the question of whether a clear course can
be charted between these obstacles. The question is particularly thorny
because it is not merely a matter of reading the answer off the relevant
parts of physics, for the interpretation of the physics may turn in part on
convictions about the form the answer should take.

Russell considers two suggestions for avoiding the trivialization of
determinism. The first is to require that the Russell function be simple.
This suggestion is quickly discarded; and rightly so since the connection
between simplicity and determinism is indirect and tenuous. The world
can be as simple as you like in its contents and temporal evolution and
yet non-deterministic in James’ sense; or it can be highly complex but
leave no room for equivocation or shadow of turning in its future
development.? The second suggestion is that time not be allowed to
enter explicitly into the Russell function. Russell is able to point to an
independent motivation for this restriction; namely, the belief in the
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“uniformity of nature,” meaning that “no scientific law involves time as
an argument, unless, of course, it is given in integrated form, in which
case lapse of time, though not absolute time, may appear in the
formulae” (1953, p. 401). But one can doubt whether uniformity of
nature in Russell’s sense is any more essential to determinism than is
simplicity. Imagine a world in which the gravitational ‘constant’ is not
constant but varies with time. Does such a time dependence automati-
cally make the world nondeterministic, open to ambiguous future
possibilities? This and other questions about the relation between
determinism and time symmetries deserve careful scrutiny; some will be
provided in Ch. VI, but for present purposes we can avoid the issue.
For even if we grant Russell his “uniformity of nature” as regards laws of
motion, it hardly follows that the Russell function will not involve time
explicitly; indeed, if position changes with time, the Russell function can
hardly avoid having time as an argument. Russell has confused a
property of laws with a property of Russell functions.

6. WHAT DETERMINISM 1S

At several points Russell refers, as we have just done, to laws of nature,
and in the statement of the trivialization result he concludes from the
existence of the Russell function that “the material universe must be
subject to laws” (1953, p. 401). But on the usual understanding of
natural laws, this is a non-sequitur. Laws may prohibit some instan-
taneous states, but the familiar dynamical laws of physics, or what have
passed for them, typically allow a wide range of instantaneous states for
any given system; viz., any set of non-coincident positions and (finite)
velocities is an allowable state in Newtonian particle mechanics. The
main bite of the dynamical laws comes in restrictions on the temporal
transition from one allowable state to another. Laplacian determinism is
a very special and very strong form of such a restriction: for any time ¢,
and ¢ and any allowed state at ¢, there is one and only one allowed
state at ¢,

This idea could be reexpressed in terms of the existence of a new
type of Russell function F, now construed as a map from triples of
allowed instantaneous states X time X time to allowed states. Read
s' =F(s, 4, t,) as: 5" is the (unique) allowed state at ¢, when the state at
4 is s, where s ranges over all allowed instantaneous states.* But the
only gain in such a formulation is in pedanticism.
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Instead of using Russell functions I prefer a more pictorially
appealing approach based on the now fashionable notion of possible
worlds. A ‘world’ here means a four-dimensional space-time world, the
actual world being the collection of all events that have ever happened,
are now happening, or ever will happen, and a possible world being a
collection of possible events representing possible alternative histories
to that of the actual world. The starting assumption is that these events
can be fitted into the classical world picture: their spatio-temporal
relations conform to the structure required in classical physics and the
events themselves can be analyzed, for example, as changes in spatio-
temporal magnitudes. Taking space-time rather than instantaneous
states as the basis of analysis becomes unavoidable in relativistic
physics, but it is equally useful in the discussion of determinism in
Newtonian physics, as I will try to show in the following chapter.

Letting %  stand for the collection of all physically possible worlds,
that is, possible worlds which satisfy the natural laws obtaining in the
actual world, we can define the Laplacian variety of determinism as
follows. The world W € %" is Laplacian deterministic just in case for
any W e W, if Wand W’ agree at any time, then they agree for all
times. By assumption, the world-at-a-given-time is an invariantly
meaningful notion and agreement of worlds at a time means agreement
at that time on all relevant physical properties. This concept
of determinism can be broken down into two subconcepts. A
world W €W is futuristically (respectively, historically) Laplacian
deterministic just in case for any W’ € % , if W and W’ agree at any
time then they agree for all later (respectively, earlier) times.

Determinism needn’t be an all-or-nothing affair. A world may be
partially deterministic, deterministic with respect to some magnitudes
(agreement on the values of which at any time forces agreement at other
times) but not with respect to others. But while such a bifurcation is
imaginable, it can produce tensions. Try, for example, to imagine that
the world is only partially deterministic because it is deterministic only
with respect to the magnitudes which characterize the ordinary matter
of which we and our scientific instruments are composed but not with
respect to the magnitudes which characterize the behavior of a free-
spirited species of particle, the freeon (say). But either the freeon
magnitudes interact with ordinary magnitudes or not. In the latter case
the freeons are scientifically suspect entities since as far as science can
teach us they are unknowable ghosts in the deterministic machine. In the
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former case it is hard to see how, without a cosmic conspiracy, the
partial determinism for the ordinary magnitudes can be maintained
since otherwise the non-deterministic evolution of the freeons would
infect the evolution of ordinary matter. A concrete example of this
tension will be examined in Ch. IV.

The world might be non-deterministic but still conditionally deter-
ministic on a subset of magnitudes: if two worlds agree for all times on
the values of the conditioning magnitudes and if they agree at any
instant on the values of the other magnitudes, then they agree at any
other instant. Faith in strict determinism and the discovery of condi-
tional determinism will prompt the search for additional laws that
determine the evolution of the conditioning magnitudes, thereby
removing the condition and restoring determinism simpliciter.

It might be charged that the possible worlds analysis is a fraud: it is
no more than a transcription of James’ poetic vision into terms which
are devoid of James’ eloquence but which display not much com-
pensating gain in clarity and precision. I couldn’t agree more! But I also
think that without prejudging detailed substantive issues in physics we
cannot do much better for a direct ontological formulation of what is,
after all, an ontological doctrine. The usefulness of the possible worlds
formulation as a starting point for the discussion of these issues and
their bearing on determinism will, I hope, become apparent in succeed-
ing chapters. However, honesty also demands a confession of some of
the potential pitfalls of the approach.

7. FEAR AND LOATHING

A principal reason for rejecting Russell’s approach was the fear that,
without the aid of artificial props, it would reduce determinism to
a triviality. A similar fate awaits the possible worlds definition of
determinism unless the properties which characterize the instantaneous
state of the world are suitably restricted; in particular, they must be non-
indexical and genuinely occurrent properties. Name the worlds in %
with the help of a suitable index set A. The property of a world W,
(9 € A) of having in world W; a particle with such-and-such a position
at such-and-such a time is unique to world W;. Since no distinct worlds
in # ever agree on such world indexical properties the proposed
working definition of determinism will be vacuously satisfied if such

L i
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properties are allowed to adjudicate the agreement or disagreement of
worlds at a given time.

Our definition of determinism also risks triviality unless we banish
overt and covert reference to past and future times. In some sense of
property, it is now a property of the pen I am holding that five minutes
ago it executed various motions and that five minutes from now it will
be at rest on the desk. But such properties are not truly occurrent and
like the world indexical properties should not be allowed to decide the
agreement of worlds at a given time. The challenge is to distinguish the
desired class of occurrent properties without begging the question of
determinism. 1 will simply assume that the challenge can be met.

Even so there are still worries about the meaning of determinism and
the adequacy of our definition of it. I will describe two of the worries
with the help of a little cracked theology. Imagine that God is perversely
energetic in His creation of the physically possible worlds. Specifically,
He so loves diversity that He arranges it that the same (non-indexical,
truly occurrent) instantaneous state never appears more than once in %’
This assures as a byproduct of our working definition that determinism
cannot fail whatever else is true about the temporal evolution of the
world.

The second example involves a more sacrilegious assumption.
Imagine that at the dawn of creation God is fatigued. He is not up to
instituting any physical laws in the sense familiar from physics. But
because He desires things to go smoothly, He decrees that all physical
magnitudes shall be analytic functions of time. If we admit into the
instantaneous description of the world not only the instantaneous values
of all the basic physical magnitudes but also the instantaneous values of
their time derivatives of all orders (surely, all truly instantaneous
properties), then the world is automatically Laplacian deterministic over
at least some finite interval of time. For by definition, an analytic
function can be expanded as a convergent power series; then just plug in
the initial value of the function and the values of its time derivatives at
the starting time to obtain the values of the function for earlier and later
times within the radius of convergence. And even if the instantaneous
state description excludes time derivatives of an arbitrary order,
analyticity still backs a weakened version of Laplacian determinism
since agreement over a finite stretch, no matter how short, on the basic
magnitudes will force agreement over a longer stretch.
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When the theology is stripped from these examples what we are left
with are questions about how determinism is implemented by physical
laws. In both examples the worry is that although the letter of the
definition of determinism is satisfied, the spirit is not, since it is not at all
evident that the future state is determined, in the intended sense, as a
result of the way natural laws guide the unfolding of events. I do not
believe that it is fruitful to try to assuage these worries by giving fancier
definitions of determinism. Rather, the worries are best dealt with on a
case by case basis in terms of the specifics of concrete laws. Towards
this end the coming chapters will analyze in some detail a large number
of examples drawn from mathematical physics. Even within this circum-
scribed context it is often difficult to decide whether we have something
that deserves to be called genuine determinism. Even at its core the
concept of determinism is slippery, and at its outer limits it is altogether
too vague to make it worthwhile worrying in the abstract about whether
determinism really and truly reigns whenever agreement of worlds at
one time forces agreement at another time.

8. DEMOCRACY AND SYMMETRY

The laws of physics, or what have passed for them, have typically
displayed a temporally symmetric form of determinism where futuristic
and historical determinism stand or fall together. This feature derives
from tile fact that, until quite recently, all of the fundamental laws of
physics were thought to be invariant under time reversal. Note, how-
ever, that while time reversal invariance is sufficient for symmetry with
respect to futuristic and historical determinism, it is not necessary. The
nature of various time symmetries such as time reversal invariance, time
translation invariance, periodicity, etc., and their connections to deter-
minism will be discussed in Ch. VII.

Continuous space-time symmetries foster democracy for determin-
ism. If, for example, the laws of nature are invariant under space
translation, then for any We %, W is deterministic iff every W*
generated from W by space translation is likewise deterministic.
General democracy reigns when determinism holds for all members of
¥ when it holds for any and fails for all when it fails for any. Linear
field laws typically display this democratic character. But lest it be
thought that determinism requires democracy, I will mention that
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interesting forms of determinism are compatible with subtle forms of
anti-democratic behavior. Let % ¢ stand for worlds which forever and
always contain no more than n point mass particles obeying Newton’s
laws of gravitation. Then assuming that no collisions occur, #°§ and #'§
form deterministic collections whereas #°¢ does not. Or again, let #'?
stand for worlds with n equal mass billiard balls obeying the laws of
elastic impact. Then for any finite n, #'2 is a deterministic collection
while #% , is not. These matters will be illustrated in Ch. III.

9. NON-LAPLACIAN VARIETIES OF DETERMINISM

According to the Laplacian brand of determinism, the instantaneous
state of the world suffices to uniquely fix the state at any other time.
Other varieties of determinism can be produced by modifying the types
of space-time regions which are determined and which do the deter-
mining. Thus, we can say that W € #" is (R,, R,) deterministic just in
case for any W’ € #, if W and W’ agree on space-time regions of type
R,, then they agree on regions of type R,. Laplacian determinism
simpliciter is (R,, R,) determinism with R, a time slice and R, the rest of
space-time; futuristic Laplacian determinism is (R, R,) determinism
with R, a time slice and R, the future of that slice; etc. Close cousins of
Laplacian determinism can be obtained by taking the determining
region R, to be a finite sandwich instead of an infinitely thin slice, the
entire past lying below a time slice, etc. These relatives will prove to be
useful in discussing determinism for relativistic particle mechanics
where strict Laplacian determinism may fail (see Ch. IV).

Laplacian determinism and its close relatives are, to my knowledge,
the only varieties which have received attention in the philosophical
literature. The explanation cannot be that no other variety is relevant to
the analysis of modern science, for giving data on a null surface in
relativistic physics is in some respects more natural than giving it on a
time slice (see Ch. X). I suspect that the reasons derive from the
widespread association of determinism and prediction and the pre-
occupation with examples drawn from classical physics. But once the
illicit nature of the association is revealed and once our horizons are
extended beyond the classical, the way is opened for considering non-
standard forms of determinism.
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What has been has been; what is is; and just as surely and just as
trivially, what will be will be. But the refrain “the future’s not ours” is
supposed to indicate an inevitability that goes beyond these trivialities.
Laplacian determinism entails one kind of non-trivial inevitability: given
the way things are now, the future can’t be other than it will be, where
the ‘can’t’ is the can’t of physical impossibility. This is an interesting kind
of inevitability but it doesn’t quite capture the full sense of uncontrolla-
bility and unavoidability of fatalist teachings.

Let us say that an event or state is X-fated just in case it occurs in
every X-possible world. (Alternatively, we might want to say that the
event is X-fated for an individual i just in case that event happens to the
individual in every world where i (or an i counterpart) exists.) Thus, an
event is naturalistically fated just in case it occurs in every physically
possible world. If there are such fated events, then in one clear sense
some things are going to happen no matter what — vary the initial
conditions as much as you like (within the bounds of physical possi-
bility) and the fated event will nonetheless eventuate. Naturalistic
fatalism in this sense neither entails nor is entailed by determinism. Nor
is naturalistic fatalism a very controversial or exciting doctrine, being
illustrated by the most commonplace of examples. I take it, for instance,
that the laws of biology dictate that I am naturalistically fated to die; but
I also take it that the particular time and manner of my death are not
fated by any of the laws of nature. This is, perhaps, Aristotle’s point
when he wrote:

... it is necessary that he who lives shall one day die . . . But whether he dies by disease
or by violence, is not yet determined, but depends on the happening of something else.
(Meta. 1027b, 10—14)

Weaker types of natural fate can also be defined. A feature can be
said to asymptotically fated if it emerges in the limit as ¢ - + for
every W € %, Such is the hypothesized ‘heat death’ of the world which
may not obtain at any finite time in the future but may emerge in the
limit. Or a feature can be said to be weakly fated in the actual world W
if it emerges in every W € % which has a state that does not depart
from the present state of W, by more than some specified degree. What
we are obviously moving towards is an association between fatalism and
stability: the fated features are the ones which are stable under
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variations of starting conditions. This is a notion which admits of
degrees and the reader is invited to quantify for himself.

Contrary to what is sometimes asserted, perhaps in an attempt to
stigmatize, fatalism as applied to human actions need not entail that
actions are inefficacious in the objectionable sense that they are
‘causally discontinuous’ with the future (see Wilson (1955)). Fatalism
can allow that our actions do have effects; it is rather that the hand of
Fate — as it acts here through the laws of nature — shapes the course of
events so that the effects of our actions bring about the fated event.
Oedipus was fated to kill his father Laertes and marry his mother
Jocasta. All his strivings to avoid his fate were not without effects;
indeed, it was these very actions which brought about his fate.

Of course, Oedipus’ fate was not induced naturalistically. Still, the
above analysis will serve with the appropriate replacement for the
collection % of physically possible worlds. The suggestion is that we
construe the workings of super-natural fate in terms of higher laws
which are imposed over and above the natural laws. Perhaps these
super-natural laws come in the form of decrees of Gods, decrees of
Fate, or what-have-you. The resulting set %" of super-naturally possible
worlds is then a subset of #. The most extreme version has W = { W},
as would follow if, for example, God necessarily chooses to actualize the
best of all possible worlds, with the result that every actual event is
super-naturally fated. Leibniz sought to avoid this absolute metaphysical
fatalism, though his principle of sufficient reason pushes him towards it.

There is a long tradition in philosophy which seeks to prove that the
laws of logic suffice to establish fatalism for human actions (see Taylor
(1983)). From the perspective of our analysis of fatalism, this tradition
is opaque, for it would seem that the laws of logic narrow the collection
W of physically possible worlds not one wit, each of the members of #
having been antecedently assumed to be logically possible. So either we
have failed to appreciate the relevant sense in which human actions are
fated, or we have misunderstood what the ‘laws of logic’ involve, or the
classical proofs of fatalism are so much hocus-pocus. The actual
situation is, I think, a mixture of all three (the main ingredient being the
third), but this is not the place to try to disentangle the mess. The
Idealists contend that physical necessity is but dimly perceived logical
necessity (see Ch. V), with the results that the set # of physically
possible worlds is coextensive with the set of logically possible worlds
and, hence, that naturalistic and logical fate are the same. But these
results seem to make fatalism harder, not easier, to secure.

T B
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11. DETERMINISTIC THEORIES

Positivism and logical empiricism promoted a fear of the ontological
and a flight towards the linguistic. Thus, it is not surprising to find that
many philosophical discussions of determinism are couched in terms of
theories, construed as linguistic entities. But since determinism is a
doctrine about the nature of the world, no problem is avoided by this
linguistic detour; for to be adequate, a definition of determinism in
terms of theories must guarantee that the axioms of the theory express
laws of nature and that these laws have just the deterministic property
required in the possible worlds definition. It may be, however, that while
no problems are avoided, gains in understanding are made by taking the
linguistic route. For instance, it may be that the concept of laws of
nature is inextricably bound up with scientific theorizing.* Or it may be
that we can get a firmer grip on how ontological determinism operates
by clarifying the concept of a deterministic theory and then studying
examples of such theories.

In what is almost standard usage, philosophers identify theories with
deductively closed sets of sentences of some formal language. E. Nagel
(1953, 1961), Smart (1968), and others have recommended a syntac-
tical characterization of determinism for such theories. Roughly, a
theory T is deterministic just in case, given the state description s(¢,) at
any time ¢, the state description s(t,) at any other time ¢, is deducible
from 7. Montague (1974) noted that for the kinds of formal languages
commonly used, there is a difficulty in giving this definition a literal
reading. A ‘state description’ is, presumably, a sentence of the language
of T, but while there may well be a non-denumerable infinity of
physically possible states of a system, the standard formal languages
contain only a denumerable number of sentences.

Two reactions are possible. We can resort to infinitary languages
which have the requisite expressive power. However, this increased
power may be purchased at the expense of some ugly logical features,
e.g., completeness may fail so that the relation of deducibility may not
after all be appropriate for characterizing determinism for theories. The
other approach, explored by Montague, is to stick with standard
languages but to switch from a syntactic to a semantic analysis which
mirrors the possible worlds definition using models of 7 as the
counterparts of possible worlds; roughly, T is deterministic just in case
for any pair of models of T, if they agree at one time then they agree at
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all times. Though the idea is the same, there is a gain in working through
the formal details of how the concepts are implemented for concrete
T’s. The interested reader is referred to Montague’s brilliant pioneering
work.®

The formal-systems approach will not play much of a role in my
discussion of substantive issues of determinism in modern physics. Most
of the putative laws of physics take the form of differential equations for
which questions of determinism principally involve existence and
uniqueness properties of solutions, and these properties can be
discussed with as much rigor as is ever needed without having to resort
to formal systems. If philosophers had spent less time trying to achieve
for determinism the superficial ‘precision’ afforded by formal symbolic
notation and had spent more time studying the content of physical
theories they might have confronted the truly fascinating substantive
challenges that determinism must face in classical and relativistic
physics. Most philosophers pay lip service to Carl Hempel's remark that
there is no real gain in clarity and precision to be had by translating ‘A
man crossed the street’ into “There exists a man m, a street s, and a time
t such that . ..” But many seem to cling to the notion that an advance
is to be achieved by applying really powerful formal machinery. Good
luck to them.

12. CONCLUSION

We have barely begun and already we are in very deep waters. Space,
time and space-time; laws, theories, and formal systems; symmetries and
invariances; cause and effect; prediction, instability, and randomness;
materialism and physicalism — these are some of the concepts we have
encountered in trying to get no more than a preliminary fix on deter-
minism. This is already enough to make strong the suspicion that a
real understanding of determinism cannot be achieved without simul-
taneously constructing a comprehensive philosophy of science. Since I
have no such comprehensive view to offer, I approach the task I have
set myself with humility. And also with the cowardly resolve to issue
disclaimers whenever the going gets too rough. But even in a cowardly
approach, determinism wins our unceasing admiration in forcing to the
surface many of the more important and intriguing issues in the length
and breadth of the philosophy of science.
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NOTES

! If the only restrictions on the motions of the particles are that they move rectilinearly
between collisions and behave like elastic billiard balls in collisions, then the motions
are demonstrably non-deterministic except for some very special kinds of collisions; see
Ch. II1 below.

2 Laplace (1820), Preface; translation from E. Nagel (1961), pp. 281—282. Laplace
seems to have given the wrong initial data problem for Newtonian gravitation; see Ch.
1.

* There is an indirect but important connection between determinism and simplicity.
Determinism (as I formulate it below) is a property of laws of nature, and simplicity is
one of the features used to separate lawful from non-lawful reguiarities (see Ch. V).

* This assumes that the allowed instantaneous states are the same at every moment of
time, an assumption which may fail if the laws are not time translation invariant (see Ch.
VII). If the laws are time translation invariant, only the interval ¢, — ¢, matters and we
can write s(5,) = F(s(¢,), &, — 4). This is the sense in which the new Russell function
need not involve time explicitly.

5 This is the theme of most of the recent attempts to characterize natural laws; see
Ch.V.

6 Note, however, that Montague’s approach is not without its potential pitfalls. Since
any one of the standard formal systems of the type Montague studies is capable of
representing at most a countable number of magnitudes, the possibility that there are an
uncountable number of distinct physical magnitudes which interact with one another so
as to produce a deterministic evolution has to be ignored. Russell's notion of deter-
minism can be rehabilitated by requiring that there is a function which is definable in the
formal system and which expresses the state at ¢ in terms of ¢, £, and the state at &,
Montague shows that for what he calls predicative theories this requirement is strictly
stronger than determinism.

SUGGESTED READINGS FOR CHAPTER II

A fair sampling of how philosophers have sought to analyze the meaning of determinism
is to be gained from Chs. 1 and 2 of Popper’s (1982) The Open Universe, Russell’s
(1953) “On the Notion of Cause,” E. Nagel’s (1953) “The Causal Character of Modern
Physical Theory,” and Montague’s (1974) “Deterministic Theories.” The chapter on
“Fate” from Taylor’s (1983) Metaphysics and Cahn's (1967) Fate, Logic, and Time
contain information on the standard philosophical views of fatalism.
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CHAPTER III

DETERMINISM IN CLASSICAL PHYSICS

All events, even those which on account of their
insignificance do not seem to follow from the great
laws of nature, are a result of it just as necessarily as
the revolutions of the sun. In ignorance of the ties
which unite such events to the entire system of the
universe, they have been made to depend upon final
causes or upon hazard, according as they occur and
are repeated with regularity, or appear without regard
to order; but these imaginary causes have gradually
receded with the widening bounds of knowledge and
disappear entirely before sound philosophy, which
sees in them only the expression of our ignorance of
the true causes.

(P.S. Laplace, A Philosophical Essay on Probabilities)

This passage has been taken as a classic statement of determinism, and
if it is then it is easy to appreciate how determinism came to occupy
such an exalted status: if the only alternatives to determinism are final
causes (e.g., divine intervention) and hazard (e.g., accident or chance),
then determinism is attractive as an a priori truth or a methodological
imperative of scientific inquiry. But some care is needed here, as
already hinted in Ch. II; for Laplacian determinism as I have proposed
to understand it need not be true even though all events are subject to
laws that leave no room for divine intervention or accident. Classical
physics would seem to be a poor choice of hunting grounds for such
examples since, as we all know, the laws of classical physics are
deterministic in the Laplacian sense. We know no such thing, at least if
knowledge implies truth.

1. CLASSICAL WORLDS

The initial setting for the doctrine of determinism was what I called the
classical world picture. It is time to be more specific about how that
picture is composed. There are three features which require special
emphasis. (1) All the members of the set % of physically possible
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classical worlds are assumed to have a common space-time back-
ground. This common space-time is the canvas on which the possible
worlds are painted. The details of the structure of the canvas will turn
out to be as crucial to the success or failure as what is painted on it: roo
little structure of the right kind or too much structure of the wrong kind
and determinism will never succeed no matter how furiously or cleverly
we paint. This important but largely unappreciated moral will be drawn
in detail in this and succeeding chapters, but for now I will reemphasize
only one element of classical space-time structure. Namely, (2) the four-
dimensional space-time canvas is ruled by a family of three-dimensional
hypersurfaces called the planes of absolute simultaneity; two events are
simultaneous just in case they lie on the same plane. (3) The canvas is
filled in by specifying the values of a collection of physical magnitudes,
each of which is assumed to be a point valued quantity.

If, for sake of definiteness, we think of the physical magnitudes as
geometric object fields on space-time, then classical worlds can be
presented in the form of a triple (M, {G,}, {Ps}), a €., B B (4, B
index sets) where M is the space-time manifold (usually assumed to be
R*), the G, are geometric object fields on M characterizing the struc-
ture of space-time (including, of course, the simultaneity structure (2)),
and the P; are geometric object fields characterizing the physical
contents of space-time. In keeping with (1), M and the G, are common
to all members of #" while the P, vary from world to world. Agreement
of two worlds (M, {G,}, {Ps}) and (M, {G,}, {Ps}) at a given time
means agreement on a plane of absolute simultaneity of the values of
the physical magnitudes.!

Modem physics contradicts or challenges each of the assumptions
(1)—(3). The special theory of relativity contradicts (2); the general
theory contradicts (1); and, according to some interpretations of quan-
tum physics, quantum theory undermines (3). What happens to the
doctrine of determinism when one or more of the props of the classical
worlds is kicked out will have to be discussed in detail in later chapters.
For the moment, let us assume that the props are secure. What is
surprising is that even with their support, classical worlds prove to be
an unfriendly environment for any form of Laplacian determinism. To
the extent that determinism passes the Scylla of triviality, it appears to
run a ground on the Charybdis of falsity. In Ch. IT we viewed the Scylla.
We must now face the Charybdis.
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2. THE APPARENT FAILURE OF DETERMINISM IN LEIBNIZIAN
PHYSICS

Some of the versions of Leibniz’s multi-faceted principle of sufficient
reason either entail or presuppose determinism. And yet, as Howard
Stein (1977) has shown, Leibniz's views on the nature of space and
time seem to preclude any interesting form of Laplacian determinism.

Let us recall Leibniz’s version of the space-time structure of classical
worlds. In accordance with the characterization of Sec. 1 above he
agreed that there is an absolute notion of coexistence or simultaneity.
And like all 17th century natural philosophers, he assumed that the
instantaneous three-spaces have a Euclidean E* structure and, further,
that there is a well-defined sense of duration or temporal distance for
non-simultaneous events. Finally — and this is the crucial point — he
held that these elements completely exhaust the structure of space-time.
The symmetry mapping of this Leibnizian space-time can be presented
in the following form. Let x%, a = 1, 2, 3, stand for a Euclidean
coordinate system; and let ¢ stand for absolute time, ie., t: M = R is
such that its level surfaces coincide with the planes of absolute simul-
taneity and the intervals |7, — ¢,| give the duration between the events
e, and e, lying respectively on the planes = ¢, and ¢t = ¢,. Then the
symmetry maps have the form:

L) x® > x'% = R(Hx* + a’(t)
t>t=t+b

where b is a constant, a®(¢) is an arbitrary smooth function of ¢, and
R§(#) is a time dependent orthogonal matrix. In words, the structure
preserving maps of Leibnizian space-time onto itself are time transla-
tions and (possibly) time dependent Euclidean spatial translations and
rotations.

On this canvas Leibniz painted a plenum of matter; but for ease of
illustration it suffices to consider more sparsely populated worlds
containing, say, three particles.

L
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Such a world is completely described by drawing in the world lines of
the three particles (the solid curves of Fig. III.1). Consider how the
mappings (L) act on the particle histories. From among the mappings
we can choose one which reduces to the identity for all ¢+ € 0 but which
is non-trivial for ¢ > 0. It leaves fixed the entire past history of the
particles but changes their future behavior, as indicated schematically
by the dashed lines. Thus, if the Leibnizian laws of motion satisfy the
demand that the space-time symmetries are also symmetries of the
laws (i.e., carry a physically possible history to another physically pos-
sible history), then we have a violation of even the weakest form of
Laplacian determinism; for given any physically possible history of the
particle trio, there will be another physically possible history which
agrees with the first for all past times but disagrees in the future.

The announced demand is eminently reasonable, as is the stronger
demand that the space-time symmetries and the symmetries of the laws
of motion coincide. If the symmetries of the laws were more inclusive
than the symmetries of the space-time, then the space-time would
contain more structure than is needed to support the laws and Occam’s
razor would slice it away. On the other hand, the symmetries of the
laws should be at least as wide as the symmetries of the space-time; for
if the laws allow one history but not another, then those histories
cannot be connected by a space-time symmetry — otherwise, there
would be no way to express the difference between the allowed and the
prohibited histories in terms of the behavior of physical magnitudes on
the space-time canvas. Technically, the underlying assumption is that
the set of models of the laws are closed under automorphisms of the
space-time background, i.e., if (M, { G,}, { P4}) is a model and d is a
diffeomorphism of M onto itself such that d*G, = G, for each «a, then
(M, {G,}, {d*Pg}) is also a model, where d* denotes the ‘drag along’
by d. Conceivably, a theory of motion could postulate different lawlike
behaviors in different space-time regions. But such a difference would
be grounds for distinguishing the regions in terms of absolute structure;
that is, for adding, if necessary, elements to {Ga} so that the regions in
question are not connected by a space-time symmetry. And it seems
that in this manner our assumption can always be vouchsafed (see
Earman (1986) for details).

There are two ways to bridge the abyss which has opened between
the vision of determinism and its fulfillment. One relies on the reinter-
pretation of Leibnizian space-time, the other on an enrichment of it.
The two moves will be briefly reviewed in turn. .
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3. LEIBNIZ'S RESPONSE

Leibniz would have welcomed this challenge as an opportunity to expose
the Achilles’ heel of the Newtonian conception of the space-time mani-
fold, or as he put it in the famous correspondence with Samuel Clarke,
to “confute the fancy of those who take space to be a substance.”

Note that the transformations (L) preserve all relative particle
quantities such as relative distances, relative velocities, relative accelera-
tions, etc. According to Leibniz, facts about the values of these relative
quantities exhaust the factual content of the physical world. Thus, the
‘two’ world histories pictured in Fig. IIl.1 do not really correspond to
objectively different worlds but only to different descriptions of the
same world. Consequently, the alleged violation of determinism is only
an illusion due to the descriptive fluff packed into our presentation of
classical space-time worlds.

Leibniz’s position here does not result from a question-begging desire
to save determinism, but is arrived at by an independent route that
passes through his meta-physics and his metaphysics. According to the
former, which owes much to Descartes and Huygens, all motion must be
analyzed as the relative motion of bodies. According to the latter, there
would be a violation of the principle of sufficient reason if Fig, IIL.1 did
illustrate objectively different world histories; for in deciding which of
the two worlds to actualize, God would find Himself in a Buridan’s ass
situation, unable to choose between two worlds which are not separated
by any properties that provide sufficient grounds for choice. As Leibniz
put it in the third letter to Clarke:

I say then, that if space was an absolute being, there would something happen for which
it would be impossible there should be sufficient reason. Which is against my axiom.
And T prove it thus. Space is something absolutely uniform; and, without the things
placed in it, one point of space does not absolutely differ in any respect whatsoever
from another point of space. Now from hence it follows, (supposing space to be some-
thing in itself, besides the order of bodies among themselves,) that 'tis impossible there
should be a reason, why God, preserving the same situations of bodies among them-
selves, should have placed them in space after one certain particular manner, and not
otherwise; why every thing was not placed the quite contrary way, for instance, by
changing East into West. But if space is nothing else, but that order or relation; and is
nothing at all without bodies, but the possibility of placing them; then those two states,
the one such as now is, the other supposed to be quite the contrary way, would not all
differ from one another. Their difference therefore is only to be found in the chimerical
supposition of the reality of space in itself. But in truth the one would exactly be the
same thing as the other, they being absolute indiscernible; and consequently there is no
room to enquire after a reason of the preference of the one to the other. (Alexander
(1956), p. 26)
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The philosophical reaction to Leibniz's critique has tended to divide:
those who share with him the notion that all motion is relative bodily
motion are naturally sympathetic while those who are impressed by the
fact that neither classcial nor relativistic physics supports this notion
are less sympathetic. What both sides have failed to see (and what
Leibniz himself was not clear about) is that the issue of relationism is
not equivalent to the key issue Leibniz raises about our mode of
presentation of space-time worlds. As I read it, his objection is first and
foremost to the view that space-time is a kind of substance or container
which exists over and above the events it houses. The objection can be
stated in a form that is independent of the intertwined questions of
whether all motion is the relative motion of bodies and what goes into
the G,. Let d be any diffeomorphism of the space-time manifold M
onto itself. For fields G, and Pg, d induces new ones d*G and d*P
respectively (the fields ‘dragged along’ by d). Any two models (M,
{G,}, {Ps}) and (M, {d*G}, {d*Ps}) related in this way are by Leibniz’s
lights just different modes of presentation of the same physical reality.
And this is so even if the structure of space-time, as specified by { G},
falsifies the slogan “All motion is the relative motion of bodies,” as it is
falsified for orthodox Newtonian and special relativistic space-time,
both of which contain inertial structure that permits the definition of
absolute or invariant dynamical quantities, such as acceleration, which
are not relative particle quantities (see below). Further, this is so even if
space (or space-time) is not “absolutely uniform” but is, say, variably
curved; for this curvature is represented by some appropriate object in
{G,} and is dragged along by d along with everything else so that again
the original model and its image model “do not at all differ from one
another” and are “absolutely indiscernible.”

Thus, on my interpretation the essence of Leibniz’s objection is to
treating points and regions of M as real existents, as substances in the
proper logical sense of objects of predication. There is a quick and
cheap way to reform our presentation of space-time models so as to
escape the objection; namely, take equivalence classes of “indiscernible”
models and declare that each class corresponds to a single Leibnizian
world. The more interesting challenge is to start from the other end and
give a direct and intrinsic characterization of the Leibnizian worlds and
then show that the members of an equivalence class of ordinary models
arise as different but equivalent representations of the same intrinsic
reality. For someone like myself who is not a relationist and who does
not believe that all motion is the relative motion of bodies, the
challenge takes the form of erasing the underlying manifold M of

e
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space-time points while keeping the non-relational structure of space-
time, a kind of Cheshire cat trick.?

Whatever the ultimate decision on the ontological status of space-
time, there remains the problem of what geometric structure G, and
physical magnitudes P; are needed in an adequate theory of motion.
And here the weight of evidence goes strongly against Leibniz. From
Galileo to Newton to Einstein, every successful theory of motion makes
use of physical quantities which cannot be reduced to relative particle
quantities. This opens up a new avenue along which determinism can
move; for in order to have well-defined absolute, or non-relative,
quantities of motion, the structure of Leibnizian space-time must be
beefed up. Consequently, the symmetries (L) must be cut down. Such a
cutting down may also cut down the counterexamples to determinism.

4. NEWTONIAN SPACE-TIME

Newton’s space-time canvas is much more complex than Leibniz’s. In
addition to simultaneity, duration, and Euclidean space structure, it also
contains a preferred family of motions, called inertial frames, and a
distinguished family member called absolute space. The addition of the
inertial structure makes into well-defined quantities ones which are
not well-defined or invariant in Leibnizian space-time — in particular,
the instantaneous (non-relative) acceleration of a particle — and it
linearizes the space-time symmetries to form the familiar Galilean
transformations: '

(G) x*—>x°=RgxP+ 1% +c°
t~t=t+b>
where 0 and ¢ are constants and Rj is now a constant orthogonal
matrix.
The further addition of absolute space in the sense of a distinguished
inertial frame makes (non-relative) velocity as well as acceleration a

well-defined dynamical quantity and reduces the space-time symmetries
to

(N)  x*—x*=RgxP+ c°
t>t'=t+b
The objection to full-blown Newtonian space-time, with this form of
absolute space, as a setting for mechanics is that it violates the principle

enunciated in Sec. 2 above connecting symmetries of space-time and
symmetries of laws; for the Newtonian laws of motion are invariant

"y
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under (G). It is perfectly conceivable, however, that additional laws
might break the Galilean invariance, necessitating the introduction of
additional space-time structure and narrowing (G) to (N); in fact, it
was thought in the 19th century that the laws of optics and electro-
magnetism did just that. I will return to this matter in Sec. 14 below, but
for the moment it can be ignored since the addition of the inertial
structure to Leibnizian space-time is in itself sufficient to block the
argument which threatened Leibnizian determinism; for any member of
(G) which reduces to the identity for any finite interval of time, no
matter how short, is the identity map everywhere. Note, however, that
without the help of absolute space there are limitations to Newtonian
determinism. For example, it is not possible to write a law which allows
a scalar quantity @ to vary in space at a fixed moment of time and
which determines the future values of @ from its initial value ®(x, 0),
—o < x < 4, at t = 0. For the law has to be Galilean invariant so
that the application of Galilean transformation to any solution must
produce a new solution. Choose the transformation so that it is the
identity for ¢ =0 but not for later times. Since the initial data are
preserved, we then will have two solutions which agree at r = 0 but
differ in the future.

5. NEWTONIAN PARTICLE MECHANICS

Because the above considerations have been very abstract, it is useful to
have before us some concrete examples of determinism triumphant.
Since Laplace’s espousal of determinism was prompted by his reflec-
tions on Newtonian celestial mechanics, it would be natural to look
there for the desired example, but actually it turns out to be cleaner to
envision a force law different from Newton’s 1/72 law.

Consider N point masses m; (m; > 0), i =1, 2,3, ..., N, and
suppose that they attract each other in pairs with a force which acts
along the line joining them and which is proportional to the product of
their masses and the distance separating them.®> Combining this force
- law with Newton’s second law of motion yields:

(1) m,# = Z Crym,(r; = r,)

]
jEk

(C = positive constant)

It is always possible to find an inertial system in which the center of
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mass is at rest at the spatial origin. In such a system, the equations
(IIL.1) decouple and as a result, the initial value problem with given
initial data

(L2) 7, (0) = F,, 1,(0) = F(0) = 5,

not only has a unique solution, but the general solution can be written
down in closed form. Every physically possible history of the system is
thus comprehended in a single analytic formula, and the possible pasts
and possible futures of the system are, in Laplace’s words, present
before our eyes.

For Newtonian gravitation, the equation of motion is

UL3) mi, = ¥ Gmmy(r; — r)/rk
j

JEk

(ra=1r, —nl)

The initial value problem has a unique solution, at least locally in time.
If all r; # 0, i # j, at t = 0, there exist unique functions r, of ¢ and a
time interval (¢;, ¢,) such that for any ¢ € (¢, £,) (II.3) holds and for
t =0 (II1.2) holds. When N 2 3, there are initial conditions for which
t, or t, (or both) are finite. If the solution cannot be extended as a
smooth function of ¢ to ¢, = + and ¢, = —0, the solution is said to
be singular.

If all such singularities were due to collisions of two or more of the
point particles, we could affirm a qualified doctrine of determinism:

(Q) Barring collisions, Newtonian gravitational theory of point
mass particles is Laplacian deterministic.

And we can make () sound more impressive by adding that the
antecedent is almost always satisfied, for it is known that the set of
initial conditions which lead in a finite time to collisions is of
(Lebesgue) measure zero (Saari (1973)).

There are, however, some caveats about (Q). First, measure zero
need not imply either insignificant or ignorable. We would not judge
the set of initial conditions giving rise to collisions to be insignificant if,
for example, it proved to be dense within the set of states that eventuate
in strong interactions (in some appropriate sense) among the particles.
Nor would we regard the measure zero set as ignorable if it loomed
large within the range of cases we regard, for whatever reason, to be
physically interesting. To illustrate, take the case of N = 2. Here it is
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easy to see that the set of states leading to collisions has measure zero
since a collision cannot occur unless the angular momentum is zero and
since for N = 2 the set of zero angular momentum states has measure
zero. But if we are interested in zero angular momentum states, then
collisions loom large — indeed, for N = 2 such states always lead to
collisions.

The second and more important caveat is that (Q) may be false!
Define r(¢r) = min(r;(¢)), { # j. Then if (¢, ,) is the maximal interval
for which the solution exists, ¢, is finite iff r = 0 as ¢— ¢, and
similarly, ¢, is finite iff r ~ O as ¢ — ¢]. Further, for N < 3, r ~ 0 iff
there is a collision. But for N 2 4 it is an open question as to whether or
not r = 0 implies a collision, though the evidence now available
indicates a negative answer (see Sec. 7 below). How might the implica-
tion fail? One can first try to imagine that the occupant of the role of
the minimum r; switches around and around. But since there are only a
finite number of particles, at least one of the potential occupiers, say
r3,, must actually occupy the role an infinite number of times as (say) ¢,
is approached. Thus, we are forced to imagine an oscillatory behavior
in ry, with liminf r;, = 0 but lim sup r;, > 0. Such wiggling is used in
constructing anomalous solutions, as we will see below in Sec. 7. But
note that even if r,, does go to zero there need not of mathematical
necessity be a collision in the proper sense that the position vectors of
particles 3 and 4 both approach the same fixed point in space. For it is
mathematically possible that these particles accelerate themselves off
the space-time manifold and cease to exist at ¢,. And a theorem of
Sperling (1970) shows that such unbounded behavior must occur in
non-collision singularities, should they exist.

It is shocking that determinism may break down for the very case
which was supposed to serve as a paradigm example of determinism at
work. But worse still, reflecting on the way determinism might break
down in this case leads to a general worry about how determinism
could ever be securely established in classical worlds.

Before examining the reasons behind this paradoxical worry, let us
take note of the somewhat less paradoxical opposite side of this coin.
We will see in Ch. VI that to the extent that determinism holds in this
case, its course can be traced out by a dumb (# stupid) digital com-
puter, if the initial data are computable. Thus, although Laplace was
overly optimistic in one way he was overly pessimistic in another; for to
the extent that his demon is possible, it need not remain “infinitely
remote” but can be instantiated by an uncreative mechanical calculator.

e iy
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6. DETERMINISM AT BAY

Only a little reflection on some of the commonplaces of classical
physics is needed to switch the Gestalt of determinism safely and
smoothly at work in Newtonian worlds to puzzlement about how
Laplacian determinism could possibly be true. The first commonplace
is that it is hopeless to try to establish determinism for a system which
is not closed to outside influences. Trying to determine the weather in
Minneapolis tomorrow from even the most precise meteorological data
today in Minneapolis is a thankless task since tomorrow’s weather
can be influenced by what is now happening in North Dakota and
Wisconsin (Fig. I11.2). Two remedies may be contemplated. This first is
to erect imaginary boundary walls (W, and W, of Fig. II1.3) to record
the incoming influences as they penetrate the boundaries of the system.
This gives rise to a non-Laplacian initial-boundary value problem: given
the appropriate initial data on S and the appropriate boundary data
on W, U W,, determine the state in the interior region R. For field
theories where there is action by contact such initial-boundary value
problems are often well posed; a successful example will be considered
below in Sec. 11. But success cannot bc expected for action at a
distance theories where effects are transmitted without leaving any
traces on the intervening spaces. Furthermore, even when the initial-
boundary value approach is successful, the success relies on a departure
from pure Laplacian determinism by requiring a specification of future
data. I therefore turn to a second remedy which seeks to preserve
Laplacian determinism in its pristine form.

From L

North Par™

Dako'o\/ Wisconsin w, R W,
S

{ Mpls. today } S

Fig. I11.2 Fig. I11.3

The outside influences coming from the Dakotas and Wisconsin can
be co-opted by extending the boundaries of the system to take in the
hinterlands. For practical purposes, a finite extension of the original
initial data surface § may suffice for a pretty good determination of
tomorrow’s weather. But in a spatially infinite universe, S must be
extended to infinity in all directions to make sure that the co-option is
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complete enough to rule out any possibility of a nasty surprise coming
from without. In this way we are driven from the local form of
Laplacian determinism to the global form.

The second commonplace threatens even the global form. The laws
of classical physics place no limitations on the velocity at which causal
signals can propagate. This fact is intimately related to the structure
of Newtonian space-time. Without absolute space, velocity is not a
Newtonian invariant; whatever the finite value of a particle velocity as
measured in one inertial frame, there will always be another inertial
frame in which the value is as large as you like. Thus, no law of motion
invariant under the Galilean transformations can entail the existence
of a fixed finite bound on particle velocity. An infinite velocity is,
however, an invariant concept within the Galilean group, and this in
turn leads back to the justification for absolute simultaneity: distant
clocks can, in theory, be brought into absolute synchronization by
means of a sequence of signals whose velocities tend towards infinity.

Signals with actually infinite velocities will be considered a little later,
but for the moment it is sufficient to contemplate particle or wave
motions where the velocities of propagation are everywhere finite but
unbounded. Fig. 1114 illustrates the space-time history a of a particle
with velocity |x(f)] < <o for all ¢ but with finite ‘escape time’ t* = high
noon on April 1, 1988.

Fig. L4

As ¢ = * from below, x(f) = @ and the particle disappears from the
universe, even though |x(f)| < «. The curve B is the temporal mirror
image of and it represents the history of a particle which springs the
April Fool’s joke by appearing from spatial infinity. Thus, in Newtonian
space-time the co-option strategy appears to be doomed to failure, for
even if the system is extended to include the entire universe, it is not
automatically ‘closed’ in the operative sense to outside influences.*

Yﬂ‘rmwvit-—!
L ik

i

CLASSICAL PHYSICS 35

Please do not complain that we never have observed such disturbing
disappearing and appearing acts and that, by induction, it is reasonable
to expect that we never will. Determinism is a doctrine not just about
the actual world but about all physically possible worlds. So even if we
can safely employ induction to conclude that no such particles are
actual, Laplacian determinism is still threatened if such processes are
physically possible. The possibility of f(a) is a prima facie insult to
futuristic (historical) determinism since f(a) influences points to the
future (past) of ¢ = t*, e.g. p(q), but does not register on ¢ = ¢* and so
leaves no initial data which can be projected into the future (past).

The threat can be restated by borrowing a concept used extensively
in the discussion of relativistic determinism. Let S be a global or local
time slice (here, a plane of absolute Newtonian simultaneity or a
portion thereof). The future domain of dependence D*(S) of S is to
consist of all points p of space-time such that (i) p lies to the future of S
and (ii) the state at p depends only on the state on S. The past domain
of dependence D~(S) of S is defined analogously. And the foral domain
of dependence D(S) is then the union D*(S) U D~(S). How to interpret
the crucial clause (ii) turns on assumptions about the physics of the
situation, but this much seems clear: p ¢ D*(S) (respectively, D~(S)) if
there is a space-time curve, representing a physically possible causal
signal, which passes through p but which never meets S§ no matter how
far it is extended into the past (respectively, the future). The point of
the preceding paragraph can now be restated thusly: Whatever the
choice of § in Newtonian space-time, domains of dependence are
trivial, for D(S) = D*(S) = D~(S) = S. Laplacian determinism not
only doesn’t get to first base, it never even has the chance to come out of
the on deck circle! In relativistic space-times, as we will see in the next
chapter, determinism at least can be brought to bat in that domains of
dependence extend non-triviaily.

7. DETERMINISM AT SEA

The threat to determinism is, so far, only a prima facie one. To make it
palpable, it must be shown that physically possible force functions can
generate the kind of behavior picture in Fig. I11.4. And more, it must
also be shown that the sources which generate the forces either them-
selves escape contact with ¢ = ¢* or else that their behavior at r* does
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not code up enough information to make a unique determination of the
past and future.

Newtonian gravitational theory of point mass particles provides a
relevant example. Mather and McGehee (1975) studied a system of four
point mass particles moving colinearly under their mutual Newtonian
gravitational forces. Particles 3 and 4 approach one another ever more
closely, giving up potential energy in the process. Some of this energy
is used to accelerate 3 and 4 and some of it is transferred to
particle 1 by means of particle 2 which bounces back and forth
between 1 and 3 (see Fig. II1.5). Collision singularities are involved, but
for the binary collisions the solutions can be extended in a physically
reasonable way on the model of elastic bounces. Using this device,
Mather and McGehee establish that the solution can become un-
bounded in a finite time ¢*: as ¢ ~ * from below, x,(¢) = —, x,(¥),
X,(f) > +oo, while x,(r) executes an infinite number of bounces
between particles 1 and 3. Since the laws of Newtonian gravitation
are invariant under time reversal we can invert the Mather-McGehee
scenario to produce a solution which insults futuristic determinism
by presenting an empty universe up to t* but thereafter having four
particles, three of which appear from spatial infinity and the other of
which oscillates infinitely back and forth.

*2

Fig. IILS

Perhaps the problem for determinism is due to collisions. If so we
could retreat to the qualified form (Q) of determinism asserting that,
barring collisions, Newtonian gravitational theory of point mass parti-
cles is Laplacian deterministic. However, it now seems that this retreat
does not take us onto safe ground. In a recent article, Gerver (1984)
presents a model with five coplanar point masses that never collide.
The messenger particle 5 shuttles around the triangle, picking up
energy from particle 1 and transferring part of it to 2, 3, and 4, with the
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result that the triangle expands with each round trip of the messenger
(see Fig. IIL6). Gerver makes it plausible that the speed of the mes-
senger and the rate of expansion of the triangle can be arranged so that
within a finite time the messenger completes an infinite number of
round trips while the triangle becomes infinitely large. The details of a
rigorous proof remain to be given.

Fig. 116

It is known that for N = 4 the set of initial conditions which could
potentially eventuate in a noncollision singularity has measure zero (see
Saari (1977)), essentially because, as in the Mather-McGehee construc-
tion, all four particles must approach a fixed line in space. But as
argued in Sec. 5, measure zero does not necessarily mean insignificant
or ignorable, and, moreover, cases for N > 4 remain to be settled.

It is not immediately clear to what extent singular but noncollision
solutions, should they exist, would undermine Newtonian determinism;
for it is not obvious under what conditions such solutions can be
joined onto a normal solution. In the case of the heat equation, to be
studied below in Sec. 10, the existence of a single solution which is null
before ¢t = 0 but non-null afterwards is sufficient to completely destroy
futuristic determinism since, by the linearity of the equation, the self-
exciting solution can be added onto any other solution to produce a
new solution.

8. LIFE RAFTS

The true believer in determinism will be undaunted by the examples of
Mather-McGehee and Gerver. There is, he will contend, only an
apparent failure of determinism, the false appearance being due to
considering a space of solutions that is too large in the sense that it
encompasses solutions that are not genuinely physically possible; and
once these impostors are rooted out, the triumph of determinism will



38 CHAPTER 111

again become apparent. That is the general strategy. Three concrete
suggestions for implementing it come to mind.

(i) Impose boundary conditions at infinity. By the imposition of
appropriate boundary conditions at spatial infinity we can rule out
influences coming from or disappearing to God knows where. This
achieves by fiat what the laws of motion were supposed to achieve on
their own. Given the present state of the universe, the laws determine
the future state — as long as there are no rude surprises. Boundary
conditions at infinity are just a way of asserting that rude surprises will
not be counteranced.

(i) Add additional laws. The escape solutions discussed in the
preceding section appear to violate conservation of mass and momen-
tum, so in so far as conservation principles are sacred, the escape
solutions are physically impossible. Distinguish two principles of con-
servation of mass: (C1) particle world lines do not have beginning or
end points and mass is constant along a world line, and (C2) for all
time ¢, and ¢,, the total mass at ¢, = the total mass at #,. (C1), I claim, is
a fundamental principle of classical physics, and it is satisfied even in
the anomalous escape solutions. Further, if the laws of motion do not
allow escape solutions, then (C1) entails (C2). Some people have been
misled into thinking that (C2) is a basic law of classical physics because
they have not recognized the possibility of escape solutions.

A similar response is to be made to the invocation of conservation of
momentum. Given that a system is closed and that the interactions
among the particles satisfy certain restrictions, we can prove conserva-
tion of momentum as a theorem. But there is not the ghost of a hope of
proving or securing conservation of momentum if the system is open.
And the question here is precisely that of whether the universe as a
whole is an open system.

(iii) Object to the idealization of point mass particles. There are three
responses to the objection. (a) Idealizations are always involved in
science, and this idealization of point mass particles moving under their
mutual gravitational forces was supposed to provide the paradigm of
Laplacian determinism at work. So the objection is both querulous and
self-defeating. (b) Remove the idealization and consider corpulent
particles. You must then say what happens when a collision takes place.
Classical physics suggests that we impose laws of elastic impact. But
binary collisions of unequal mass particles in two or more spatial
dimensions or triple collisions of unequal masses in one spatial dimen-
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sion are generally non-deterministic. (c) Consider binary collisions of
equal mass particles in one spatial dimension. Each collision is deter-
minstic. But with enough particles anomolous non-deterministic solu-
tions can be created, as we will now see.

9. INFINITE BILLIARDS

Consider a system of billiard balls strung out in (two-dimensional)
space as shown in Fig. I11.7. The balls are assumed to interact only by

Fig. IIL.7

contact and then according to the Newtonian laws for perfectly elastic
bodies. i for ¢ < r* all the balls are at rest, then barring outside
intervention, the balls will remain at rest for ¢ > r*. If, however, the
system is infinitely expanded, letting the number n of balls increase
without limit, non-uniqueness of future behavior can result. In addition
to the ‘normal’ solution in which all the balls are at rest for ¢ > *,
Lanford (1975) shows how to construct an anomalous solution in
which all the balls are at rest for ¢ < ¢* but for ¢ > ¢* all but a finite
number of them are in motion. This solution is obtained by taking the
limit of standard solutions in which the spacing of the particles and the
initial direction of the nth particle are arranged so that the nth particle
just grazes the n-1th particle, sending it into a grazing collision with the
n-2nd particle, etc. If the velocity of the nth particle increases rapidly
enough as n increases, then the limiting solution as n — % contains
within itself an analogue of the body of Fig. I11.4 which appears from
spatial infinity. If we plot successively the trajectories of the n-1st
particle between the time when it is hit by # and the time it hits n-2, we
get a zig-zag approximation to the trajectory B. Running this scenario
backwards in time produces an infinite billiard ball analogue of the
curve a of Fig. IIL.4 and an insult to historical determinism.

We have here a very curious situation. The billiard ball example
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conforms to Lucretius® vision of a world composed of nothing but
atoms moving in a void. It also displays a non-deterministic spontaneity
but not of the sort Lucretius thought necessary for free will, for not one
of the billiard balls freely or spontaneously swerves in contravention to
the laws of motion.

The self-exciting feature of Lanford’s anomalous solution can be
ruled out and determinism restored either by imposing population
control and limiting the billiard game to a finite one or by setting
boundary conditions limiting the behavior of the billiard balls at spatial
infinity. Unless such limitations can be independently motivated we
have yet another depressing example where determinism is achieved by
fiat.

The need for the classical form of Laplacian determinism to appeal
to boundary conditions at infinity arises not only in particle mechanics
butin field theories as well, as is illustrated in the next section.

10. HEAT

The classical heat equation in one spatial dimension has a very simple
appearance which belies the wealth of peculiarities it contains; it states:
L4 du u

({4 ot 9x®’
where for convenience the thermometric conductivity coefficient has
been normalized to unity.

From the remark at the end of Sec. 5 it seems to follow that the heat
equation cannot support any form of determinism, for it allows the
scalar quantity u to vary in space and it is first order in time so that
the appropriate initial data at 1= 0 is u(x, 0). However, the remark
does not apply since the heat equation is not Galilean invariant. The
intended physical interpretation of w(x, t) is the temperature at time ¢
and point x of some heat conducting medium, say, an iron bar. The rest
frame of the medium is thus a preferred frame for describing thermal
history. For the moment I will ignore the intended application and
consider (I11.4) as an abstract partial differential equation.

The abstract problem of Laplacian determinism is then to find a
solution u(x, ) of (IIL4) satisfying initial conditions wu(x, 0) = @(x),
—® < x <+ and to prove uniqueness of the solution. In this
abstract form the problem is not well-posed, for there are null solutions
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to (1I.4) which vanish at ¢+ = 0 but which are different from zero for
t > 0. Since (111.4) is linear, such solutions may be added to any other
solution to produce a new solution different from the original one but
satisfying the same initial conditions at ¢ = 0. Some null solutions are
very smooth — indeed, C® — so the breakdown in futuristic deter-
minism is not due to the development of a singularity.’

Reflecting on the way heat is propagated according to (III.4) might
make one despair of achieving any interesting uniqueness result for the
initial value problem. (IIL.4) is a parabolic partial differential equation
with characteristics coinciding with the planes of absolute simultaneity.®
From this we deduce that heat is propagated infinitely fast so that
influences coming from infinity would seem to be the norm. The
deduction of infinite propagation velocity is supported by examining
the fundamental source solution.

exp(—x?%/4t) fort> 0

(IL5)  k(x, 1) for £ <0
Using the facts that for a solution u, jf,’u(x, t)dx is taken to be the
amount of heat contained in the medium at ¢ between the points a and
b, and that jf: k(x,t)dx = 1, we interpret (IIL.5) as describing the
temperature distribution of an initially cold bar into which a unit
quantity of heat has been introduced at the origin. Since k(x, t) > 0 for
any |x| > 0 and any ¢ > 0, the heat is seen to spread instantaneously
to the most remote parts of the medium.

However, the form of (IIL.5) also shows that the effects of the heat
source are rapidly attenuated as one moves away from the spat‘ial
origin. This makes us hopeful that if the influences coming from inﬁmt‘y
will not wreck uniqueness unless they are unboundedly strong. This
hope is fulfilled with the aid of a formal condition limiting the growth of
a solution u of (I11.4) at infinity:

(B) There are constants C and a such that
lu(x, )| < Cexp(ax?)
forall—e < x < +ooandallt > 0
Any solutions of (II1.4) which satisfy (B) and which agree at t = 0 must

agree for ¢+ > 0. Condition (B) can be weakened but not substantially;
e.g., replacing x2 by |x|** ¢, ¢ > 0, does not secure uniqueness.
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The boundary condition (B) might be promoted by the argument
that if the temperature grows beyond all bounds the conditions of the
problem are, physically speaking, undercut since our bar of iron will
vaporize. But if determinism is going to break down it might as well go
down with a bang, and complaining about the breakdown of the
problem situation is just a way of bemoaning the demise of deter-
minism. In any case, (B) can be violated without having the medium
become as hot as Hades at spatial infinity; ©# might, to the contrary,
become unboundedly negative.

This observation leads to another approach to establishing unique-
ness. In view of the interpretation of u as temperature, we might want
u 2 0 everywhere and always. If our desire is fulfilled, then futuristic
determinism is secured in this fashion: suppose that u, and u, solve
(IIL.4), that u,, u, = 0, and that u,(x, 0) = u,(x, 0) for —c0 < x < +o0;
then u,(x, t) = u,(x, t) fort > 0.7

For the intended application of (IIl.4) we may agree that u 2 0 is a
condition sine qua non for physical possibility. But what we would like
is for this condition to result from a single initial stipulation and
thereafter from the unfolding of determinism. That is, we would like

(H)  If u solves (II1.4) and u(x, 0) 2 0 for — < x < +0, then
u(x, t) 2 Ofort > 0.

But (H) is false, as the alert reader will already have seen. For let
u, and u, be any solutions of (I1l1.4). By linearity, # = u; — u, and
U = u, — u, are also solutions. If 4; and u, conform to the same initial
conditions, then d(x, 0) = u(x, 0) = 0, so by (H) i(x, t) > 0 and
u(x, t) =2 0 for ¢+ > 0, implying that &, = i,, ie., general uniqueness
which we have seen does not hold. Thus in matters of heat once is not
enough; the stipulation that u > 0 has to be repeated anew at each
moment of time.

Finally, it may be well to note that the wringers through which heat
puts determinism are not all peculiar to the heat equation. The type of
field law appropriate for Newtonian space-time is a parabolic partial
differential equation, the heat equation being only a special instance of
the type. And for parabolic partial differential equations in general,
uniqueness for the Laplacian initial value problem cannot be expected
without the help of supplementary boundary conditions.
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11. WALLING OUT

As an alternative to giving boundary conditions at infinity we could
revert to the non-Laplacian wall strategy mentioned above. For the heat
equation this would amount to specifying the function u both on the
initial time slice S and on the boundary walls W, U W, (refer to Fig.
IIL.3 again) and then trying to determine u within the interior region.
This problem is well-posed under seemingly mild continuity assump-
tions, as follows from the maximum principle for parabolic partial
differential equations. In the case of the heat equation, this principle
asserts that if a solution « is uniformly continuous over the closed box
of Fig. IIL3, then u assumes its maximum value on the bottom or the
side walls § U W, U W, of the box. To derive uniqueness, it suffices to
take the case where u =0 on S U W, U W,; applying the maximum
principle to both u and —u gives u = 0.

Instead of a portion of an infinite bar we can focus on a finite bar
whose temperature at ¢+ = 0 is given and whose ends x = 0 and x = 1
are maintained by two stokers at prescribed temperatures over the
interval from ¢ = 0 to, say, ¢ = 1. For this set up it is natural to require
that the temperature u(x, ¢) on the bar is continuous in x for any fixed ¢
and continuous in ¢ for any fixed point x of the bar. But as Hartman
and Wintner (1950) note, the two-dimensional uniform continuity
demanded by the maximum principle is not natural if we imagine that
the stokers operate independently of one another and independently of
the initial temperature distribution. But if two-dimensional uniform
continuity is abandoned and what is required of a solution is ordinary
continuity and the boundary conditions

u(x, 0= g@(x),0 < x <1
u(0*, 1)=9(1),0 < 1 < 1
u(1-,=x(1),0 < r <1

then the solution is not necessarily unique. Nor does the imposition of
the one-sided boundedness condition u > 0 suffice for uniqueness for
the modified problem. However, Hartman and Wintner show that
ordinary continuity plus boundedness of u on the box do suffice for
uniqueness. The latter condition is reasonable if we imagine that the
stokers work with a finite fuel supply and stoke at a finite rate (con-
servationism and unionism in the service of determinism).
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12. OLD HEAT

The problem of historical determinism for heat in an infinite bar has an
uninteresting dissolution. In the first place, the instantaneous tempera-
ture of the bar, regarded as the fina/ temperature, cannot be arbitrarily
prescribed, for the assumption that heat has been diffusing according to
(111.4) for any length of time, no matter how short, forces u(x, t) to
be analytic in x. Worse still, we know that without supplementary
boundedness conditions uniqueness cannot be expected; but bounded-
ness conditions coupled with the assumption that the heat equation
holds for all past times tends to reduce the situation to an uninteresting
static one. Suppose that u satisfies (I11.4) for all ¢+ < 0. If either | u(x, t)|
is uniformly bounded for ¢ < 0 (i.e., there is a constant C such that
lu(x, t)] < C for ¢ < 0), or else u(x, )2 0 for ¢+ < 0 and u(x, 0) does
not grow too fast as | x| = o, then u = constant for + < 0 (Hirschman
(1952)). Interesting initial or final conditions can arise only if the
system is open, either to influences coming from infinity or to home
town stokers.

Introducing stokers we can formulate a backwards final-boundary
value problem where the temperature distribution is known for the final
time S and for the ends of the bar W; and W, for earlier times, and the
temperature is sought for the interior R’ of the bar at earlier times
(Fig. 111.8). The maximum principle which was used to prove unique-
ness for the forwards looking initial-boundary problem is asymmetrical
in time and does not yield uniqueness for the backwards looking
problem. (Recall: It asserts that for a closed box in the x—¢ plane, the
temperature takes its maximum either on the boftom or the sides.)
Uniqueness is equivalent to the proposition that a solution which is 0
on S U W; U W, vanishes in the interior R’. Physically this would
mean that a finite bar whose ends are maintained at a zero temperature
cannot rid itself of all of its heat within a finite time.
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To investigate this possibility, assume that the temperature distri-
bution at + =0 is nice enough to be written as a Fourier series.
For a bar extending from x =0 to x =1, this means that u(x, 0)
=X, _ 4, sin(mnax). The unique future solution is then wu(x, r)=
2, -4, sin(max)exp(—m?t). Uniqueness for the backwards final-
boundary problem is then established by showing that for any finite
t > 0, u(x, t) =0 implies u(x, 0) = 0. Unfortunately, backwards unique-
ness is of little help in practical cases of retrodiction since, as the form
of the solution indicates, any error in the final data is exponentially
expanded in trying to project into the past. Problems for prediction and
retrodiction caused by instability will be discussed in Ch. IX.

It is of interest to note that if we append a non-linear term f(u(x, t))
to the classical heat equation equation, so that it now reads

ou 0’u

a[ = axZ _f(u),

then the solution of the modified equation can be driven to zero in a
finite time, wrecking backward uniqueness.?®

The heat equation can be used to make inferences about the past by
using predictive models retrodictively. If we assume that at some time
in the distant past the earth was in a molten state and neglect heat
generated by chemical reaction, radioactivity, extra-terrestrial visitors,
etc., then the heat equation can be solved forwards in time to give the
present temperature distribution. In the simple models studied by
Fourier and Kelvin, the temperature gradient near the earth’s surface
turns out to be proportional to the temperature of the molten material
and inversely proportional to the square root of the period T since the
molten state. In this way observations of current temperature gradients
can be used to estimate the ‘age’ T of the earth. (Aside: Kelvin’s
estimate of 100—200 million years and later estimates by Tait which
pushed the value down to 10—20 million years caused some consterna-
tion among geologists and the followers of Darwin. Of course, we now
know that Kelvin’s model contained a number of false assumptions.®)

13. DON'T FENCE ME IN

We have seen that for determinism to succeed in Newtonian particle
and field theories, either the erection of boundary walls or the imposi-
tion of boundary conditions at infinity is needed. For field theories
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these needs would disappear if space were compactified, eliminating
spatial infinity. For particle theories, however, the situation is less clear.

Roll up the Euclidean x-—¢ plane along the x-axis to produce the
cylindrical version of Newtonian space-time shown in Fig. II1.9.
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Fig. 1119

Even though there is no spatial infinity for particles to escape to or
appear from, domains of dependence may still be trivial. The curves a’
and B’ result from a and f§ of Fig. II1.4 when this figure is subjected to
the rolling process. Since a” and 8’ have no end points, are everywhere
time-like (i.e., are oblique to the planes of simultaneity and have finite
velocities), but never meet S, D(S)= D*(S) = D(S) = S. Similarly,
for a three- or four-dimensional space-time, the initial-boundary value
problem is threatened by particles which do higher dimensional
analogues of the death spirals of those in Fig. III.9. Thus, in Fig. 1110,
itseems that D*(S U W)=S U Wand D~(S U W)=S U W',

Fig. IIL.10

The point of erecting imaginary boundary walls was to prevent the
unannounced invasion of influences from without. But if the processes
illustrated in Fig. III.10 are live possibilities, then the invaders can
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invade from within. Examples of such fifth-columnist invaders cannot
be constructed in Newtonian gravitational theory of point masses, at
least not without collisions. A result of Sperling (1970) proves that
if the solution ceases to exist after a finite time and there are no
collisions, then the mutual particle distances cannot remain bounded,;
some of the particles must escape to infinity and in so doing will
register on the walls. But perhaps fifth-columnists can be created with
the help of binary collisions, as in the Mather-McGehee example, or by
using a different kind of force function.

By now the determinist is becoming tired of having to fight a
guerrilla war against the invaders who seek to overthrow a deterministic
regime; but in Newtonian worlds there is no clear-cut path towards a
once-and-for-all victory. For, to repeat, to incorporate into the space-
time structure an unbreachable barrier to the invaders is to break
Galilean invariance, and Galilean invariance is the Newtonian expres-
sion of the well-supported principle of the equivalence of inertial
frames. Only a radical change in the structure of space-time can resolve
this impasse in favor of the determinist. The special theory of relativity
turns out to be an answer to the determinist prayers, as will be seen in
the following chapter. But before leaving the classical domain, I want tc
discuss some other problems for determinism, one of which does and
the other of which does not derive from very fast particles or waves.

14. CLASSICAL ELECTROMAGNETISM

The source free Maxwell equations in empty space read

1 OB
6) VXE=—— — VXB= — —
(11L.6) c Ot c Ot

V:-B=0 V:E=0

Since these equations are not Galilean invariant they require the
support of a special frame of reference. In the 19th century this frame
was taken to be the rest frame of a ponderable medium, the lumini-
ferous aether, which was thought to be a necessary substratum for
electromagnetic waves. However, in keeping with the dematerialization
of the aether which took place at the turn of the century, I will construe
the aether frame to be a special inertial frame, absolute space, which is
unoccupied by a material substratum.!?
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It then follows from (IIL6) that electromagnetic waves are prop-
agated with a speed c relative to absolute space and a speed ¢ * vin a
frame moving relative to absolute space with a speed v. This puts the
theory into conflict with actual observational results, but let us imagine
that Nature has spoken against Galilean invariance and then ask
whether the theory provides us with an example of determinism. It
does. If the values of E and B, subject to the instantaneous constraints
VB = V:-E = 0, are specified at one time, then the top two of the
Maxwell equations determine the future values, guaranteeing in the
process that the constraint equations continue to hold.

This success for determinism becomes tainted when we attempt to
add sources. Formally, the second of the top two Maxwell equations is
modified by adding the current density to the right hand side and the
second of the bottom two is modified by adding the charge density to
the right hand side. The theory is completed by adding the Lorentz
force law governing the motion of charges. The resulting formalism
admits a well-posed initial value problem as long as the charges move
with subluminal velocities, but there is nothing in the formalism as
stated to prevent the presence of charged tachyons. With tachyonic
sources it remains to be seen whether the system admits a coherent
initial value problem and, if so, whether there are solutions in which the
tachyons accelerate themselves off the space-time manifold. If in either
of these ways classical tachyons should undermine Laplacian deter-
minism we could consider modifying the laws of classical electro-
magnetism so as to prevent a charged particle from becoming a
classical tachyon by accelerating itself from a sub to a superluminal
velocity. But this already takes us part way towards relativity theory.
And it leaves unexplained why classical charged tachyons couldn’t have
existed from time immemorial in a superluminal state of motion.

15. SHOCK(ING) WAVES

We made repeated use of two characteristics of the classical heat
equation: linearity and infinitely fast propagation of heat. Another
interesting feature is that the heat equation has a soothing effect on
temperature: whatever roughness exists in the initial temperature dis-
tribution is smoothed out in ever so short a time, for solutions u(x, f)
become analytic in x (thoughnotin ¢) for ¢ > 0.
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Hyperbolic partial differential equations imply finite signal velocities.
But non-linear versions of these equations may not have the soothing
effect of the heat equation; indeed, solutions may shed whatever
smoothness exists in the initial data and become non-differentiable or
even discontinuous, thus ceasing to exist as ordinary solutions.

A very simple example studied intensively by mathematicians is the
first order equation.

ou of
. -+ = = = .
(I1IL.7) ar o 0 (where f= f(u(x, t))
Setting f* = dfidu, (I11.6) can be rewritten as
du du
ey — + f— =0.
(H1L.8) ot f ox

It follows that a solution u is constant along the characteristic curve
x(t) which has velocity

(UL9) dx(s)/dr = f(u(x, 1)

To get a solution corresponding to initial data u(x, 0) = uy(x), we
just propagate the initial data along the characteristics thus: u(x, t) =
Up(x — 1f’). In the linear version of (IIL.8), f* = constant and the
characteristics are independent of the particular solution. Also the
characteristics radiating from the line ¢ = 0 simply cover the upper half
of the x—t plane, and thus the initial data at time 0 can be propagated
forward in time to give a solution for all ¢ > 0. But suppose that (IIL8)
is genuinely non-linear with, say, f~ > 0. If the initial data are chosen so
that uy(x,) > uy(x,), x; < x,, then the characteristic radiating from (x,,
0) has a greater velocity than the one from (x,, 0). So the two must
intersect at some point (x*, r*) with r* > 0, with the result that u takes
on two different values at the same point. Solutions in the ordinary
sense may fail to exist after a finite time.

(x%t*)

Fix,,0) {(22,0) x

Fig. IIL11
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Anarchists will be happy to conclude that the law of motion breaks
down and chaos reigns. Those more disposed towards law and order
will seek a generalized sense of ‘solution’ on which u can be said to
solve (IIL.8) even though it is not differentiable or even continuous. The
mathematical theory of distributions is tailor made for this situation. u
is said to be a weak solution of (1I1.7) in the sense of distributions just
in case

(1L.10) J”% u+ g—ff} dxdr=0

for every test function ¢(x, t) which is C* and which vanishes outside
of some compact region of the x—¢ plane.

Weak solutions overcome the existence problem, but at the expense
of uniqueness since more than one weak solution can correspond to the
same initial data.!! The committed determinist will be convinced that
the space of all weak solutions is too large, that it extends beyond the
bounds of real physical possibility, and that uniqueness will be restored
when the unphysical solutions are cut out. But lest he be accused of
chicanery in cutting out solutions, the determinist must allow his hand
to be guided by independent considerations as to what is and is not
physically possible. Just such a guide comes from experience with shock
waves, which provide the physical motivation for studying weak solu-
tions in the first place. As a piston compresses a cylinder of gas it
creates a wave which travels through the gas with the speed of sound s.
But as the gas is compressed, s increases so that the later waves move
faster than the earlier ones. In some conditions, the later waves over-
take the earlier ones and in such a way that the resulting waveform
develops a shock discontinuity where the velocity gradient blows up.'?
If u in our equation (II1.7) is interpreted as the velocity of the gas, then
it provides a simple mathematical model for the formation of shocks.
The velocity gradient is

@iy 4 - 4
ox 1+ ugtf”
In keeping with the above assumptions, we set 7 > 0 and ' < 0 and
find that a gradient catastrophe occurs at the positive time r = —1/u’f".

Suppose then that we assume that the only way ordinary solutions
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degenerate into weak ones is through the formation of shocks, which
we will idealize in the following way: there is a smooth curve y = x(¢)
across which the solution # may be discontinuous but on either side of
which it is smooth. The determinist will then want to show that cor-
responding to any initial value problem there is a weak solution of this
form. This can be done, but alas it still may not be unique. Further
surgery on the class of weak solutions is required. If we think of the
formation of shocks as an irreversible process, it is natural to require
that matter which crosses the shock show an increase in entropy.
Analytically, this amounts to requiring that the velocity dy/d: of the
shock is less than the characteristic velocity f'(u,) on the left but greater
than that f'(u,) on the right; or equivalently, each point on the shock
properly reflects the initial data by being connectible to the initial data
surface by a characteristic. With these restrictions in place, uniqueness
of weak solutions can be proved, if, as we assumed, f* > 0. If f is not
an increasing function of u a more complicated form of the entropy
condition is needed."?

For the determinist, the lesson to be drawn is clear. The apparent
problem with determinism was a welcome opportunity to investigate in
detail the physics of the situation and to show that when that is done
determinism works its way in a more subtle and wondrous form than
we could have otherwise imagined. The skeptic will complain that the
determinist should have been able to say in advance what all the
constraints were and should not have been allowed to cut the cloth of
physical possibility to suit the needs of determinism.

16. VISCOUS FLUIDS

As a final example, | mention the Navier-Stokes equation, which is the
classical equation of motion for a viscous fluid. For appropriate initial
data at = 0, a regular solution is known to exist at least for a finite
interval [0, r*), and when it exists it is unique. A weak solution exists for
all future time, and in the case of two-dimensional motion is unique.
But global uniqueness for weak solutions in real three-dimensional
space remains an open question.!'*

In the 1930’s Leray (1934) conjectured global uniqueness does not
hold for all initial data and that the breakdown of uniqueness (in weak
solutions) is associated with the development of turbulence in the fluid.
More recently opinion has swung away from Leray’s point of view
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towards determinism and towards an alternative explanation of tur-
bulence, advocated by Ruelle (1981), in terms of “strange attractors.” If
the evolution of the fluid is indeed deterministic, then its possible
motions can be described as a flow on a phase space, each point of
which represents a possible instantaneous state of the system. An
attractor A is a point or more generally a compact region of the phase
space such that the phase orbit uniquely determined by any point
sufficiently near to A converges upon A. Conservative dynamical
systems (e.g., those described by Hamiltonian mechanics) where the
phase flow preserves volume in phase space cannot have attractors.
But dissipative systems, such as viscous fluids, where the internal
friction dissipates mechanical energy, generally do have attractors. An
attractor A is strange if, roughly, the phase orbits determined by points
near A are unstable. More will be said about these issues in Ch. IX. The
only point I wish to convey here is that determinism in the classical
description of this most earthy of processes (tea sloshing in a cup,
whirlpools in rivers, etc.) is very much a live issue.

17. CONCLUSION

Several important morals can be drawn from our discussion of deter-
minism in classical worlds. The overarching moral concerns the impor-
tance of the status and structure of space-time. On a Newtonian
substantivalist conception of space-time, Laplacian determinism is not a
free-standing doctrine but requires sufficiently strong space-time scaf-
folding to support it. A Leibnizian non-substantivalist conception of
space-time may avoid the need for some of the scaffolding, but the
Leibnizian alternative has never been worked out in sufficient detail to
permit judgments to be made with any confidence.!’

Newtonian space-time, whose structure is rich enough to support the
possibility of Laplacian determinism, nevertheless proves to be a none
too friendly environment. The principal irritant derives from the pos-
sibility of arbitrarily fast causal signals, threatening to trivialize domains
of dependence. It is not surprising, therefore, to find non-uniqueness
for the initial value problem for some of the most fundamental equa-
tions of motion of classical physics, both for cases of discrete particles
(ordinary differential equations) and for continuous media or fields
(partial differential equations). Whether such non-uniqueness entails the
falsity of determinism is a difficult and delicate question, turning in
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large part on the status of supplementary conditions that might be
imposed on the problem. We encountered a variety of such cases,
ranging from those where the supplementary conditions needed to
restore uniqueness are both physically well-motivated and nonquestion-
begging to others where the supplementary conditions amount to little
more than a hypocritical refusal to consider the possibility of un-
pleasant surprises. Individual attitudes on the classification of cases is
naturally influenced by one’s predispositions towards determinism.
Such a circularity is not unexpected; nor is it entirely unwelcome since
it provides a means by which determinism can be used to probe issues
about physical possibility and necessity.

Though they are perhaps obvious, there are two other points worth
emphasizing. First, the trials and tribulations determinism is forced to
undergo in classical physics are purely ontological. None of the ones I
have described above derive from epistemological considerations, such
as the ability of observers, embodied or disembodied, smart or dumb,
to access and process information about the universe. Second, despite
the residual and irremediable vagueness in the ontological doctrine of
determinism, the threats discussed above are sharp enough to be
recognizably threats. And [ would add, the issues are not sharpened
by yielding to the current philosophical fashion of formalization. If
philosophers had spent less time fiddling with axioms, subscripts, n-
tuples, and the like, and more time on physics, they would no doubt
have produced a better assessment of classical determinism than I have
managed.

Whatever the outcome on the substantive issues, it is clear that
the long-standing confident pronouncements about classical deter-
minism have been premature. It wasn’t until quite recently that hard
mathematical results on existence and uniqueness were obtained, and
important questions remain open. Classical determinism is not the
mummified relic that philosophical literature portrays it to be, but a
living and breathing creature capable of generating surprising twists and
turns.

NOTES

! Following the discussion in Sec. 2 below on the connection between space-time
symmetries and symmetries of laws, the condition for Laplacian determinism can be
formulated as follows. For any physically possible (M, {G,}, { Ps}) and (M, { G}, {Pj})
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and any diffeomorphism 4: M - M (onto) and any plane of absolute simultaneity
SCM,if d(S)=3S, d*G, = G,, and d*Py(p) = Py(p) for all p € S, then d*P; = P
everywhere. (d*O denotes the dragging along of the object O by d.) For reasons which
will emerge below, Leibniz would have wanted to weaken the requirement of deter-
minism as follows: for any physically possible (M, {G,}, { Ps}) and (M, {G,}, {P3}) and
any diffeomorphism &: M = M (onto) and any plane of simultaneity § C M, if
dS)= S, d*G, = G,, and d*Py(p) = Py(p) for all p €S, then there is a dif-
feomorphism d': M —~ M (onto) such that *G, = G, and d"*Py = P} everywhere.

? See my (1979) paper for some ideas on how this trick might be accomplished.

* This example is taken from Pollard (1966). The somewhat dated though still valuable
classic reference on celestial mechanics is Wintner (1947).

* This point is brought out in Geroch (1977).

> Widder's book (1975) is the definitive survey on what is known about the heat
equation.

® See John (1982) for definitions and examples of the concepts used in analyzing
partial differential equations.

7 This result was first obtained in 1944 by Widder; see Widder (1975).

% See Payne (1975). This monograph discusses various examples of partial differential
equations where uniqueness and/or stability fail.

® Seesec. 28 (“The Age of the Earth”) of Carslaw (1921).

1 We do not have a fully specified theory of electromagnetism until we have said what
kind of geometric objects E and B are or, equivalently how E and B transform under
Galilean transformations. It is known that there are two possibilities, both of which
have unattractive features; see Earman and Glymour (1982).

' See Lax (1973), from whom the present discussion is taken.

12 The classic reference to the physics of shock waves is Courant and Friedrichs
(1976).

13 For details, see again Lax (1973).

14 See Temam (1983) for a survey of what is currently known about existence and
uniqueness for the Navier-Stokes equation.

!5 But note for future reference that a non-substantivalist conception of space-time is
needed in the context of general relativity theory if determinism is to stand a fighting
chance of being true; see Ch. X below and Earman and Norton (1986).

SUGGESTED READINGS FOR CHAPTER III

None. The truth about determinism in classical physics, as I have tried to indicate in
this chapter, is both fascinating and complex. Unfortunately, it lies buried in technical
treatises and research papers in mathematical physics. I have no magic set of instruc-
tions for extracting it; if you are interested, you just have to start digging, following the
leads provided above.

rr-

CHAPTER IV

DETERMINISM IN SPECIAL RELATIVISTIC PHYSICS

Henceforth space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a
kind of union of the two will preserve an independent
reality.

(Hermann Minkowski, “Space and Time”)

The revolution which issued in the special theory of relativity (STR)
was not prompted by self-conscious reflections on the problems and
prospects of determinism in Newtonian physics. And yet there is a
remarkable overlap in the considerations which might have convinced
the dyed-in-the-wool determinist that something was badly amiss in the
classical conception of space and time and the considerations which led
Einstein to the relativistic conception. The determinist who does not
want to fight a never ending guerrilla war against invaders from infinity
needs a finite bound V,,, on the speed of causal propagation. But if
there is such a V,,,, then the operational significance of Newtonian
absolute simultaneity is called into doubt. The operational meaning of
clock synchronization is the subject of Section 1 of Einstein’s 1905
paper “On the Electrodynamics of Moving Bodies” which is generally
acknowledged to have laid the foundations of STR. Again, a finite
invariant velocity requires the introduction of absolute space, or its
equivalent, and the breaking of Galilean invariance. But Galilean
invariance is the classical expression of the lawlike equivalence of all
inertial frames, a principle supported by the great weight of experience.
Einstein also struggled with a version of this conflict in electrodynamics.
Both theoretical reasoning and experiment convinced him of two things;
first, that the (special) principle of relativity for mechanics extends to
electromagnetism in that “the same laws of electrodynamics and optics
will be valid for all frames of reference for which the equations of
mechanics hold good”; and second, that “light is always propagated in
empty space with a definite velocity ¢.” One of the stated aims of
Einstein’s 1905 paper is to reconcile these “apparently irreconcilable”
postulates.! How Einstein actually arrived at the STR and whether the
order of discovery paralleled the order of presentation in the 1905

55
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paper is a matter of controversy among historians of science.? But such
controversies need not detain us since we are interested in reading the
message of the completed theory for determinism.

In the popular imagination Einstein’s contribution to the discussion
of causality consisted of an heroic but fruitless tilting with the quantum
mechanicians over the question of whether God plays dice with the
universe. In fact, Einstein’s contributions to determinism were profound
— both profoundly positive and profoundly negative. Before his special
theory of relativity unproblematic examples of determinism were hard
to come by; after his general theory they are equally hard to find. This
chapter details the positive contribution while Ch. X explores the
negative contribution.

1. SPECIAL RELATIVISTIC WORLDS

Two of the three key assumptions characterizing classical worlds remain
intact for the special relativistic case: all the physically possible special
relativistic worlds are assumed to have a common fixed space-time
background, and the physical contents of each such world are specified
by giving the values of space-time magnitudes. However, as the
quotation from Minkowski indicates, Newtonian absolute simultaneity
vanishes.

The layman is apt to start with the prejudice that relativistic space-
time is a strange and complicated affair. Strange it may seem at first, but
complicated it is not. If the language of modern differential geometry is
used to compare Newtonian and relativistic space-times, it is the former
which comes off as complicated. To characterize the structure of
Newtonian space-time requires several distinct geometrical objects and
a number of mathematical conditions to assure the proper meshing of
these objects.’ But, as Minkowski first showed, all of the structure of
special relativistic space-time (hereafter, Minkowski space-time) flows
from a single object, the Minkowski metric.

Minkowski space-time consists of a space-time manifold M, usually
assumed to be the standard R* as in the classical case, and the
Minkowski metric 7. Technically (and pedantically), 7 is a symmetric,
non-singular tensor field of type (0, 2) and signature (+++—). ‘Type
(0, 2y means that # maps pairs of tangent vectors U, V on M into real
numbers 7(U, V). Symmetric means that n(U, V) = n(V, U). The
indefinite signature means that the tangent space at each point x € M
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possesses a cone structure which divides the space into three disjoint
regions as follows: V is timelike (respectively, spacelike, null or light-
like) according as n(V, V) < 0 (respectively, n(V, V) > 0, n(V, V)
= 0). The timelike portion of the cone has two separate lobes, and Fig.
IV.1 follows the usual convention of choosing the upper one to be the
future lobe and the bottom one the past lobe. How past and future are
distinguished by physics itself is part of the problem of the direction of
time, a problem we will bump into from time to time.

future timelike

spacelike spacelike

past timelike

Fig.1V.1

Part of what makes the STR special is the further assumption that 7
is flat or pseudo-Euclidean. On M = R* this means that it is possible to
choose a global coordinate system (x¢, t), a = 1, 2, 3 in which the
components 7, (i, j = 1,2, 3, 4) of 1 have the form #,; = diag(+1, +_1,
+1, —1). Such a system is said to be inertial. Suppressing two spatial
dimensions, the relation of two such inertial systems (x, ¢) and (x', ¢)
whose spatial origins coincide at ¢ = 0 is found to be given by

x + vt t+ovx

I = S s

For convenience, the velocity of light ¢ has been normalized to unity.

Putting ¢ back into (L), one has the more familiar form of the Lorentz
transformations:

I ,_ x+tu f = t + oxic

(&) x—:ll—v/c’ Jl—v/c
The invariance of the velocity of light is built into the geometry ab
initio, but if you prefer coordinate language, the constancy of ¢ can be
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verified by plugging into the relativistic velocity addition formula u’ =
u +o/(1 + uv/c?), which follows from (L").

A useful heuristic for thinking about the relation between Minkowski
space-time and Newtonian space-time is to view the latter as the result
of the former in the limit as ¢ “goes to infinity.” Intuitively, the light
cones collapse into planes of absolute Newtonian simultaneity and
algebraically (L') goes over into the Galilean transformations. (To make
this heuristic precise, one could, for example, choose a timelike inertial
direction field on Minkowski space-time and then collapse the light
cone at each point symmetrically about the chosen direction. The
limiting process recovers more than we may have wanted — not only
absolute simultaneity but absolute space as well.)

Our previous discussion of absolute time coupled with this heuristic
suggests that in relativistic worlds ¢ plays the role of the maximum
signal velocity. This will be taken for granted until Sec. 9 below.

2. DOMAINS OF DEPENDENCE

Domains of dependence in relativistic space-times are defined as before,
except that a causal curve is taken to be one which lies inside or on the
light cone rather than one which lies oblique to a plane of absolute
simultaneity. But to be more specific, a space-time curve is a differ-
entiable map o: I ~ M from some interval / C R into space-time M.
(Sometimes ‘curve’ will also be used to denote the image set of the map.)
o is timelike (respectively, null, causal) according as 6(A), A€ I, is
timelike (respectively, null, null or timelike). Such a o is future (respec-
tively, past) directed according as o(A), 4 € I, is future (respectively,
past) pointing. For R C M the future domain of dependence D*(R) of
R is defined as the collection of all points x € M such that every future
directed causal curve which passes through x and which has no past end
point meets R. The past domain of dependence D~(R) of R is defined
analogously.’

Pictured in Fig. IV.2 are some typical domains of dependence for
Minkowski space-time. Since these domains are non-trivial, Laplacian
determinism seems at least possible.

3. THE RELATIVISTIC FORMULATION OF
LAPLACIAN DETERMINISM

Though much more friendly towards determinism than its Newtonian
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t 1 null)

Fig.IV.2

counterpart, the special relativistic environment still contains pitfalls.
Any spacelike hypersurface can be thought of as a surface of simul-
taneity, and any global spacelike hypersurface (i.e., one which has no
edges) can be thought of as a time slice, the state on which is the ‘w'o.rld
at a given time’. This might lead us to try to ape the classical definition
as follows: world W € W is furistically (respectively, historically)
deterministic just in case for any W' € %/, if W and W’ agree on any
time slice, then they agree everywhere. In this form the doctrine of
Laplacian determinism is doomed to failure, as the reader who 1.1as
bothered to look at Fig. IV.2 will have already deduced. The spacelike
surface §; in Fig. IV.2(c) is a time slice, but its domain of dependence
includes nothing outside of the past lobe of the pictured null cone. To
stand a chance of being true, the doctrine must be more circumspect in
its choice of time slices. '
Any time slice S in Minkowski space-time divides all events into
three disjoint classes: those lying on S itself; those lying to the future
F(S) of § and those lying to the past P(S) of S. Call S a furure (re§pec-
tively, past) Cauchy surface just in case F(S) C D*(S) (respes:twely,
P(8) € D(S)). § is a Cauchy surface simpliciter just in case it is both
past and future Cauchy, or what comes to the same thing, D(S) =
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D*(S) U D~(S) is the entirety of Minkowski space-time. We can now
avoid the above pitfall by restricting the definition of global Laplacian
determinism to time slices which are Cauchy.

There is a slight embarrassment in imposing this restriction because
the statement that S is Cauchy is not a statement about S alone or about
a finite neighborhood of § but rather a statement about the entire
space-time. To see this, note that if a single point is removed from the
future side of S (see Fig. IV.3), then S is no longer a future Cauchy
surface. No point in the shaded region belongs to D*(S) and, in fact,
this punctured space-time contains no Cauchy surfaces at all. The
embarrassment can be overcome by reiterating the initial stipulation
that in special relativistic worlds the space-time is given once and
for all as Minkowski space-time. Cauchy surfaces thus always exist and,
further, can always be recognized by intrinsic features. If, for example,
the space metric induced on § by the Minkowski space-time metric is
Euclidean and S has no edges, then § is Cauchy for Minkowski space-
time.

\\/\///74y ¢0*(s)
\( Ve

= remove

J/

S

Fig.IV.3

In a general relativistic setting Cauchy surfaces do not always exist,
and when they do they cannot always be recognized by their local
characteristics and the embarrassment returns. But that is a matter to
be discussed later; for now, let us enjoy determinism while we can.

4. LAPLACIAN DETERMINISM — AT LAST!

We have non-trivial domains of dependence. We have Cauchy surfaces.
And we have more than enough space-time structure to avoid the pitfall
of Leibnizian determinism, for any isomorphism of Minkowski space-
time (i.e. any diffeomorphism of R* onto itself which preserves #) that
leaves fixed pointwise a Cauchy surface (say, + = constant for some
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inertial coordinate time f) must be the identity map. Laplacian deter-
minism thus has a secure launching pad in Minkowski space-time. But
we still need concrete examples of how in real physical processes
determinism can soar to the lofty heights of James’ vision.

Perhaps the simplest of all field equations that are Lorentz invariant
and have physically important applications is the homogeneous wave
equation. In one spatial dimension it reads

av.y du _ du _
arr  ox

It propagates influences with velocity ¢ (= 1) as can be deduced from its

characteristic equation (x + ¢ = 0) or from the form of the solution to

the initial value problem, which we now formulate.
At t = 0 we prescribe the initial data

)y ux0)=f(x)
du(x, 0)
ox

Assuming that f is C2 and g is C', there is a unique solution for ¢ > 0,
and it can be written in explicit form:

0

-0 < x < +o0
= g(x)

x4+t

AV2) u(x,ny=3i(f(x+e)+f(x—)+ J ) g(&)dé

No boundary conditions at infinity are imposed. No assumption that the
solution is C? is imposed; that follows from the problem set up. No
handwaving, no extra props, no pious prayers are needed. Given only
the law and the initial data of enough smoothness to assure that the law
holds in the ordinary sense at + = 0 we are guaranteed of a unique
solution for all future times. (A similar result holds for the past direction
of time.) No equivocation or shadow of turning in the past or future is
possible. Here is Laplacian determinism triumphant — at last!

5. HIGHER DIMENSIONS AND WEAK SOLUTIONS;
HUYGENS’ PRINCIPLE

The triumphant celebration above was for the flat-land of one spatial
dimension. In real three-dimensional space things are more complicated
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because the wave equation can focus roughness in the initial data from
different regions of space into a smaller region, causing a greater
roughness. But since only one degree of differentiability can be lost by
focusing, we could make sure of ordinary solutions by requiring that the
initial data functions f and g (now considered as functions on R?) are
respectively C? and C2. If the physics of the situation does not conform
to this requirement then a different approach is needed. For finite
systems a satisfactory approach exists.

Let us say that a solution u represents a finite system at time ¢ if (a)
u(x, t) and its first derivatives vanish except for x in some compact
region of space, and (b) at ¢ the energy of the system

av.3) E,) s””(%’:)z+ ) ( :x“a de

is finite. It is easy to see that if the system is finite at ¢ = 0, it is finite at
any later time. For by finite speed of propagation, if (a) holds at 1 = 0, it
holds at any ¢ > 0. Then by differentiating E, (¢) with respect to ¢ and
using (IV.1), it follows not only that energy remains finite, but it also
remains constant — finite systems are conservative.

The weak solutions of the wave equation for finite systems can be
obtained as limit points of the space of ordinary solutions where
convergence is measured in the ‘energy norm’ (the square root of the
energy). These limiting solutions are indeed solutions in the sense of
distributions and they restrict to initial value hypersurfaces so that the
Laplacian initial value problem is meaningful. For initial value functions
f and g such that 9f/0x® (a = 1, 2, 3) and g are square integrable,
uniqueness follows from conservation of energy. (If w, and i, are
solutions with the same initial data, then & = u, — u, is also a solution
with E;(0) = 0. By energy conservation, E;(t) = 0, t+ > 0. Since the
integrand of energy is non-negative, & = constant = 0.)

The condition (a) for finite systems can be relaxed for quasi-finite
systems where u falls off sufficiently rapidly as |x| = . For systems
which are not even quasi-finite, local energy conservation can be
maintained by erecting walls and taking into account the energy flux
through the walls. However, because of the finite speed of propagation
of the field, a walls strategy is not needed to secure local determinism.

Part of the content of Huygens’ Principle can be captured as a
statement about determinism. Choose any event p in Minkowski space-
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time and any Cauchy surface S lying to the past of p. Then the
intersection C7(p) N § is a compact subset of S. (Here C~(p) denotes
the causal past of p, i.e., the set of all space-time points g such that
there is a (possibly trivial) future directed causal curve from g to p.)
Huygens’ Principle then asserts that the state on an arbitrarily small
neighborhood of this intersection uniquely determines the state at p.
Effectively, disturbances propagate with exactly the speed of light,
making it possible to construct sharp signals which die out completely at
a spatial location within a finite time after the source of the disturbance
has been ‘switched off’. The wave equation in Minkowski space-time
satisfies Huygens’ Principle if and only if the number of spatial dimen-
sions is odd (John (1983)). Hyperbolic partial differential equations in
general do not exhibit Huygens’ Principle, for they typically permit
disturbances to propagate with a velocity less than that of light and the
disturbance can ‘ring on’ indefinitely after the source has been switched
off. In four-dimensional general relativistic space-times the wave equa-
tion exhibits Huygens’ Principle only under very special conditions; in
empty space solutions to Einstein’s field equations without cosmological
constant, i.e., the Ricci tensor vanishes (see Ch. X below), the conditions
are that the space-time is flat or else is a plane wave solution to
Einstein’s field equations (McLenaghan (1969)).

6. DOMAINS OF PREDICTION

Questions about scientific predictability are often posed in terms of
disembodied spirits whose intelligence may range over the entire spatial
extent of the universe (recall Laplace’s demon) or in terms of embodied
observers who are given information about the past and present state of
the world. But this approach leads to a never-never land form of
prediction that is unavailable to actual observers who are localized and
embodied and who are not ‘given’ any free gifts of information but must
ferret it out for themselves.

Towards a more realistic sense of scientific predictability, let us try
to define the notion of the domain of prediction DP(R) of a space-time
region R. Two constraints seem necessary. First, if events at a space-
time point x are to be predictable form R then from the perspective of
R they should not have already occurred; and second, if the events at x
are to be scientifically predictable from R then they must be in principle
determinable from the state at points from which it is physically
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possible for R to receive information. To capture these constraints,
define the causal past C°(R) of R to be U,z C7(p). Then the first
constraint can be stated as the condition that if x € DP(R), then
x ¢ C™(R). And the second constraint demands that if x € DP(R) then
x € D*(C™(R)).

If these two constraints are sufficient as well as necessary, then we
can set about computing domains of prediction for various choices of
R. If, for example, R is a Cauchy surface of Minkowski space-time,
then as expected, DP(R) consists of all the points to the future of S. To
apply this apparatus to the question at issue, we need to decide on an
appropriate R for embodied observers.

Consider first an idealized dimensionless observer whose world line
v is pictured in Fig. IV.4(a). At any moment in his existence, say, p,

DP(S)

Fig. IV.4(a)

Fig. IV.4(b)

C~(p) contains all those events about which the observer can gain
knowledge by direct observational means. The appropriate R for that
moment is thus p. But for any point p of Minkowski space-time,
D*(C~(p)) = C~(p), and so DP(p) = ¢. The observer can predict
exactly nothing. The more well-fed observer represented in Fig. IV .4(b)
by a world tube will have a non-empty domain of prediction associated
with his spatial extent at any moment. A moment in this fellow’s life is
given by a spacelike slice S through his world tube, and DP(S) # ¢.
But note that DP(S) lies entirely within his own corpulence so that, at
best, he can only predict the rumblings of his own innards. And even
this self-prediction is an unreachable ideal, for by the time the informa-
tion about the state of his body is transmitted along whatever serves as
his nervous system to a central processing location, the events to be
predicted will be past history to him. '

We have arrived at a curious situation. The structure of Minkowski
space-time makes futuristic Laplacian determinism possible by shield-
ing against the invasion of unsettling influences coming in from spatial
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infinity. But the very same structure seems to make it impossible for
embodied localized observers to cash determinism in for prediction.
For Popper there is no paradox here since he takes the above con-
siderations to prove that determinism cannot be true in special rela-
tivistic worlds.® I invite the reader to conclude that, to the contrary, we
have yet another reason to reject the equation of determinism with
predictability.

For the determinist who sees the cash value of determinism in pre-
diction, the modified two-dimensional Minkowski space-time pictured
in Fig. IV.5 is a dream come true. The causal past of any point p wraps
around the universe so that any causal curve without past end point
(e.g. y) must enter C~(p). Thus, DP(p) includes every point in the
complement of C~(p).” While examples of this sort are mathematically
intriguing, they are of little use to the observers who inhabit not dream
worlds but the postulated standard Minkowski worlds.

N
’ Cip )"

]

Fig. IV.5

Another way to restore predictability and boost determinism at the
same time would be to (i) ban source-free photons and (ii) require that
all photon sources as well as all nonzero rest mass particles do not, as
one goes backwards in time, asymptotically approach the velocity of
light as does the particle whose world line is labeled x in Fig. IV.4(a).
Computing domains of prediction using causal curves conforming to (i)
and (ii) has the effect that in Minkowski space-time D*(C7(p)) is not
only not empty but includes the complement of C~(p). One can imagine
a plausible scenario backing (i), but enforcing (ii) is going to be even
trickier than enforcing the ban on the Newtonian invaders from infinity.

The only alternative is to admit that even with determinism, predic-
tion in special relativistic worlds is a chancy affair. Using determinism,
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we can form, with complete confidence, hypothetical predictions, where
the hypotheses concern the state of the infinite universe or else the
influences that will or won’t penetrate the boundaries of a finite system.
Observation combined with inductive reasoning may recommend one
hypothesis over all others, but rarely, if ever, does the combination
yield a confidence that approaches the certainty with which Laplace’s
demon went about its prediction tasks.

7. PARTICLE MOTION: RETARDED AND ADVANCED
ACTION-AT-A-DISTANCE

A fair comparison of Newtonian and special relativistic worlds would
seem to demand that we examine the relativistic analogues of the
classical heat equation and the Newtonian equations of particle
mechanics. Unfortunately, there is no generally accepted relativistic
phenomenological heat equation. But it is assumed that any acceptable
candidate must be a hyperbolic partial differential equation, implying
finite speed of propagation for heat and making possible a well-posed
Laplacian initial value problem without need to impose boundary
conditions at infinity. The discussion of relativistic particle mechanics is
clouded by the widely held opinion that the spirit, if not the letter of
STR, implies that particles cannot act at-a-distance but must transmit
their influences by means of a field mechanism. Despite this opinion,
the physics literature contains a large and ever growing list of self-
consistent and Lorentz invariant theories whose only state variables are
particle variables. The self-consistency of these pure particle theories is
a non-trivial virtue, for theories according to which particles create
fields that in turn act back on the particle are often beset by divergence
difficulties.

The first fully Lorentz invariant particle theory was constructed by
Henri Poincaré (1906). Poincaré sought an analogue of Newton’s 1/r?
gravitational force law that would not only be formally Lorentz
invariant but would also reflect the intuition that gravitational action is
transmitted at the speed of light. The latter was taken to mean that for a
particle #1 moving under the gravitational influence of another
particle # 2, the instantaneous acceleration of # 1 at the point (x%, 1),
a =1, 2, 3 depends on the reciprocal of the square of the distance R;,
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from #2 to #1 at the retarded time t, = t, — R,,/c (= t, — R,, in our
units). R,; must satisfy the functional relation

R, (1) = | L (x3(0) = x§(t — Ryy(1)))?

*2

Fig.IV.6

Introducing four-vector notation, U ;9 = dx;/dsﬂ is the instantaneous
four-velocity of particle B (B = 1, 2), where x* = ¢ and s; is the proper
time of B, related to the coordinate time by dsg = deJ1 — o3, vg =
JZ3_, (dx§/dr)%. For the two particle system, Poincaré’s equation of
motion for particle # 1 reads

Gm, ( i i PlU;)
- X — Xy ——
Y

dU;  d%
V4 = =
™ 4 ds, 03

where x; and x, are evaluated respectively at # and #, and where
y = n;UiU}, and oz = n,(xi — xi)Uj. The equation of motion for
#2 is similar. (Aside: Why does the strange looking term o,U/y
appear on the right hand side of (IV.4)? It is a basic fact of Minkowski
geometry that instantaneous four-velocity and acceleration and ortho-
gonal, ie., n,;Uj(d Ujg/dsﬂ) = 0. The reader should verify this constraint
and show that (IV.4) meets it.) When the two particles are ‘stationary’ at
the respective times 4 and 4 ((dxj/df)(t5) = 0), then the spatial part
of Poincaré’s equation (IV.4) reduces to the Newtonian form

av.s) d’x}
' dr?

==Gmy(x{ — x8)/R3,
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In 1911 de Sitter studied a more complicated version of Poincaré’s
equations in which the right hand sides contain a multiplicative factor
of y". By choosing n appropriately, the anomalous advance of the
perihelion of Mercury can be accounted for. However, this choice of
value for n does not allow for a consistent treatment of the gravitational
red shift and it yields only one-half of the observed value for bending of
light passing near the sun.?

Similar delay-differential equations occur in the relativistic electro-
dynamics of charged particles. For two charged particles confined to
one spatial dimension such that x,(¢) < x,(¢), the equations are

ave) — a(t) K[l — ot~ Ry()
[1= 2] RO+ ot — Ryu(2))]
K[l + vl(t - Rlz(t))]

ny, (1)
[1— o3 RL([ — a(t — R(D))]

where o(¢) = X(t), the dot denotes differentiation with respect to ¢, the
constant K depends on the product of the charges, and the delays
satisfy

(AV.7) Ry (t) = [x;(t) — x(t — Ry (1))
Ryy(t) = |x(t) — x,(1 — Ryx(0))|

I will return to this case shortly since a good deal is known about the
initial value problem. But before turning to the details, some general
remarks about determinism in the present setting are in order.

First, particles which interact without the help of an intervening field
medium violate the principle of action-by-contact and resist attempts to
localize determinism. For the envisioned retarded action-at-a-distance
mechanism, the state on a local slice, such as the S pictured in Fig.
IV.6, cannot in general determine the state within D(S). In the diagram,
r € D*(S), but the state on S cannot determine the state at r, for the
retarded action from particle # 2 reaches r without registering on §;
since the postulated ontology contains only particle variables, there is
no means by which to record the passage of the action on S. (This, by
the way, tends to undermine the usefulness of the concept of domain of
dependence, as we have defined it, for pure particle theories.)

More disturbing yet is the worry that no form of Laplacian deter-
minism, local or global, will hold. To generate the worry, we need only

-
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consider a very simple time delay equation with constant delay; namely,
(AV.8) X(6)=—x(t—n/2).

The ‘obvious’ initial value problem is to set the value of x at £ = 0, e.g.
x(0) = 0. But this data does not determine a unique solution since, for
instance, Asin(¢) solves the initial value problem for any value of the
constant A. Specifying ¥(0) fixes the value of the constant A for this
solution, but there are still other solutions. Indeed, no matter how
derivatives of x are given at + = 0, a unique solution is still not
determined (Driver (1977)).

The next best thing to having the future determined by an infinitely
thin slice of the history is to have it determined by a finite portion of
the past history. Thus, let us suppose that for ¢ € [—z/2, 0] x(¢) is
given: x(t) = 6(¢), where 6(¢) is arbitrarily specified, without regard
to whether it satisfies (IV.8), except for meeting the initial condition
x(0) = 6(0). To find a continuous extension of @ into the future to a
function satisfying (IV.8) we proceed in steps. In the first step we look
at the interval [0, +x/2]. For this interval (IV.8) is reduced to the
ordinary differential equation x(¢) = ~—6(¢+ — &/2), which can be solved
explicitly. With this solution in hand we can iterate the procedure to
extend the solution to the next interval [+n/2, +37/2], etc. (Driver
(1977)).

Such examples give hope that the time-delay equations of special
relativistic gravitation and electrodynamics are also deterministic in the
near-Laplacian sense that a finite sandwich out of the past history
determines the entire future. Of course, the physics problem is
enormously more difficult than the artificial one from the preceding
paragraph since we are now dealing with non-constant delays which
depend upon the unknown solution. Not until the 1960’s was this
problem shown to have a positive outcome for electrodynamics, and
then for the special case of two charged particles moving in one
dimensional space. Driver (1963) showed that if the trajectories x,(¢)
and x,(¢) are given for ¢ € [a, ], —© < a < {, then there is a unique
solution of (IV.6) for ¢ € [1,, B), B > ¢, which continuously extends the
initial functions; and further, either § = 4+ or else there is a collision
ast ~ f~.

The hypotheses on which this result is proved are mostly unnote-
worthy, technical conditions, save the one that asserts that at £ the
functional relations (IV.7) for the delays are solvable. It might seem that
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this must always be attainable if a is made negative enough, but the
must here is not the must of mathematical necessity as illustrated by the
past hyperbolically accelerated particles of Fig. IV.7. Neither of the
delay equations can be solved for ¢ < . What this means physically, of
course, is that no retarded influence from either particle can reach the
other before #. We should thus give the system of equations (IV.6)—
(IV.7) a more subtle reading. Consider candidate histories x,(f), x(¢),
for ¢ < ¢, with |v,(¢)| and | 25(¢)| both less than c. If a solution of (IV.7)
exists for R,,(f) (R,,(?)), then the equation for #,(¢) (2,(¢)) stands as
stated in (V1.6); but if no solution for R, (¢) (R,,(¢)) exists, then the
right hand side of the equation for 4,(¢) (7,(¢)) is to be set equal to zero.
Under this interpretation the trajectories pictured in Fig. IV.7 do not
pass muster since they do not satisfy 4,(¢) = 4,(¢) = 0 for all ¢t < ¢. If
all other cases where either R,; or R,, fails to be defined could also be
shown to fail to pass muster in this way, then we could restate the
uniqueness result in the following form: assume that the reinterpreted
(IV.6) is valid for all ¢+ < &; then a finite portion of the past history
uniquely determines the future. I would guess that this is so for the two
particle case in general, but it is conceivable that with three or more
particles moving under their mutual retarded actions we can obtain past
hyperbolic acceleration, which in this setting is the unsettling analogue
of the Newtonian particles that appear from spatial infinity (recall the
discussion of Ch. IlI above).
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Fig. IV.7

More remarkably, Driver and coworkers have shown that despite
what the cautionary examples like (IV.8) led us to expect, Newtonian
initial data — instantaneous positions and velocities on a time slice —
uniquely determine a solution for two like-charged particles (repulsive
forces), again confined to one spatial dimension. The proof assumes
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that (IV.7) is solvable for all past times. It proceeds by first establishing
that Newtonian data fix a unique past solution and then appeals to the
previous result to conclude uniqueness for the future as well (Driver
(1969); Hsing (1977)). There are some restrictions on the initial data
(such as that the particles be sufficiently separated and are not
approaching each other too quickly at the initial moment) but these are
relatively mild. What one would like is for the assumption that (IV.7) is
satisfied to be shown either to be dispensible or else to be justified
along the lines suggested above. Otherwise it looks as if fiat is doing
some of the work determinism should be doing.

Most remarkable of all, Driver (1978) has shown Laplacian style
determinism to hold for some special cases of two-body motion when
the retarded action is replaced by the time symmetric scheme of half-
retarded plus half-advanced action. In particular, if two identically
charged particles move symmetrically about the x-axis, they must come
to rest at some moment, at which time they are at their minimum
separation. Then if this separation is sufficiently large, Newtonian initial
data determines a unique solution of the time symmetric version of
Av.6)—(1V.7).

Is Nature trying to tell us that Laplacian determinism will out in even
the most unexpected cases, or are these results artifacts of the
specialized problem sets — two particles, repulsive forces, one spatial
dimension, sufficiently large initial separation, etc.? An indication
towards the latter is given by numerical computations by Anderson and
von Baeyer (1972) which suggest that in the symmetric half-retarded,
half-advanced scheme, non-Newtonian degrees of freedom emerge if
the minimum separation is smail enough. But much more evidence is
needed before a confident answer can be given. What is interesting for
our purposes is that faith in Laplacian determinism is strong enough
that there is no lack of suggestions for means for quashing the non-
Newtonian degrees of freedom, should they exist (see Anderson and
von Baeyer (1972)). For instance, a correspondence principle has been
proposed which would rule out any solution which does not go over to
a Newtonian solution as ¢ —+ . This principle does its work, but in an
unattractive way; for it starts from a lack of faith in the relativistic
equations of motion and then proceeds to try to patch up these
equations by appealing to another theory known to be false and
superseded by relativity theory. But by now we know that there are no
lengths to which true believers in Laplacian determinism are unwilling
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to go in order to preserve their belief. Still, it is somewhat disconcerting
to realize that, just as in the Newtonian case, the faith was in place prior
to the establishment of hard results for the Laplacian initial value
problem.

8. INSTANTANEOUS ACTION-AT-A-DISTANCE

If instead of using delay terms we could write the relativistic equations
of motion in Newtonian form, acceleration at an instant = function of
positions and velocities at the same instant, then presumably Laplacian
determinism would hold. Conversely, if instantaneous positions and
velocities uniquely determine past and future trajectories, then we can
write positions and velocities at a time as functions of the possible
initial values. Differentiating the velocity function with respect to time
gives acceleration as a function of initial values. Then solving the
position and velocity relations for the initial values and inserting the
result into the acceleration equation gives acceleration at ¢ as a function
of positions and velocities at t. The trouble, of course, with either of
these directions is that it is not at all evident that Lorentz invariant
equations of motion are attainable in the desired form.

The point is subtle. There is no difficulty in writing Lorentz invariant
instantaneous action-at-a-distance equations; what is difficult is to
assure both Lorentz invariance and a proper Laplacian initial value
problem. Consider again the case of two particles. At the point p on the
world line of particle # 1 erect the instantaneous four-velocity U} of
#1 (see Fig. IV.8). Then draw the spacelike vector V* which is
Minkowski orthogonal to Uj (1,U}V’ = 0) and which reaches to the
world line of particle # 2. At the point ¢ where V' touches # 2 erect
the four-velocity U} of # 2. The equation of motion for # 1 will be
assumed to have the form

av.o) m 20 =y, v, Ul

ds
where F{ is a four-vector concocted from the indicated arguments. For
example, an analogue of Newton’s 1/r* law of gravitation is obtained by
setting

Cmm,V'

AV.10) F{ = =7

(V = (,7” Vi Vj)l/Z)
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Fig.IV.8

From the point of view of the instantaneous rest frame of # 1, only
instantaneous quantities are involved. But now consider # 2. Starting at
the event g we draw the spacelike vector ¥/ which is orthogonal to U}
and which reaches to the world line of # 1. At the point r where V"
meets # 1 we erect the four velocity U} of # 1. The equation of motion
for # 2 is of the form

i dU P
| AV-11) my <t = FYUL V), 0)

By symmetry, we choose
Cmm,V'

V3
When #1 and #2 are instantaneously at rest (U{ and U} parallel),
then V' = —V/and U} = Ui, and the initial value problem appears to
assume Newtonian form. But in general, data from more than one event
on each of the particle trajectories seem to be needed to fix a unique

@AV.12) Fi =

solution.’
To get a surefire Laplacian initial value problem we can try another
il tack, now suppressing all but one spatial dimension for ease of
T presentation. In the (x, ¢) frame we try to write the ordinary accelera-
- tp 4t
. / # | »2
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tions #,(p) and #,(q) of the particles #1 and # 2 at the simultaneous
events p and q as functions of the instantaneous distance and velocity
of the other particle:

(IV.13) 4(p) = L(x(P) — x(q): wi(P): :(q))

5(q) = f(x(P) — x(q), v(P), v:(q))

In the barred frame (%, ¢) p is simultaneous with § and ¢ is simul-
taneous with p (see Fig. IV.9), so if the same lawlike relations hold in
the barred frame as in the unbarred frame, we must also have:

(AV.14) 5,(p) = f(£(P) — %(q), 51(P), 2(4))

55(9) = H(A(P) — %(9) 71(P), :(4))

The Lorentz transformations give us the relations between 5 and &
taken at the same space-time point, and they also give the relation
between p and ¢ on one hand and p and g on the other. These
relations in turn impose restrictions on the functions f; and f,. These
restrictions were obtained in differential form by Currie (1966) and
independently by Hill (1967) and were later solved in implicit form by
Hill (1970).!° There are non-trivial solutions so that the Lorentz-
invariant instantaneous action-at-a-distance formalism is at least mathe-
matically consistent.

For the force functions which satisfy the Currie-Hill instantaneous
action-at-a-distance scheme, we have a Newtonian type initial value
problem and Laplacian determinism. But it is legitimate to ask whether
we have determinism as anything more than a formal mathematical
trick. The answer turns on several factors. It depends in the first place
on what kinds of interactions can be accommodated in this formalism.
Unfortunately, not enough is known here since only a few explicit
force functions fitting the scheme have been constructed. The answer
depends also on some tricky interpretation problems. For example,
what happens if a bystander pokes particle # 1 at event p? We seem to
get the conflicting results that as viewed in the (x, f) frame the effect
will be felt by #2 at event g, but as viewed in the (%, ) frame the effect
on #2 won't be felt until the later event §; and in either case we seem
to have a signal traveling faster than light. As an initial response, it is
fair to say that the equations of motion apply only to closed systems,
and that they cannot be expected to yield consistent answers when the
system is exposed to external perturbations. However, we should be
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able to add the source of the perturbation to the original system to
obtain a combined and now closed system; but if the perturbing
influence is to be described as a local interaction between the
perturbing source and the particle in question, then exactly the same
considerations as before suggest that a clash occurs with the non-local
instantaneous action-at-a-distance description of the particle interac-
tions. In this way Hill (1967a) was led to postulate that, for example,
the measurement of the position of a particle cannot be described as a
purely local interaction between the measuring instrument and the
particle in question but involves a non-local interaction of the instru-
ment with the other particles. Yet another suspicion arises when the
scheme is extended to include more than two particles, for then it is
found that the forces cannot be written as sums of two-body forces.
Field theorists will see this holistic character of the forces as a vestige of
the fields which have been suppressed in the pure particle description.

9. TACHYONS

We have assumed that faster-than-light propagation of mass-energy is a
relativistic impossibility. The assumption seems safe on two sorts of
grounds. First, it was part of the motivation for leaving Newtonian
space-time for Minkowski space-time; thus, to challenge the assumption
seems to imply a challenge to the relativistic conception of space and
time. Second, once we are in Minkowski space-time, the assumption
seems to be secured for both fields and particles. Lorentz invariant field
equations, e.g., the scalar wave equation and Maxwell’s electromagnetic
field equations, propagate fields at the speed of light. For non-zero rest
mass particles a simple calculation shows that an infinite amount of
energy is needed to accelerate the particle from a speed v < cto v =c;
and for v > c¢ the various formulae involving factors of |1 — »2/¢? turn
into gibberish.,

The advocates of relativistic tachyons argue that there is a loophole
through which these swift particles can fly. Tachyons don’t have to be
accelerated to a speed exceeding that of light since they always have
and always will travel at superluminal speeds. The gibberish formulae
which would result if, per impossible, slow moving tardyons could be
accelerated to superluminal speeds are reworked and reinterpreted to
tell a coherent story for tachyons. And finally, it is urged, no problem
about relativistic simultaneity results since tachyons cannot be used to
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send ‘messages’ by which distant clocks could be non-relativistically
synchronized.

I will not attempt to adjudicate the tangle of issues surrounding
tachyons. All I want to do here is to emphasize that tachyons don’t have
to exist in the actual world to arouse new alarms for determinism.
Determinism, remember, is a claim about all physically possible worlds,
and Laplacian determinism seems to stumble over the mere physical
possibility of tachyon flight. In the (x, ¢) frame of Fig. IV.10, the
tachyon track y appears as an infinitely extended object which exists
for but a fleeting instant. Since it has no history which registers on any ¢
= constant slice before or after the one that contains it, both historical
and futuristic Laplacian determinism seem to falter when initial data are
given on an arbitrary ¢ slice. In the barred frame (%, ¢) shown, y
appears to be the track of an object which is moving swiftly from ¥ =
400 to ¥ = —o0, and this object leaves its tracks on every { = constant
slice. But determinism formulated with respect to this slicing is
threatened by the tachyon track y which in the barred frame is seen as
a momentary object going nowhere and in the unbarred frame as an
object moving swiftly from x = —o0 to x = +c0.

ta gt /4._"““

Fig. V.10

Both to tolerate the physical possibility of tachyon flight and secure
the possibility of Laplacian determinism for at least some slicings, we
could seek to corral the tachyons so that they cannot roam the entire
range but are confined to some finite speed ¢ > c. But to make that an
invariantly meaningful restriction, we would need to add some addi-
tional structure to Minkowski space-time, e.g., perhaps describing
tachyon flight by a second Lorentz signature metric 77 whose cones are
‘wider’ than the light cones of the Minkowski metric 7 describing
tardyon behavior. Redefining ‘spacelike,’ ‘domain of dependence,
‘Cauchy surface,” etc. to suit the tachyonic metric 7} restores the
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possibility of Laplacian determinism in tachyonic worlds. Exactly how
physics is to be done in such a bi-metric setting remains to be seen, but
clearly this setting carries us beyond the bounds of the orthodox special
relativistic conceptions of space and time.'!

To attain a peaceful coexistence between tachyons and determinism
in orthodox Minkowski space-time other strategems could be tried. For
example, the flight of the free tachyons ¥ and y in Fig. IV.10 could be
curtailed by declaring against free tachyons and requiring that all
tachyons are emitted by tardyonic matter. But what counts as a source
and as an emission in one frame will appear as a sink and as an
absorption in another frame. The requirement can be made symmetric
and invariant by declaring against any loose tachyonic ends, i.e., that
both ends of a tachyon world line terminate in tardyonic matter. But we
will want to know how Nature manages so neatly to tie up loose ends,
and in the absence of such an explanation we may begin to suspect that
tachyons are merely a facon de parler device for talking about how
tardyonic particles act upon one another by ‘exchanging’ swift particles.

Lacking a satisfactory way to establish peaceful coexistence, the
determinist will see a strong argument against the possibility of
tachyons; the tachyon enthusiast will see more evidence of the fragility
of the doctrine of determinism.

10. CONCLUSION

From the perspective of determinism, special relativistic physics is
emphatically not just ‘more of the same.’ For the first time we
encounter examples where it is clear that any equivocation or shadow
of turning in future events is ruled out by the combination of the
present state of affairs and the laws of physics, unaided by fiat,
stipulation or pious hope disguised as ‘boundary conditions’. At least
this is so for relativistic field theories. For particle theories the situation
is less clear cut, for there remain open questions of mathematics and
physical interpretation, both for the retarded and/or advanced and the
instantaneous-action-at-a-distance approaches to relativistic particle
mechanics. Tachyons threaten to undermine the toehold Laplacian
determinism has thus far managed to establish, for these swift particles
are the relativistic counterparts of the Newtonian influences which
appear from or disappear to spatial infinity without portent or trace.
The light cone structure of Minkowski space-time was initially assumed



78 CHAPTER IV

to shield against such surprises, but to the extent that the shield is
porous, Laplacian determinism is just as much in jeopardy as it was in
Newtonian worlds.

This chapter reconfirms a lesson learned in Ch. II; namely, we can’t
just read off the lesson for determinism from various branches of
physics, for the implications we read will depend upon judgments about
the adequacy of physical theories and those judgments will depend in
turn on our views about determinism. This circularity need be no cause
for alarm; indeed, it is what makes determinism a useful instrument for
probing ontological and methodological problems. The probe is some-
times sharp, sometimes blunt, but nearly always guaranteed to locate
something fundamental.

NOTES

! Einstein (1905). The paper is reprinted in English translation in Perrett and Jeffrey
(1923).

2 For some opinions on the matter, see Miller (1981) and Earman, Glymour and
Rynasiewicz (1982).

3 The reader interested in the details should consult Friedman (1983).

4 For details, see Malament (1984).

5 Some authors define D*(R) using timelike curves rather than causal curves. This
difference makes only for a difference in the boundary points of D*(R).

¢ Popper (1982); recall the discussion from Ch. IT above.

7 For other intriguing examples where relativistic prediction is possible, see Geroch
1977).

8 For a review of Poincaré type theories of gravitation, see Whitrow and Morduch
(1965).

? ‘Seem’ because very little is known about existence and uniqueness of various forms
of the initial value problem for equations such as (IV.9) and (IV.11). ,

1 Hill's work was directly motivated by a desire to have a properly posed Laplacian
initial value problem for relativistic mechanics; see Hill (1982).

1 In this connection, see Nordtvedt (1974).

SUGGESTED READINGS FOR CHAPTER IV

For the historical background to STR, consult Miller’s (1981) Albert Einstein’s Special
Theory of Relativity. There are literally dozens of textbooks on STR; three good ones,
each with somewhat different virtues, are Pauli’s (1958) Theory of Relativity, Synge’s
(1964) Relativity: The Special Theory and Meller’s (1972) The Theory of Relativity. The
initial value problem for the relativistic wave equation is treated in John (1982) Partial
Differential Equations. Driver's (1977) Ordinary and Delay Differential Equations is a
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readable source of information about existence and uniqueness for delay equations in
general, but the reader interested in the electrodynamics problem in particular will have
to consult Driver's research papers. Kerner’s (1972) The Theory of Action-at-a-
Distance in Relativistic Particle Dynamics contains reprints of some of the basic papers
on the relativistic instantaneous action-at-a-distance formalism.



CHAPTER V

DETERMINISM AND LAWS OF NATURE

The problem is sometimes put in the form that we
all distinguish between uniformities due to natural law
and those which are merely accidentally true, ‘histori-
cal accidents on the cosmic scale’; if natural laws are
just uniformities, how can this distinction be made? It
seems to me foolish to deny (as some Humeans do)
that such a distinction is made in common speech; but
it also sccms perfectly sensible to try to give the
rationalc for this distinction within the ambit of a
constant conjunction view.

(R. B. Braithwaite, Scientific Explanation)

We have made a start on understanding what properties laws of nature
must have if the world is to be deterministic, but nothing much has
been said about what laws of nature are, about what distinguishes laws
from non-laws. And, strictly speaking, we are in the embarrassing
position of having no examples to work with, for none of the examples
of so-called laws cited in previous chapters is truly a law since what is
asserted has proven to be false (and, by meta-induction, a similar fate
awaits every such example??). This realization need cause no undue
alarm if we are willing to apply to the history of science a Principle of
Respect, recommending that when we encounter a textbook example of
a ‘law’ we assume, unless there are specific contextual indications to the
contrary, that (1) the scientists of the period had good reason to believe
that what the ‘law’ asserts is true (or approximately true), and (2) the
scientists of the period were justified in believing that, if what the ‘law’
asserts is true, then it does indeed express a law of nature. While I
agree with the spirit of this principle, 1 think that some caution is
required in applying it. In the young sciences it may be a struggle to
find any informative generalization that works tolerably well, and so the
standards of lawhood may be lax. We can avoid this problem by
looking only to the mature sciences for our examples. But in the mature
sciences the search for laws is constrained by the record of past
successes and failures; research scientists assume, consciously or not,
that the candidate laws must have a certain mathematical form, must
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incorporate certain variables, must conform to certain symmetry and
invariance principles, must reduce in special cases to the old ‘laws’,
must mesh with ‘laws’ in allied fields, etc. Here opposing snares await
us. One is the vulgar relativism of seeing the notion of law so
inextricably tied to a scientific community, a research tradition, or
whatever that only historical reportage is possible. The other is the
arrogant abstractionism of supposing that an analysis of laws amounts
to no more and no less than finding a core concept that cuts across
every branch of science and every period in the history of science. I will
be careful to avoid the snare of relativism, but 1 will knowingly step into
a mild form of the abstractionism snare as it applies to modern physics.
For my focus in this chapter is on the attempts of philosophers of
science to provide an abstractive analysis of laws of physics. My main
concern will not be so much with the rather thin character of these
attempts as with the discordance which has recently grown to the extent
that it cannot be ignored. While unanimity is an unattainable and even
undesirable goal in philosophy, something is amiss when we cannot
agree even approximately on how to understand a notion that is funda-
mental to the study not only of determinism but to the methodology
and content of the sciences in general.

When in doubt it is a good practice to return to the source. In this
case the source is David Hume.

1. HUME’S DEFINITIONS OF ‘CAUSE’

Hume defined ‘cause’ three times over. (Recall: The constant conjunc-
tion definition says that a cause is “an object precedent and contiguous
to another, and where all the objects resembling the former are plac’d
in a like relation of priority and contiguity to those objects, that
resemble the latter.” The felt determination definition takes a cause to
be “an object precedent and contiguous to another, and so united with
it in the imagination, that the idea of the one determines the mind to
form the idea of the other, and the impression of the one to form a
more lively idea of the other.”! And finally, in the Enquiry, but not in
the Treatise, Hume defines a cause as “an object followed by another

. where, if the first object had not been, the second never had
existed.”?)

The two principal definitions (constant conjunction, felt determina-
tion) provide the anchors for the two main strands of the modemn
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empiricist accounts of laws of nature® while the third (the counter-
factual definition) may be seen as the inspiration of the non-Humean
necessitarian analyses. Corresponding to the felt determination defini-
tion is the account of laws that emphasizes human attitudes, beliefs, and
actions. Latter day weavers of this strand include Nelson Goodman, A.
J. Ayer, and Nicholas Rescher. In Fact, Fiction and Forecast Goodman
writes: “I want only to emphasize the Humean idea that rather than a
sentence being used for prediction because it is a law, it is called a law
because it is used for prediction . ..” (1955, p. 26). In “What Is a Law
of Nature?” Ayer explains that the difference between ‘generalizations
of fact’ and ‘generalizations of law’ “lies not so much on the side of facts
which make them true or false, as in the attitude of those who put them
forward” (1956, p. 162). And in a similar vein, Rescher maintains that
lawfulness is “mind-dependent”; it is not something which is discovered
but which is supplied: “Lawfulness is not found in or extracted from
the evidence, but it is superadded to it. Lawfulness is a matter of
imputation” (1970, p. 107). By contrast, the constant conjunction
definition promotes the view that laws are to be analyzed in terms of
the de re characteristics of regularities, independently of the attitudes
and actions of actual or potential knowers.

Hume himself gives passing acknowledgement to the fact that the
two strands can diverge.* And where they diverge, I follow the constant
conjunction strand and declare my starting assumptions that whatever
our beliefs, we could be mistaken because there is something to be
mistaken about — the distinction between uniformities due to natural
laws and those which are merely cosmic accidents is to be drawn in
terms of features of the uniformities and not in terms of our attitudes
towards them.> At the same time I readily concede that this strand
cannot be successfully woven into an account of laws by completely
ignoring the other strand, for while ontology need not follow epis-
temology, our account of laws must explain how it is possible to form
rational beliefs about what the laws of our world are. The hope is
that this epistemological constraint can be met without becoming so
entangled in the felt determination strand that we become captives of
the Goodman-Ayer-Rescher web.

Against this hope I sense a rising sentiment among philosophers of
science that the problem of giving a regularity analysis of laws bears an
ominous resemblance to the problem of providing a criterion of ‘cogni-
tive significance’ to separate empirically meaningful assertions from
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metaphysical nonsense. It was initially an article of faith among the
positivists and logical empiricists that such a criterion must exist and
that providing it in a suitable form was only a matter of finding the
appropriate technical formulation. But as attempt after attempt fell into
the philosophical waste bin this faith has given way to an indifferent
agnosticism or, worse, an insipid lip service. If a similar ignominious
fate awaits the regularity account of laws, then it would seem best to
redirect our efforts elsewhere.

A growing band of philosophers is already at work in the elsewhere,
constructing a non-empiricist conception of laws. But before turning to
their views, let us review the sources of dissatisfaction with the standard
regularity account and explore the prospects of improving it within an
empiricist framework.

2. THE NAIVE REGULARITY ACCOUNT

The crudest form of the regularity account puts laws of nature and
Humean regularities into one-one correspondence. In the linguistic
mode favored by the logical positivists, this account might be rendered
thus:

(H)  Laws are what are expressed by true lawlike sentences.

What makes the naive regularity account naive is the assumption that
‘lawlike’ can be captured by syntactical and semantical conditions on
individual sentences. E.g., S is lawlike just in case § is general in form
(say, a universal condition (x)(Fx O Gx) so dear to philosophers
determined to make use of their required symbolic logic course) and
the predicates are suitably kosher (‘F’ and ‘G’ are non-positional,
purely qualitative, non-Goodmanized, etc.) This is, to be sure, sloppy
and vague, but the impression given by the older references was that all
the mysteries of laws would disappear once the appropriate technical
apparatus was applied to make notions like ‘generality’ and ‘non-
positional predicate’ really precise.5

We do not need to await the outcome of the technical maneuvers.
W. A. Suchting, David Armstrong, and other down-under philosophers
have done such a thorough demolition job on the naive regularity
account that we can be confident that no way of fiddling with the details
of (H) will produce a defensible version. I will just remind you of some
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of the considerations and refer you to Armstrong (1983) for further
details.

There is first the difficulty of uninstantiated lawlike generalizations.
To exclude all such generalizations from law status is too severe;
witness Newton’s First Law (“If the net impressed force acting on
a massive body is zero, then the body moves inertially”) whose
antecedent is very unlikely to be instanced in a universe well populated
by massive particles obeying 'Newton’s Law of Universal Gravitation.’
Contrariwise, to welcome in all uninstanced lawlike generalizations has
even more unwelcome consequences, for then the vacuity of the
antecedent condition would mean that (x)(Fx O Gx), (x)(Fx D G'x),
(x)(Fx D G"x), etc., where Gx, G'x, G"x etc, may be pairwise
incompatible, are all laws. Such contrary ‘laws’ are intuitively repug-
nant, and they pose difficulties for the widely accepted view that laws
license subjunctive conditionals. If o (which as a matter of fact is non-
F) were F, would it be G, or G’, or G, etc.? A uniform treatment of
uninstanced generalizations is unacceptable. But what basis does
the naive regularity theorist have for treating such generalizations
differentially?

The problem of uninstanced generalizations pales beside the prob-
lem of instanced lawlike generalizations which, by the judgments of
philosophical intuition and the history of science, do not correspond to
laws. Reichenbach’s old example still suffices: “All bodies of pure gold
have a mass of less than 10,000 kg.” This statement is general in form;
its predicates are surely kosher; and it is widely instanced. But even if
we were assured that it is true, we would not regard it as expressing a
law. Nor would it help to be given the further assurance that the known
instances are not exhaustive or that there are an infinite number of
instances (so that the generalization is not equivalent to a finite
conjunction of singular statements). Such assurances would do nothing
to convince us that Reichenbach’s generalization is a generalization of
law rather than of fact.

Can the separation of generalizations of law from generalizations of
fact be effected by de re features of regularities, or as empiricists are we
forced to grasp the safety cord of Hume’s felt determination definition?
My strategy for answering this question will be, first, to state general
constraints on an empiricist account of laws and, second, to explore the
prospects and problems of constructing a more appealing regularity
account within the confines of these constraints.

i

i

i
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3. THE EMPIRICIST CONSTRAINTS

I will state the constraints in a form that may be distasteful to some
empiricists. But to mix a metaphor, while I can genuflect before Hume’s
altar with the best of them, I am no knee-jerk empiricist. I see no
reason to deny ourselves whatever analytical tools may help to shape
the issues into a manageable form. Without further apology, I state the
basic or 0-th empiricist constraint as

(EO) Laws are contingent, ie., they are not true in all possible

worlds.
Next, | propose two forms for further constraints:

(F1)  For any possible worlds W, W,, if W, and W, agree on __,
then W, and W, agree on laws.

(F2)  For any possible worlds W, W,, if W, and W, agree on laws,
then W, and W, agreeon _.

The blanks are to be filled in by non-question-begging empirical
features. ‘All Humean regularities’ is such a feature, but if used as the
filling in both blanks it seems that the conjunction of the resulting
constraints forces us back to the naive regularity account.

The filling I prefer for the blank in (F1) produces the following
constraint:

(E1)

For any W,, W,, if W, and W, agree on all occurrent facts,
then W, and W, agree on laws.

I will refer to (E1) as the empiricist loyalty test on laws, for I believe it
captures the central empiricist intuition that laws are parasitic on
occurrent facts. Ask me what an occurrent fact is and I will pass your
query on to empiricists. But in lieu of a reply, I will volunteer that the
paradigm form of a singular occurrent fact is: the fact expressed by the
sentence P(o, t), where ‘P’ is again a suitably kosher predicate, ‘0’
denotes a physical object or spatial location, and ‘¢’ denotes a time.
(This is a qualitative version of one of the classical world assumptions
used earlier (see Ch. III).) There may also be general occurrent facts (I
think there are), but these presumably are also parasitic on the singular
occurrent facts. Conservative empiricists may want to restrict the
antecedent of (E1) so as to range only over observable facts while more
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liberal empiricists may be happy with unobservable facts such as the
fact that quark g is charming and flavorful at . In this way we arrive at
many different versions of the loyalty test, one for each persuasion of
empiricist.

The well-known motivations for (E1) fall into two related categories.
There are ontological argument and sloganeering (“The world is a
world of occurrent facts”), the two often being hard to distinguish. Then
there are epistemological arguments and threatenings, the most widely
used being the threat of unknowability, based on two premises: we can
in principle know directly or noninferentially only (some subset of)
occurrent facts; what is underdetermined by everything we can in
principle know non-inferentially is unknowable in principle. T will
return to this argument in Sec. 12 below. The argument connects back
to the ontological if we add the further premise that what isn’t
knowable in principle isnt in principle.?

Finding a filling for the blank in (F2) which produces a defensible
but not toothless constraint is more difficult. Consider:

(E2) For any W, W,, if W, and W, agree on laws, then W, and
W, agree on regularities entailed by the laws.

This lacks bite in the case of non-probabilistic laws, but it is of some
help in separating some of the views on the nature of physical prob-
abilities. Hardcore frequency theorists would hold if W, and W, agree
on lawful probabilities and if they both contain infinite repetitions of
the relevant chance experiment, then they must agree on limiting
relative frequencies; but the hardcore propensity theorist will counter
that while agreement of relative frequencies is likely, it is not manda-
tory. However, a more important difference between frequency and
propensity theorists concerns (E1) and the grounding of physical
probabilities on occurrent facts (see Sec. 9 below and Ch. VIII). Little
use will be made of (E2) in what follows.

Two things remain uncaptured by (E0)—(E2). Neither can be stated
in the form of a tidy constraint, but nonetheless each is an important
part of the empiricist conception of laws. The first is the intuition
that appropriate qualitative and quantitative differences in particular
occurrent fact and general regularity make for differences in laws (E3).
The second intuition is that there is a democracy of facts and regu-
larities in that each has a vote in electing the laws (E4). The worry
about (E4), of course, is whether democracy can prevail without

,,,,,,
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degenerating into the mob rule of the naive regularity view. And the
problem with (E3) is that it seems impossible to specify ahead of time
in a content and context free manner what counts as an appropriate
difference. That (E3) and (E4) are painfully vague does not mean that
they are useless; on the contrary, a good check on any proposed
implementation of (E0) and (E1) is how well it makes sense of (E3)
and (E4).

In the next section 1 will review what 1 take to be the most promising
approach to laws which fulfills the above constraints and which
maintains firm contact with Hume’s constant conjunction idea. I will
capitalize the e in ‘empiricism’ to indicate my brand of empiricism.
There are other and perhaps better brands, but this one recommends
itself as a useful foil.

4. MILL, RAMSEY, AND LEWIS

John Stuart Mill, as thoroughgoing an Empiricist as they come, was no
naive regularity theorist. Humean uniformities are often called laws in
common parlance; but scientific parlance is quite another thing:

Scientifically speaking, that title [Laws of Nature] is employed in a more restricted sense
to designate the uniformities when reduced to their most simple expression. (1904,
p.229)

This ‘restricted sense’ is explained more fully a little further on:

According to one mode of expression, the question, What are laws of nature? may be
stated thus: What are the fewest and simplest assumptions, which being granted, the
whole existing order of nature would result? Another mode of starting the question
would be thus: What are the fewest general propositions from which all the uniformities
which exist in the universe might be deductively inferred? (1904, p. 230)

When allowance is made for the fact that Mill assumed determinism,
his conception of laws seems to correspond exactly to Frank Ramsey’s,
or rather to David Lewis’ de-epistemologized version of Ramsey.
Ramsey’s dictum was that laws are “consequences of those propositions
which we should take as axioms if we knew everything and organized it
as simply as possible in a deductive system” (1978, p. 138). Lewis
suggests we expunge the reference of knowledge in favor of conditions
on deductive systems, known or unknown: “. . . a contingent generaliza-
tion is a law of nature if and only if it appears as a theorem (or axiom)
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in each of the true deductive systems that achieves a best combination
of simplicity and strength” (197 3a, p. 73). Deductive systems are

deductively closed, axiomatizable sets of true sentences. Of these true deductive
systems, some can be axiomatized more simply than others. Also some of them have
more strength, or information content, than others. The virtues of simplicity and
strength tend to conflict . . . What we value in a deductive system is a properly balanced
combination of simplicity and strength — as much of both as truth and our way of
balancing will permit. (1973a, p. 73)

Many other forms of the idea that lawhood attaches to individual
regularities only via their membership in a coherent system of regu-
larities could be cited,” but for the moment let us stick with the
Mill-Ramsey-Lewis version and enumerate its virtues.

I take it as evident that the M-R-L account does satisfy the basic
Empiricist constraints (E0Q) and (E1), does provide for the democracy
of facts and regularities (E4) without surrendering to the mob rule of
the naive regularity account, and does provide a framework for under-
standing what sorts of differences in particular fact and general
regularity make for differences in laws (E3). It also has the virtue of
explaining why laws have or tend to have various ‘lawlike’ charac-
teristics, such as universality (more on this in Sec. 6 below). It allows in
some vacuous generalizations without opening the floodgates to all.
And it connects in a direct and natural way to the actual practice of
scientific theorizing or at least to the most widely held reconstruction of
the practice in the form of the hypothetico-deductive method. In fact, in
much of the current literature on the structure and function of scientific
theories, ‘theory’ and ‘deductive system’ can be freely interchanged.

S. DEDUCTIVE SYSTEMATIZATION: A CLOSER LOOK

It is no criticism of M-R-L to note that simplicity and allied notions
such as coherence and systematization are vague and slippery, for so is
the notion of laws of nature. The question is whether the vaguenesses
and slippages match. That old nemesis, Reichenbach’s gold lump
generalization, gives pause. If this generalization is to be counted out as
a law by the lights of M-R-L it is because it is not an axiom or theorem
in the best (or each of the best) overall deductive systems for our world.
Consider then what would happen if we were to add it as an additional

4

[ Sy vt

LAWS OF NATURE 89

axiom. There would, by hypothesis, be a gain in strength. And,
presumably, there would also be a loss in simplicity. The loss must,
pace M-R-L, outweigh the gain. I will not say otherwise. But I do say
that it is not compellingly obvious that the scales tip in this way while it
is compelling that Reichenbach’s generalization is not to be counted as
alaw.

The trouble here may not lie with the squishy notion of simplicity
but with the seemingly more solid notion of strength. Lewis suggests
strength be measured by information content, and that is as good a
measure as any if we are interested in strength per se. But actual
scientific practice speaks in favor not of strength per se but strength in
intended applications; for dynamical laws this means strength as
measured by the amount of occurrent fact and regularity that is
systematized or explained relative to appropriate initial and/or
boundary conditions. The advantage offered by deterministic generali-
zations here is obvious: while they can be strengthened per se, they are,
in their intended applications, as strong as strong can be; for given the
state of the system at any instant, they entail everything true of the
system, past, present, and future, and any other generalization is either
incompatible or adds nothing to applied strength. This helps to explain
why we feel confident that in having discovered a simple set of true
deterministic relationships we have discovered laws. This is not to say
that determinism is either necessary or sufficient for a good trade-off
between simplicity and applied strength. If a deterministic set of
generalizations can be constructed only at the price of very high
complexity, then the scales may tip against determinism; but typically
the complexity must be great indeed before the tip becomes pro-
nounced. And when no set of true deterministic generalizations is
available, many different compromises between simplicity and strength
may recommend themselves. This helps to explain why, independently
of ontological considerations, determinism has been prized as a
methodological guide to scientific theorizing.

What started as an objection to the M-R-L account has turned into a
plus. Another plus comes from reflection on the notion of chaos. It is
tempting to define chaos as the absence of any pattern or regularity, but
the discussion in Ch. VIII will cast doubt on the coherence of this idea.
However, chaos as the non-existence of laws is explicable on the
M-R-L account. This form of chaos need not require that all regularity
is absent but only that the existent regularities are sufficiently weak and
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messy that there are no good compromises between strength and
simplicity.

In closing, I have to confess to a real worry about the M-R-L
account, or rather to the linguistic version I have been reviewing. Given
a choice of language — primitive predicates and logical apparatus — we
may be able to identify a best overall deductive system. But different
choices of language may promote different candidates for the role of
best system. These candidates may be incommensurable, not admitting
meaningful comparisons of simplicity and strength. Or else they may be
commensurable and equally good in their different ways, forcing us to
say either that there are no laws since there are no non-trivial axioms or
theorems common to all the best systems, or that the laws are relative
to a choice of language. These worries can be diminished by refusing to
give in to the logical positivists’ fear of the ontological and their flight to
the linguistic. Recall that my canonical formulation of determinism
assumes that the possible worlds can be characterized in terms of
space-time magnitudes. Worlds are thus isomorphic to sets of basic
propositions, each asserting that the value of such-and-such a magni-
tude takes a value of so-and-so at thus-and-such a spatio-temporal
location. The laws of the actual world are then the propositions that
appear in each of the deductively closed systems of general proposi-
tions that achieve a best systematization of the basic propositions true
of the actual world. So while different systems may employ different
concepts, there will of necessity be a strong common core.

6. LAWS AS UNIVERSAL AND ETERNAL TRUTHS

Different philosophers of science draw up different lists of properties
they think laws should have, but there is wide-spread agreement that
laws should express universal and eternal truths; that is, they should
apply unrestrictedly to all space and all time, and they should not
change with time.

The notion that laws ‘change with time’ is ambiguous as between
having a single law that is not time translation invariant vs. having
different laws in different epochs. I can offer no general criterion to
decide which case is which. What I can offer for the former category is
an analysis of the meaning of time translation invariance, its status as
a requirement of lawhood, and its connection with other symmetry
principles and with determinism. This I will do in Ch. VII. For cases
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which fall into the latter category we obviously have a violation of
universality since the putative laws apply only to limited stretches of
time.

No purely syntactical criterion can capture the intended sense of
universality. If we are clever enough we can always rephrase any
assertion so that it has the form (x)(¢)[...], which appears to assert
something about all space and all time. The appearance can be belied
by the intended meaning of the predicates and relations which fill the
ellipsis. To cite the standard example, (x)(¢)[P(x, t) D S(x, t)] appears
to be general in form and universal in scope, but if ‘P(x, #)’ means that
x is in Nelson Goodman’s left-hand trouser pocket for ¢ between
March 30 and 31 in 1948, the relevant sense of universality is absent. It
will not do, however, to exclude all predicates and relations whose
intended interpretations refer to particular spatio-temporal regions; we
can, for instance, formulate a relationship between the rate of expan-
sion of the universe and its mass content which refers explicitly or
implicitly to the initial ‘big bang’ but which applies to all space-time.

For a space-time theory in my sense we can easily express the
desired sense of universality in model-theoretic terms. Recall that the
intended models have the form .# = <M, 0,, 0,, ...) where M is
the space-time manifold and the 0; are geometric object fields on
M. For any subregion R C M, the restriction .# | of .# to R is
(R, 0y|g, Oyg, . ..). The putative law L of T lacks universality just in
case it does not apply to some non-empty R; intuitively, as far as L is
concerned, ‘anything goes’ in R. We can take this to mean that for any
logically possible .#,.# | satisfies L.

The M-R-L account of laws explains why universality is prized as a
feature of laws; namely, it promotes both strength and simplicity. Still,
is it conceivable that the occurrent regularities of the world could be so
structured that there is an obviously best overall compromise between
strength and simplicity involving ‘laws’ that are not universal? I will
leave it to the reader to construct and evaluate examples for herself. A
positive result will be counted against the M-R-L account by those who
promote the relations-among-universals view of laws since for them
laws are necessarily eternal and universal.

7. DEFEASIBILITY AND DEGREES OF LAWFULNESS

Mill has been read as defining laws as indefeasible or unconditional
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uniformities. This is, I think, a backwards reading. ‘Unconditional’ is
analyzed as “invariable under all changes of circumstance,” but the
range of circumstances that may serve as defeasors is defined to be
precisely those allowed by the “ultimate laws of nature (whatever they
may be) as distinguished from the derivative laws and from the
collocations” (Mill, 1904, p. 244). And these ultimate laws are defined
as the axioms of the M-R-L system. Thus, it is only when we have in
hand some candidate for the M-R-L axiom system that a defeasibility
analysis can begin.?

Ramsey had a similar idea in distinguishing four categories of
universal generalizations. At the top are the ultimate laws; then come,
in descending order, derivative laws, then those called laws “in a loose
sense,” and finally the universals of fact. Derivative laws are simply the
universal generalizations that are theorems of the best deductive
system. Laws-in-a-loose-sense are those general propositions deducible
using “facts of existence assumed to be known by everybody” (1978, p.
130). Universals of fact are the accidental or non-lawful generalizations.
Ramsey was quick to note that the last two categories cannot be sharply
separated. The separation rests on the amount of fact allowed in the
deduction; if, for example, determinism is true, all universals of fact can
be deduced from the ultimate laws together with enough facts of
existence. (This is why Mill, a determinist, defined the ultimate laws to
be the fewest general propositions from which all the uniformities
which exist in the universe are deducible.) Nevertheless, I agree with
Ramsey that the distinction is a useful one, and I propose to redraw it
in a somewhat more elaborate form and relate it to Mill’s defeasibility
notion.

Ideal and complete defeasibility of a universal generalization of fact
would show how its truth or falsity turns on contingencies by providing
(i) a two-fold partition of the initial/boundary conditions compatible
with the M-R-L axioms into those which together with the axioms
guarantee the failure of the generalization (the defeasors) vs. those
which together with the axioms guarantee the truth of the generalization
(the enablers), and (ii) a demonstration of how generic or exceptional
the enablers and defeasors are in the models of the axioms. The
suggestion then is that degrees of indefeasibility or lawfulness can be
assigned depending on the results of (ii). Those generalizations whose
enablers are exceptional (‘measure zero’) and whose defeasors are
generic are rightly called merely accidental, while those whose enablers
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are generic and whose defeasors are exceptional can approach
lawhood.

Such a classification scheme demands much of our laws — (i)
presupposes that the ultimate laws are appropriately complete, and (ii)
assumes that a suitable measure can be defined on the initial/boundary
conditions — and there is no a priori assurance that nature will answer
these demands. But as an example where such a defeasibility analysis
has been carried out, I would cite recent work on the singularities of
gravitational collapse as described by Einstein’s general theory of
relativity. The singularities first discovered in solutions to Einstein’s
field equations were thought to depend on the idealized features of the
special models under study (viz., perfect spherical symmetry). However,
several decades of work, culminating in the theorems of Penrose and
Hawking showed that the situation is just the reverse; singularities of
collapse develop under generic conditions (see Ch. X).

8. CHALLENGES TO THE REGULARITY ACCOUNT OF LAWS

The details of my Empiricist constraints will be filled in in different
ways by Empiricists of different stripes. And once the details are
supplied, it remains to settle on the best means of implementing the key
constraint (E1) by specifying how the occurrent facts determine the
laws; perhaps, as argued, a slightly modified version of M-R-L is the
best bet, perhaps not. All of this is subject to continuing discussion and
debate. But one wonders whether the basic thrust of the Empiricist
program as I outlined it is seriously discussible, or whether any attempt
at discussion quickly degenerates into an exchange of Empiricist and
anti-Empiricist epithets. In what follows I will try to describe challenges
to the Empiricist account in such a way that something can be learned
from the resulting debates, though eventual termination in irreconcil-
able intuitions is to be expected.

I will postpone until Ch. XI a discussion of the challenge the
quantum theory poses to the occurrent ontology presupposed in the
classical world view and in the Empiricist constraint (E1). However,
non-occurrent dispositions, potentialities, and propensities are all
encountered outside of the strange realm of quantum physics. Their
implications for a regularity account of laws will be taken up next. I will
then turn to the recent attack which has been launched against the
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regularity account by Armstrong, Dretske, Tooley and others who see
laws of nature as relations among universals.

9. DISPOSITIONS: THE GARDEN VARIETY TYPE

I want first to clear away two sources of misunderstanding about
dispositions, due ironically, to two of the most important contributors
to the subject, Rudolf Carnap and Sir Karl Popper.

On Carnap’s analysis of scientific concepts, disposition terms occupy
an “intermediate position between observation terms . . . and theoretical
terms” (1964, p. 63). Given Carnap’s epistemologically oriented con-
cern with testability and meaning, it is easy to appreciate the motivation
for his classification, but for our purposes the ontological dimension is
more important. Along this dimension, the contrast to dispositional is
neither observational nor theoretical but occurrent. And the disposi-
tional-occurrent distinction does not lie parallel to the theoretical-
observational distinction but oblique to it — theoretical terms may
denote either occurrent or dispositional properties (see Mellor (1971)
Ch. 4).

My other complaint is aimed at Sir Karl’s contention that

all physical . . . properties are dispositional. That a surface is coloured red means that it
has a disposition to reflect light of a certain wave length. That a beam of light has a
certain wave length means that it is disposed to behave in a certain manner if surfaces
of various colours, or prisms, or spectrographs, or slotted screens, etc., are put in its
way. (1962, p. 70).

Taken literally, Sir Karl’s remarks threaten to erase occurrent ontology,
leaving a squirming, twisting mass of dispositions. On further reflection,
however, it is clear that the sense in which all physical properties are
dispositional is a harmless guilt-by-association sense. As far as we
know, each physical property is joined to others by lawful regularities.
(And if this were not so, how could we know it was not so?) This is
especially true of properties denoted by theoretical terms because these
terms are usually introduced precisely for the purpose of formulating
. laws. Thus, that a beam of light has a certain wave length does ‘mean
that' the beam is disposed to behave in a certain manner whenever a
slotted screen is put in its way; that is, the relevant laws of optics license
the subjunctive conditionals about such behavior. But having a given
wave length is unlike having a pure dispositional property (say,
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solubility) in two related respects: the former is an occurrent property
and it has, in Carnap’s phrase, an ‘open texture’ in that its meaning is
not exhausted by any one or even a collection of such subjunctive
conditionals.

Garden variety dispositions, like solubility, hardly require Empiri-
cism to flex its muscles. We are confident that the secrets of disposi-
tions to dissolve are to be found jointly in (a) occurrent facts about the
micro-structure of salts and crystals and (b) laws couched purely in
terms of occurrent properties. Thus, to the extent that we are convinced
that the relevant laws pass the Empiricist loyalty test (E1), we can
likewise be confident that dispositions to dissolve do not hold non-
Humean powers:

(D) For any W,, W,, if W, and W, agree on all occurrent facts,
then W, and W, agree on dispositional facts regarding
solubility (and other garden variety pure dispositions).

Nothing in the more impassioned defenses of dispositions — such as
Mellor’s (1974) — moves me to abandon my Victorian prejudice.
Garden variety dispositions, like unmarried mothers, cannot manage
(it) on their own. And the success of science in showing how it is
managed on an occurrent basis makes claims to the contrary seem like
so much mystery mongering.

If it is mysteries you want they are ready and waiting for us once we
move from garden variety dispositions to physical probabilities con-
strued as probabilistic dispositions or propensities. I reject out of hand
the view of the finite frequentists who identify physical probabilities
with ratios in finite classes or sequences.!! This view fits the most
stringent form of Empiricism imaginable, but it makes analytically false
any assertion which sets probability equal to an irrational number and
also any assertion that makes the probability of the outcome of an
experiment p, for p strictly between 0 and 1, when as a matter of fact
the experiment is performed only once. Limiting relative frequencies in
infinite sequences of outcomes escape these difficulties, but, to com-
plete the march towards probabilities as dispositions, we need only add
that an actually infinite repetition of the relevant experiment is rarely, if
ever, to be found in nature.

Both the hypothetical frequency theorist and the propensity theorist
agree that physical probabilities are, in some sense, dispositions or
propensities.!? The difference, roughly speaking, is that the frequency
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theorist is guided by a determination to remain Empiricist and tends to
see probabilistic dispositions as reducible in much the same way we
supposed the disposition of solubility to be. The most radical of the
propensity theorists — those who assign probabilities to single cases —
resist reductionism and sail close to the conclusion that propensity
probabilities are non-Humean powers.

These issues will be developed in Chs. VIII and XI. In the remainder
of this chapter I will restrict attention to non-probabilistic laws.

10. TOOLEY’S CASE

David Armstrong, Fred Dretske, Michael Tooley, and Chris Swoyer
have all proposed that laws of nature are relations among universals.
Their views differ in interesting and subtle ways, but for the moment I
will lump Armstrong, Dretske, and Tooley together because they accept
the minimal Empiricist constraint (EQ) while Swoyer does not. The
triumvirate is also unanimous in rejecting any form of the regularity
account. As Armstrong puts it, “I am saying that we can keep the
Humean uniformities fixed, and vary the laws indefinitely” (1983, p. 71,
fn. 3). This is a disavowal not of (E1) but of the stronger

(E1) For any W, and W,, if W, and W, agree on all Humean
regularities, then W, and W, agree on laws.

But unless I misread Armstrong he intends to reject (E1) as well, as I
think he must if he wants to overthrow every variant of M-R-L.

In trying to understand the intuition behind the rejection of (E1) it is
useful to review a hypothetical case constructed by Tooley.

Imagine a world containing ten different types of fundamental particles. Suppose
further that the behavior of particles in interaction depends upon the types of the
interacting particles. Considering interactions involving two particles, there are 55
possibilities with respect to the types of the two particles. Suppose that 54 of these
possible interactions have been carefully studied, with the result that 54 laws have been
discovered, one for each case, which are not interrelated in any way. Suppose finally
that the world is sufficiently deterministic that, given the way particles of types X and Y
are currently distributed, it is impossible for them ever to interact ... In such a
situation it would seem very reasonable to believe that there is some underived law
dealing with the interaction of the particles of types X and Y . . . (1977, p. 669)

Tooley argues further that the best M-R-L system for his hypothetical
world will not contain any axioms or theorems describing how the
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unsociable particle species X and Y would behave if they were to
interact. Something has to give, and what gives, according to Tooley, is
the M-R-L account. It is then but a short step to the conclusions that no
form of the regularity account will work and that if we want truth
makers in the world for the underived laws about X—Y interactions,
we had best begin looking for relations among universals.

Leaving until later a discussion of the merits of the universals view of
laws, 1 want to respond to the attack on M-R-L. I begin by asking
Tooley how he can be so sure that the seemingly unsociable particle
species are not acting upon one another at-a-distance and that the
regularities of this interaction do not show up in the best overall
deductive system. Or how can he be so sure that there is no unified
particle theory which explains all ten species in terms of a more
fundamental particle (the quack, say, which comes in ten honks) and
which shows up as part of the best deductive system? The story can be
told in increasing detail so as to rule out these and other such possi-
bilities. But, the Empiricist would contend, the more such detail, the
more implausible it becomes that there is any truth to the matter of
laws about X—Y interactions.

Part of the intuitive appeal of Tooley’s example comes from the
meta-induction he invites us to make on the basis of the 45 laws
derived from observations of interactions of pairs of particles from
different species. 1 agree that such meta-inductions can override initial
first-order inductions where we build a M-R-L system on the basis of a
limited range of observed regularities. But in the limit where the basis
expands to include all occurrent facts and regularities, the meta-
induction must give way to the first-order induction. For example, a
meta-induction on derived laws may speak strongly in favor of some
conservation principle, and if this principle clashes with the results of
initial attempts to incorporate a newly discovered interaction into the
best deductive system, then the meta-induction may prevail, sending the
deductive system back to the drawing boards. But ‘back to the drawing
boards’ means collecting more information in the form of occurrent
facts and building a new deductive system on the broader basis. If no
matter how far we expand the basis, the axioms still conflict with the
conservation principle, then it is the meta-principle which must go.

The sophisticated Empiricist has no blanket prohibition against
uninstantiated laws; such laws may well emerge as consequences of
the axioms of the best deductive system. The unalterable Empiricist
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constraint is that such laws must perform in the service of the actual;
they must arise in the attempt to account for actual occurrent facts and
regularities. To hold otherwise is to break the grip the actual holds on
the possible. It is easy to imagine richer and more sociable worlds
where the species X and Y do interact and that from the regularities of
interaction we derive the laws. The trouble is that it is all too easy, for
we can imagine many such worlds, each with different M-R-L laws of
X—Y interaction. Armstrong’s way of putting the point seems to me
exactly right (see (1983), Ch. 8, Sec. 4). We do have the intuition that if
conditions were such as to permit X—Y intercourse, there would be
some sort of X—Y interaction laws. That intuition is, of course,
perfectly consistent with M-R-L if in each of the possible worlds where
intercourse is consummated, the regularities of interaction find their
way into the best deductive system. But there is, in this world, no truth
to the matter as to what form the laws of X—Y interaction would take;
for by Tooley’s construction there is nothing in actual occurrent fact or
regularity to allow us to say which of the possible worlds with X—Y
intercourse is ‘nearest’ or ‘most similar’ to this world.

11. NOMIC NECESSITY

The view of nomic necessity that first comes to mind upon hearing that
laws express relations among universals is that of the Idealists, viz.,
nomic necessity is but dimly perceived logical necessity (see Ewing
(1974)). A neo-lIdealist conception of laws has been recently assayed by
Christopher Swoyer (1982). For Swoyer, laws express non-contingent
relations among properties, or more precisely, relations which are
contingent only upon the existence or exemplification of the properties.
Hume’s ghost stirs. Surely, it quails, for any putative law involving
distinct properties, we can imagine a possible world where the proper-
ties are exemplified but the relation fails. But on the present proposal,
such imaginings are idle, for Hume’s move from conceivability to
possibility is illicit. You may think that you can dream up a possible
world where the electric and magnetic fields do not obey Maxwell’s laws,
but if Maxwell’s equations do indeed express laws, then the world you
dreamed up is but a dream and a bad dream at that. The E and B fields
of your dream may be like electric and magnetic fields in various ways,
but they are counterfeits, for Maxwell’s equations are constitutive of the
very nature of electromagnetism.
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While I agree that the step from conceivability to possibility must be
taken with care, I have no worry that in speculating about a world
where magnetic monopoles exist and where, as a result, Maxwell’s
equations have to be modified, ! am changing the meaning or the
reference of the term ‘electromagnetic field. Some physicists have
seriously proposed that the actual world contains magnetic monopoles.
The truth of this proposal does not make me worry that most electro-
magnetricians since Maxwell have been referring to nothing at all or
else to counterfeit electromagnetic fields. On the other hand, if I am
wrong and Swoyer is right, I want to know the error of my ways, and
not just in general philosophical terms but in specific cases. But I do
not see what evidence would indicate that science had uncovered a
relation between E and B which is truly constitutive of the electro-
magnetic field vs. a contingent relation which plays a central role in the
formulation of the best deductive system. I will return to the epistemo-
logical problem for contingent relations among universals in Sec. 12,

There is less agreement on whether Hume succeeded in banishing
contingent forms of natural or physical necessity. To decide the matter
we need to come to grips with physical necessity at least well enough to
know what we are banishing. On the Empiricist conception, it is not
coherent to present the metaphysics or semantics of physical necessity
by postulating physically possible worlds as a single distinguished
proper subset of the logically possible worlds, or to take the relation of
nomic accessibility to be a primitive. For the Empiricist, there are no
irreducible modal facts. A world W is a world of non-modal facts.
Uniquely associated W — L, with each such world is a set Ly, of
non-modal propositions true in W — the laws of W. To mark off the
elements of this set we may prefix ‘it is physically necessary that’, but
that prefix is merely an honorific. Accessibility is a defined relation, not
a metaphysical given: world W’ is nomically accessible from W iff the
Ly are all true in W’'. There are then myriad subsets of physically
possible worlds, each radiating outward from a logically possible world.
No one of these collections is more powerful or potent than any
other.1?

We can still ask whether physical necessity so construed can display
the trappings of strong necessity in the form of the §, and §; axioms.
Here the S, axiom says that physical necessity is robust in that it is
transmitted along the relation of nomic accessibility: if W’ is nomically
accessible from W, then Ly, € L,.. The S, axiom requires the converse:
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if W’ is nomically accessible from W, then L, < L,. The full S,
system then requires that Ly.=L,. It should be evident that the
M-R-L account of how the association W — L, is fixed is incompatible
with either S, or S;. Suppose, for example, that the laws Ly, of the
actual world W, are the laws of Newtonian mechanics. A world W’
containing a single massive particle moving inertially is nomically
accessible from W,. But, presumably, the best M-R-L system of W’ will
not contain Newton’s laws but instead an axiom to the effect that
all massive particles move inertially; so on the M-R-L version of
W Ly, Ly, & Ly,andLy & Ly,

Further, from the most basic of the Empiricist constraints, (E0) and
(E1), only Confrontational Empiricism is consistent with the full S;
system; that is, if the S5 system reigns, the Empiricist laws of two worlds
can differ only by being incompatible. The unattractiveness of the ways
to affect the association W - L, so as to produce Confrontational
Empiricism shows why the Empiricist would want to reject even the
formalism of strong necessity. There is, for example, Fascist Empiri-
cism: every fact corresponds to a law. Or Imperialist Empiricism: start
with a possible world W; choose some set of general propositions
true in W and declare them to be the laws L, of W; take all W's
nomologically accessible from W and declare the laws L, from W to
be the laws of W’; choose some W” outside the first circle and repeat
the construction; repeat again and again until all the possible worlds are
covered. Any analysis of laws that rejects (E1), while perhaps not being
couched in the terminology of strong necessity, will have something of
this imperialistic flavor since the putative laws will ride roughshod over
the occurrent facts.

Is there any reason to think that physical necessity should follow the
dictates of strong S; necessity so that, in fine philosophical fashion, the
above observations may be turned round and used as an argument
against the Empiricist account? At the risk of jousting with straw men, I
will note that Tooley’s interpretation of the particle example fits with
(but does not require) the intuition that nomic accessibility is a
symmetric relation so that the laws of X—Y interaction, as evidenced
by the regularities of interaction in richer and more sociable worlds,
can be brought back to the actual world. I have already said my piece
on this example and will say no more. As for the S, axiom, I sense that
necessitarians — whether they construe necessity in terms of one
property yielding or necessitating another or whether they hold a more
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orthodox modal construal — think that in order for a law to support a
counterfactual conditional, the law must not only be true in but must be
a law of the world in which the counterfactual situation is imbedded.
This is, I believe, a false view of counterfactuals. I will have more to say
on counterfactuals in the following section.

12. LAWS AS CONTINGENT RELATIONS AMONG UNIVERSALS

I have to this point neglected the most ambitious attempt to establish
the Armstrong-Tooley-Dretske thesis that laws are contingent relations
among universals. I will call it the transcendental argument. It has two
parts: if laws did satisfy the Empiricist constraints (E1)—(E4), then they
would not be able to adequately fill the roles they are supposed to play
in supporting subjunctive and counterfactual conditionals, providing
explanations, and in grounding induction; and, the argument continues,
it is only by adding relations among universals that laws can gain the
strength they need to discharge these roles.

Dretske’s version of the counterfactual complaint is representative.
The complaint is that on the regularity conception of laws, it is a
“complete mystery” how laws support counterfactals, for “To be told
that all F’s are G is not to be told anything that implies that if x were
an F, it would be a G” (Dretske (1977), p. 255). True but irrelevant.
The real question is whether to be told that it is a law that all F’s are G
is to be told something that implies (or, as I would prefer to say,
supports) the conclusion that if this x were an F, it would be G. On
behalf of Dretske I will reply: The answer must be negative on, say, the
M-R-L version of the regularity account. For then to be told that it is a
law that all F’s are G is to be told that all F’s are G and that this
regularity fits neatly with other such regularities to form a strong and
simple deductive system. But this just comes down to saying that some
regularity, more complex and comprehensive, but no different in kind
from all F’s are G, holds.

Not so fast! The fact that “All F’s are G” is an axiom of the best
overall deductive system for this world informs the judgment of
similarity we make when comparing other possible worlds to this world.
With this information in hand, that “All F’s are G” is true in world Wy
but not in W, is powerful, but not irresistible, persuasion that W, is
more similar to the actual world than is Wy. Couple this with Lewis’s
(1973) analysis of counterfactuals and subjunctives and we have a way
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of seeing how the M-R-L lawhood of “All F’s are G” supports the
subjunctive “If x were an F it wouldbea G™.

Armstrong’s counterfactual complaint (1983, Ch. §, Sec. 4) is that
judgments of comparative similarity are context dependent while the
truth and falsity of counterfactuals are not. On the contrary, I think that
the logic of counterfactuals is radically context dependent (see van
Fraassen (1981)) and that in some contexts we may judge some W),
world to be nearer actuality than any W, world and judge it to be false
that if x were an F it would be a G. But if one does not want such
results, then it can be added as a constraint on comparative similarity
that laws always have an overriding priority in assessing similarity. If
laws are contingent — whether on occurrent facts or on non-occurrent
facts about the relations of universals — then 1 do not see that there is
any other alternative;'* unless, that is, one is prepared to offer a wholly
different analysis of counterfactuals.

I turn now to explanation. Hardbitten Empiricists are apt to
disparage the notion of explanation. The Quine of “Necessary Truth”
allows that “in natural necessity, or our attribution of it, I see only
Hume’s regularities, culminating here and there in what passes for an
explanatory train or promise of it” (1976, p. 76). The Wittgenstein of
the Tractatus was more straightforward: “The whole modern conception
of the world is founded on the illusion that so-called laws of nature are
explanations of natural phenomena” (1961, 6.371). Empiricists would
do better, I think, to accommodate the notion of scientific explanation.
It is the universalist’s contention that no such accommodation is
possible. Thus, Dretske writes:

The fact that every F is a G fails to explain why any F is a G .. . The fact that all men
are mortal does not explain why you or I are mortal; it says (in the sense of implies)
that we are mortal, but it does not even suggest why this might be so . . . Subsuming an
instance under a universal generalization has as much explanatory power as deriving Q
from P - Q.None. (1977, p. 262)

Professor Armstrong’s complaint is similar:

All F's are G’s is a complex state of affairs which is in part constituted by the fact that
all observed F’s are G’s. ‘All F’s are G’s’ can even be rewritten as ‘All observed F’s are
G’s and all unobserved F’s are G’s’. As a result, trying to explain why all observed F’s
are G’s by postulating that all F’s are G’s is a case of trying to explain something by
appealing to a state of affairs part of which is the thing to be explained. (1983, p. 40)
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The remedy for this situation is supposed to be a linkage of
necessitation between the universals F and G; in Armstrong’s notation,
N(F, G), read “F-ness necessitates G-ness”. But the explanatory force
of such a linkage has got to derive not from the strength of the
necessitation but from its quality; as Armstrong warns, even the
strongest reasons for believing that something is or must be the case
need not explain why it is the case. What then is the quality of N(F, G)
which confers explanatory power? Dretske’s answer is that N(F, G) (or
in his notation, F — G) explains why this F is a G because it means
that “F-ness is linked to G-ness” in the sense that “the one property
yields or generates the other” (1977, p. 264). Armstrong’s answer is
that N(F, G) explains why all (observed) F’s are G’s because it unifies
the instances of the regularity (1983, Ch. 6).

The Empiricist has a ready response to these concerns. What the
universalists seek to achieve through ontological ascent, the Empiricist
achieves by ascent of explanatory level. Unification of observational
regularities is achieved by passing to higher level laws while evolu-
tionary accounts of how one set of properties yields or generates
another set are to be found in the dynamical laws of physics. The truth
of Kepler’s law, “For every planet, the radius vector from the sun to the
planet sweeps out equal areas in equal times,” may not explain why this
phenomenon is so for the earth and for all observed planets. But
Newton’s laws of motion coupled with his law of gravitation do explain
Kepler’s generalization and, thus, why particular instances conform to
it. The explanatory malaise feigned by the universalists is diagnosed not
as a symptom of a defect in Empiricist explanations but as a result of
the artificiality of philosophical discussions where the ‘laws’ discussed
are of the “All ravens are black” variety.

The universalists may reply that at each ascending level the explana-
tory malaise arises again. We will, for example, want to know why the
sun and the earth attract each other with a force inversely proportional
to the square of the distance between them, and Newton’s force law
does nothing to help us here since it simply asserts that this is so for
any pair of massive bodies. The Empiricist must concede that his brand
of empiricism does not provide for ultimate explanations in the you-
can’t-ask-for-anything-more sense. But then neither does the universals
conception. I may agree that being massive yields or generates gravita-
tional attraction, but this does not block my request for a fuller
and deeper understanding of the how and why of gravitation if, as
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Armstrong and Dretske would have it, the Idealists are wrong and the
relation between massiveness and gravitational attraction is contingent.
It took more than two centuries before the how and why were revealed
by Einstein. But his revelations came not in the form of a discovery of a
bonding of universals missed by Newton but in the form of a new level
of explanation in terms of space-time warps.

I turn now to a closer look at the nature and status of N(F, G).
N(F, G) is supposed to be contingent and more so than Swoyer’s thin
sense that it depends on the existence or exemplification of the
universals ' and G. But N(F, G) is not contingent on occurrent facts
— (E1) is violated; rather it is contingent on another category of facts
which transcend the occurrent. How then do we have epistemological
access to N(F, G)? If W, and W, share all occurrent facts, they are, by
Empiricist lights, the same world. For those who say otherwise the
Empiricist will crank up the unknowability argument, rehearsed briefly
in Sec. 3, in order to show that W, and W, are epistemologically
indistinguishable; so if N(F, G) holds in one but not the other of these
worlds, we could never know which was which. This indistinguishability
claim can be attacked in two ways. First, one could challenge the
Empiricist premise that only occurrent facts can be known directly or
non-inferentially and try to show how direct knowledge of N(F, G)
can be obtained. Second, one could challenge the second Empiricist
premise that what is underdetermined by everything which is in prin-
ciple directly knowable is unknowable in principle and try to show how
inferential knowledge of N(F, G) is sustained. Armstrong takes the first
route and Tooley the second.

At the end of Vol. Il of Universals and Scientific Realism Armstrong
suggests that we have non-inferential knowledge of nomic necessitation
via direct perceptual awareness of instances of causal connections
(1978, Vol. 11, pp. 162ff). This corresponds to knowledge of the
intermediate link in the chain

N(F, G) =# (x)N(Fx, Gx) = (x)(Fx O Gx)

where the arrow is an entailment relation'® and N(Fx, Gx) means that
x’s being F necessitates its being G. Strictly speaking, what we have is
direct knowledge that one event necessitates another, which knowledge
becomes upon reflection the knowledge that there exist universals F
and G and particular x such that x’s being F necessitates its being G. I
wish Armstrong had used What is a Law of Nature? to elaborate
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further on his earlier remarks. In the absence of further elaboration I
waive the well-worn Humean objection that upon reflection our knowl-
edge of causal sequence becomes knowledge of constant conjunction
and/or felt determination. But I do not waive my conviction that if
there is nomic necessitation, its ultimate springs are most likely hidden
from our view. The ultimate laws of nature, whatever they may be, will
most likely involve universals whose instancings correspond to states of
affairs which are not directly observable and which are thus knowable
only inferentially.

The subject of unobservability suggests an analogy that may be
helpful to the universalist in impeaching the second premise of the
Empiricist unknowability argument. Strict Empiricists have sometimes
sided against a realistic interpretation of scientific theories on the
grounds that theories are underdetermined by everything that is in
principle knowable by direct observation. Scientific realists respond
that such underdetermination is not fatal because we can have general
reasons for believing in the existence of unobservable theoretical
entities and specific reasons for believing one observationally equiva-
lent theory over another. The suggestion then is that the universalist try
to show that he can parallel the scientific realist’s response and in this
way demonstrate that realism with respect to relations among universals
is no worse off than scientific realism in general.

Some forms of the scientific realist responses do not appear to lend
themselves to this piggyback strategem. Unless Armstrong is correct
about our having direct perceptual awareness of instances of nomic
necessitation, the universalists cannot avail themselves of the slippery
slope response; viz., there is a blurred and shifting line between what
is and is not observable, with yesterday’s unobservable becoming
tomorrow’s observable. Nor can the universalist latch onto the goals of
science response; viz., in order to achieve, say, deterministic laws or the
linking together and systematization of observational regularities, it is
necessary to ascend to the theoretical level. Examples due to van
Fraassen (1980) and Rynasiewicz (1981, 1983) show quite conclusively
that the observational content of a theory T cannot be identified with
the set of observational sentences logically implied by T. A better
construction might go something like this. Start with the models of the
axioms of T; then take their observational reducts;!® then restrict the
domains of the reducts to objects which are directly observable. The
resulting set of models corresponds to the class of observational states
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of affairs allowed by 7. But most likely this class will not be an
elementary class in even the wider sense; that is, it will not be the set of
models satisfying some countable set of sentences (see Rynasiewicz,
1981), so even minimal systematization is not possible at this level. Of
course, the strict Empiricist will rejoin that the systematization afforded
by T is a pragmatic virtue, providing a reason to use T but no reason to
believe that its theoretical assertions are true. But this is a dispute I do
not wish to enter here.

Some scientific realists have held that prior probability considera-
tions can supply the grounds for favoring one theory over another even
when the theories are observationally equivalent. This strategy can by
piggybacked by the universalists, but I wonder whether Bayesianism is
the sort of piggy they want to back. The objectivist conception of
prior probabilities remains nothing more than a collection of vague
promissory notes. And the more popular subjective degree of belief
conception seems to cut little philosophical ice for the case under
discussion. Subjective degrees of belief can be assigned to hypotheses
about relations among universals, but then they can also be assigned to
hypotheses about anything you like — devils, angels, vital forces as well
as electrons. Numerical representations of opinions may be helpful for
certain purposes, but one expects more than mere representation of
opinions from an account of the testing and confirmation of scientific
theories.

More is to be found in Glymour’s Theory and Evidence (1980).
Glymour offers an objectivist account of qualitative confirmation which
overcomes some of the more egregious flaws of the hypothetico-
deductive view. His approach is essentially an extension of Hempel’s
idea that hypotheses are confirmed by deducing instances of them from
evidence statements. Glymour’s ingenious addition to this idea is a
‘bootstrapping’ operation by which instances of theoretical hypotheses
are deduced from observational evidence with the assistance of auxil-
iary hypotheses drawn from the theory being tested.!” I doubt that there
is help to be found here for the universalists. If ‘instances’ of N(F, G)
are instances of (x)(Fx D Gx), then Glymour’s account can help
to show how confirming instances are obtained from observational
evidence when ‘F’ and ‘G’ denote properties that are not directly
observable. But then what is being bootstrap confirmed is not N(F, G)
but its extensional counterpart. On the other hand, if ‘instances’ of
N(F, G) are instances of nomic necessitation, e.g., N(F, G) (a’s being
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F, a’s being G),'® then even when ‘F’ and ‘G’ denote directly
observable properties, I do not see how Glymour’s method can be used
to confirm a theory with axioms like N(F, G), at least not if, pace
Armstrong, observational evidence comes in the Humean form Fa &
Ga.

In sum, I can find no reason to share Tooley’s optimistic conclusion
that whatever account can be given for the grounds for accepting
scientific theories in general will serve as well as an account of the
grounds for accepting N(F, G).

I can already hear the reply of Profs. Armstrong and Dretske; viz. it
is not a matter of giving grounds for accepting N(F, G); rather,
relations among universals are presuppositions for induction and
confirmation. But I contend that relations such as N(F, G) are not
presuppositions in the sense of conditions without which the wheels of
confirmation would not turn.!” If it is said that such relations are
needed to make the machinery of confirmation intelligible, then we
have reached an impasse. 1 can no more accept this standard of intel-
ligibility than the ones set up by the Idealists and Rationalists.

In closing I want to make it plain that I do not suffer from one of
those strange afflictions that make some of my colleagues hanker after
desert landscapes or pant after particulars. 1 am fully convinced that
universals occupy an important place in our ontology. And I reject
Ramsey’s gibe: “But may there not be something which might be called
real connections of universals? I cannot deny it for I can understand
nothing by such a phrase ...” (1978, p. 148). I can understand
something by such a phrase, but my understanding of the use to which
Armstrong, Dretske, and Tooley want to put it is incompatible with my
understanding of empiricism.

13. CONCLUSION

What is missing in this chapter, and in most of the philosophical
literature reviewed here, is the texture and feel of real-life laws. That is
the sacrifice we made in attempting to abstract features common to all
natural laws. The reader will have to judge for herself whether the
results have justified the sacrifice.

I have attempted to obey Braithwaite’s injunction to remain within
the ambit of the constant conjunction view when giving the rationale for
the distinction between uniformities due to natural laws and those
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which are merely cosmic accidents. The Attitudinal theorists despair of
being able to satisfy this injunction, and in their despair they relocate
the source of the distinction from the uniformities to our attitudes
towards them. The Necessitarians and Universalists share this sense of
despair, but rather than resort to human attitudes they appeal, in the
former case, to irreducible de re modalities, and in the latter case,
to contingent relations among universals. I argued on empiricist
grounds that Necessitarian and Universals views are unacceptable. And
I tried to show that while there is no easy path to the satisfaction of
Braithwaite’s injunction, neither is there sufficient reason to submit to
the despair of the Attitudinalists.

A regularity analysis denies to laws of nature various forms of
necessity that some philosophers claim for them. This denial in turn
removes from determinism some of the sting Libertarians have felt;
whether enough of the string is drawn to resolve the determinism-free
will problem is an issue to be discussed in Ch. XII.

In previous chapters we have seen reasons for rejecting the notion
that determinism is an a priori truth or an indispensible presupposition
of scientific enquiry, but we have also seen that the force of deter-
minism is not captured by saying that it is merely a high level empirical
claim or a useful methodological guideline. The present chapter
confirms the special and peculiar status of determinism; for while it is
not essential to laws, it can and often does promote both strength and
simplicity, the combination of which we took (following Mill) to be the
essence of lawhood.

In Ch. HI I suggested that determinism can be used as a probe for
exploring the concepts of physical possibility and necessity. There is an
obvious and innocuous sense in which this suggestion can be taken:
namely, posit determinism and then see what presuppositions are
needed to make it work; these presuppositions then become candidates
for inscription on the list of natural laws. This suggestion involves no
circularity if the standards for judging candidacy do not themselves
presuppose determinism. And here we confront a difficulty: to the
extent that the measures of strength, simplicity, coherence, etc. used in
the M-R-L account of laws are not biased for or against determinism,
they are not precise enough to cleanly decide some of the tough
questions about determinism for Newtonian and relativistic physics. Is
the deductive system of Newtonian mechanics with the boundary
conditions at infinity needed to secure Laplacian determinism better
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than the system without these boundary conditions? Ditto for the
boundary conditions needed to make the classical heat equation
deterministic. Ditto for the entropy conditions needed to make the
shock wave equation deterministic. Ditto for the prohibition against
tachyons. Ditto for the conditions on the null cone structure needed to
make general relativistic worlds deterministic (see Ch. X). My own
answers are (in order): No; No; Yes; Don’t know; No; with the overall
tally going against determinism. But in every case I have to admit that
my judgment is unstable and has more the feel of an esthetic judgment
than a scientific judgment. And as in matters of esthetics, others give a
different series of judgments, with their tallies often more in favor of
determinism than mine. That the doctrine of Laplacian determinism has
no firm truth value for Newtonian and classical relativistic physics is a
conclusion some will find intolerable. Intolerable or not, the ambiguity
is one we have to live with, at least until someone can fashion the tools
to resolve it.

NOTES

! These are the versions of the constant conjunction and felt determination definitions
Hume gives in the Treatise. The definitions are repeated with some significant changes
in the Enquiry.

? This counterfactual definition does not appear in the first edition of the Enquiry.

3 Here I am following Suchting (1974).

4 See especially Secs. 13 and 15 of Bk. 1 of the Treatise.

5 For a more detailed discussion of this point, see Suchting (1974) and Armstrong
(1983).

¢ For an attempt to fill in some of the details, see Reichenbach (1954).

7 Unlikely but not impossible since the net impressed force acting on a particle can be
zero even when other particles are present. But the point is that we do not want the
lawfulness of Newton’s First Law to turn on such a happenstance.

8 This last move would yield the stronger version of (E1); namely, if W, and W, agree
on all occurrent facts, then they are the same world.

® See, for example, Braithwaite (1960), Berofsky (1968) and Tondl (1973); see
Suchting (1974) for a critical discussion.

10 It must be admitted that from this perspective Mill’s rather labored treatment of
Reid’s famous day-night example is anomolous; see Mill (1904, pp. 244—247).

' The only finite frequentists I can cite are Russell (1948) and Sklar (1973).

12 For a discussion of frequency and propensity theories and references to the
literature, see Ch. VIII below.

'3 The truth value semantics for this type of approach have been worked out by Dunn
(1973).
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14 This is one of the considerations that persuade Swoyer (1982) that laws are
contingent only upon the exemplification of the universals.

15 Hochberg (1981) has questioned the nature of this entailment relation. Armstrong’s
answer (1983, Ch. 6) seems satisfactory to me. What remains to be worked out is the
formal semantics of the entailment relation; whether this can be done consistently with
the constraints Armstrong places on universals remains to be seen.

¢ Roughly, just lop off all the terms which do not correspond to directly observable
properties and relations.

17 For Glymour the basic confirmation relation is three-place: evidence E confirms
hypothesis H relative to theory T. We can say that £ confirms T iff there is an
axiomatization of T such that E confirms each axiom A relative to 7. Glymour
originally allowed the use of the hypothesis H itself as an auxiliary in deducing
instances of H from E. But in later versions this feature has been dropped; see the
articles by van Fraassen and Edidin in Earman (1983).

18 Read: “a’s being F necessitates a’s being G in virtue of the universals F and G.”

1% Dretske (1977) says that lawfulness must be assumed for a general hypothesis H if
examined instances which conform to H are to raise the probability that unexamined
instances also conform to H. This I deny. If Pr(H) # 0, then it is a theorem of
probability that as the number of examined instances conforming to H approaches
infinity, the probability that any number of unexamined instances also conform to H
approaches 1. Perhaps it may be claimed that it is unreasonabie to set Pr(H) # 0
unless H is backed up by the appropriate relations among universals. This I also deny.

SUGGESTED READINGS FOR CHAPTER V

Chs. 4 (“Of Laws of Nature”) and 5 (“Of the Law of Universal Causation™) of Bk. III of
Mill’s (1904) System of Logic are the source of the modern regularity account of laws.
Suchting’s (1974) article “Regularity and Law” and the first part of Armstrong’s (1983)
book What Is a Law of Nature? detail the reasons why a growing number of philoso-
phers have become disenchanted with the regularity analysis. The view that laws of
nature are relations among universals is set out in the second half of Armstrong’s book
and in Dretske’s (1977) “Laws of Nature” and Tooley’s (1977) “The Nature of Laws.”
Skyrms’ (1980) Causal Necessity offers a resiliency analysis of laws that can be traced
back to Mill. Ayer’s (1956) “What Is a Law of Nature?” and Goodman’s (1955) Fact,
Fiction and Forecast defend a felt determination definition of laws. Necessitarian
accounts of laws are to be found in Ewing's (1974) Idealism and Kneale’s (1949)
Probability and Induction.

CHAPTER VI

DETERMINISM, MECHANISM, AND EFFECTIVE
COMPUTABILITY

“Garbage in . . . garbage out”

“Yeah but is it computable garbage?”
(Graffiti from wall of Men’s Room,
Experimental Engineering Bldg.,
University of Minnesota)

The examples of determinism studied in previous chapters should make
it clear that determinism does not entail mechanism in the crude sense
that determinism necessarily works by means of a mechanical con-
trivance composed of gears, levers, and pulleys. But it remains open
that determinism involves mechanism in the more abstract sense that it
works according to mechanical rules, whether or not these rules are
embodied in mechanical devices. In the converse direction we can
wonder whether mechanistic rules are necessarily deterministic. To
make such questions amenable to discussion we need a model of
mechanism and a codification of the rules by which the model works. 1
will take as the starting paradigm of mechanism the device which
increasingly and irresistibly colors modern life — the digital computer.
To understand the gist of operation of these devices it is best not to get
too abstract too quickly, but to begin with the minimal embodiment
described by Alan Turing in 1937,

1. TURING MACHINES

The inputs and outputs to a Turing machine are recorded on an infinite
paper tape which is divided into squares. In each square one of three
symbols, ‘0’, ‘I’, or ‘B’, appears. In its pristine state, before input,
the tape is completely blank (‘B’ printed in each square). The machine
‘scans’ one square at a time and performs one of the following basic
operations: it erases the symbol in the square it is currently scanning
and prints one of the other symbols; it shifts one square to the left; it
shifts one square to the right; or it puts up a flag and halts. For sake of
definiteness, we can suppose that one basic operation is performed per
second. The sequence of operations is governed by a finite list of
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deterministic rules. The guts of the machine, as distinguished from the
tape, are at any instant in one of a fixed finite set of states, s;, 5, .. .,
sy, one of which is the starting state s* and another of which is the
halting state s**. The rules of performance have the following form: if at
t; the internal state is ___ and the symbol on the square being scanned
is ___, then perform the basic operation ___ and shift into state ___ at
t;+,. Determinism here simply means that no two rules have the same
filling for the first two blanks but a different filling in either of the last
two blanks, and that there is a rule to cover each possible combination
of initial internal state and tape symbol. It is also understood that the
rules are time translation invariant, i.e., they are independent of the
index i on the time ¢;. An input to the machine will be a code m for a
natural number m with ‘0’ representing 0 and a string of m consecu-
tive ‘1’s representing a positive m. By convention, the input code is
flanked on both sides by ‘B’s with the first blank to the right of the code
being the square scanned when the machine is in the start state. If for
given input the machine does not halt, then by definition there is no
corresponding output. But if for given input the machine does halt, then
the corresponding output is defined as the tape code when s** is
reached, and it is arranged that the output code is flanked by ‘B’s with
the machine resting on the first ‘B’ to the left of the output (see Fig. VL1).

Start Finish

- BT {B]elel -

[ cPy]
Fig. V1.1

With any such machine we can associate a partial function f: N — N:
for me N, if the machine does not halt for input m, then m ¢ dom(f); if
the machine does halt for input 1 giving output 7, then f(m) = n. A
(partial) function of the natural numbers will be said to be Turing
computable just in case it is associated with some Turing machine.

It is intuitively compelling that any such function should count as
being effectively, mechanically computable, at least in principle. What is
not so clear is the converse. Part of the worry here can be removed by
proving that we do not get a larger class of computable functions by
enlarging the alphabet, or by allowing the machine to scan more than
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one square at a time, or by using two tapes instead of one, etc. But such
results do nothing to assuage the worry that a mechanical device
operating in a very different fashion could compute a Turing uncom-
putable function. For example, we might start with the Turing hardware
but operate it by non-deterministic rules which, for given internal state
and state of the square being scanned, allow for a (finite) number of
choices consisting of the next basic operation and the next internal
state. Of course, such a non-deterministic Turing machine cannot be
directly regarded as a function computing device if, for some input, it
halts for some but not all subsequent histories or else gives different
outputs for different halting histories. Nevertheless, we will say that f is7
non-deterministically computable just in case there is a (possibly) non-
deterministic Turing machine such that for each m € dom(f), the{
machine halts in some allowable history following the input 7, giving|
the output 7 where n = f(m), and for m ¢ dom(f), the machine does
not halt in any allowable history following the input 77. Intuitively, such
a function should count as being effectively computable; for we can
effectively generate sequences of selections from a finite number of
choices, and combining such a sequence with a non-deterministic Tur-
ing machine gives unambiguous instructions for computing a (partial)
function. So, evidently, determinism is not essential to this form of
mechanism. But any function computable by a non-deterministic Turing
machine can be computed by a standard Turing machine. This can be
seen by, first, using a three tape Turing machine which employs one
tape to hold the input, a second to generate a sequence of choices, and
a third to reproduce the results of one of its non-deterministic cousins
for the generated choices, and by, secondly, appealing to the fact that
a standard Turing machine can do everything a multi-tape version can
do. (In a sense, computing power may be gained by going to non-
deterministic machines, for by making clever or lucky choices non-
deterministic Turing machines may be able to accomplish tasks in a
smaller number of steps than their deterministic brethren. The follow-
ing is, apparently, an open question: If f(x) is computable by a non-
deterministic Turing machine in a time ¢(x) which is a polynomial in x,
is it also computable in polynomial time on a deterministic machine?)

One can still worry that some altogether different device, not
resembling either a deterministic or non-deterministic Turing machine -
in hardware or software, could compute a function not computable by
either type of Turing machine. Such doubts can never be entirely
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banished, but they are mitigated by the remarkable convergence of a
number of independent lines of investigation. For example, Kleene
offered a different definition of effectively computable functions of N
using the concept of recursiveness; but his definition picks out exactly
the same class of computable functions as does Turing’s. And other
definitions by Church, Markov, and Post and others also prove to be
extensionally equivalent to Turing’s.!

Church’s thesis (as it is called) that effective, mechanical computa-
bility for functions of N is to be identified with Turing computability, is
now accorded such faith that it is an acceptable mode of informal
argumentation to conclude Turing computability or recursiveness from
the existence of an informal algorithm.? The trick is to recognize when
an informal procedure corresponds to a genuine algorithm.

2. DETERMINISM AND EFFECTIVE COMPUTABILITY: FIRST TRY

The starting question as to whether determinism implies mechanism
can now be reformulated as a series of questions about effective
computability:

If the laws L are Laplacian deterministic, does it follow that there is an effective
procedure for generating the solutions of initial value problems? Will the (unique)
solution of any given initial value problem be an effectively computable function? Will
any solutions determined by effectively computable initial data be effectively com-
putable? Will effectively computable initial data always be transformed into data which,
at each future instant, will also be effectively computable?

To facilitate thinking about these questions, consider a deterministic
discrete state system that operates in discrete time. At each instant,
t=0, £1, £2, ..., the state of the system is given by specifying a
non-negative integer (‘occupation number’) for each of an infinite
number of slots (¢.g., number of balls in an urn, number of atoms at a
given energy level). Thus, a history of the system is a function ¢:
N X Z = N, where ¢(m, n) is the occupation number of slot m at time
n. The reader can amuse herself by constructing examples where the
allowed histories form a deterministic set but the questions posed
above have negative answers. Try, for example, to design deterministic
transition laws so that for some allowed history @, @y(*) = ¢(*, 0) is
Turing computable (i.e., the occupation numbers at time ¢ =0 are
effectively enumerable) but for some n > 0, ¢,(-) = ¢(-, n) is not
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Turing computable (i.e., the occupation numbers at {=n are not
effectively enumerable).

However, there is little payoff to be gained in pursuing such exam-
ples unless they can be brought to bear on realistic physical systems.
And here we meet a conundrum: all of the examples we have studied
from physics involve functions of the real numbers, but, so far, we have
given to characterization of effective computability for such objects. A
construction by Grzegorczyk promises to fill the gap.

But before turning to functions of the reals, it is worth noting that
the discrete state machine contemplated above affords another means
of characterizing effective computability for functions of the integers
that is extensionally equivalent to Turing’s but conceptually more
appealing. An unlimited register machine (URM)® consists of an infinite
number of registers R;, R,, ... each of which holds a natural number
r,. A program for operating this machine consists of a finite list of
instructions of four basic types. First, a zero instruction changes the
contents of a designated R, to O while leaving the other registers
unaffected. Second, a successor instruction adds 1 to the contents of a
designated R, while leaving the others unaffected. Third, a transfer
instruction interchanges the contents of two designated registers R, and
R,, again leaving the others unaffected. And finally, a jump instruction
compares thg contents of R, and R,, and orders the machine to
proceed to infruction number q or else to the next instruction accord-
ing as r, = r,, or not. A (partial) function f: N* = N is said to be URM
computable if there is an URM which computes it in the following
sense: if (a;, a,, ..., a,) ¢ dom(f), then the machine does not halt
when the initial contents of the registers are a,, a5, ..., 4,, 0,0, ...;
butif (a,, a,, . . ., a,) € dom(f), then with the initial contents a,, a,, . . .
, a,, 0,0, ...the machine does halt with b = f(a,, a,, ..., a,) in R,.
(To make the URM behave as a deterministic system in our sense, with
the contents of the registers at any time determining the contents at any
later time, we would need to add an initial register R, to hold the
number of the next instruction to be executed and also add to the
programming instructions a rule to modify r, in the appropriate way.
Ileave it to the reader to supply the details.)

Combining the remarks from the first part of the section with
the URM characterization of computability reawakens worries about
Church’s thesis. There are innumerable numbers of deterministic ways
to run the register machine that outstrip any standard URM. Why
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can’t some of these ways be used to compute a Turing uncomputable
function? Such questions will be held in abeyance until Sec. 7.

3. GRZEGORCZYK COMPUTABILITY

The strategy is to move along the well-charted path from the integers
through the rationals to the reals, effectivizing definitions as we go.
Thus, a sequence of rational numbers {x,} is said to be effectively
computable just in case there are three Turing computable functions
a, b, ¢ from N to N such that x, = (=1)‘™a(n)/b(n). A real number
r is said to be effectively computable if there is an effectively com-
putable sequence {x,} of rationals which converges effectively to r, i.e.,
there is an effectively computable function 4 from N to N such that
|r —x,| < 1/2™ whenever n > d(m). Taking {x,} = {X4eny}» it follows
that [r —x;| < 1/2" for all n. Continuing in this vein, a sequence {r,}
of reals is said to be effectively computable if there is a computable
double sequence {x,,} of rationals such that |r, — x,,| < 1/2" for all k
and n.

It remains to say what an effectively computable function of the reals
is. Grzegorczyk’s (1955) concept of effective computability for a func-
tion f of the reals was originally stated in terms of recursive functionals,
but this definition is not at all easy to apply to concrete examples in
analysis. Grzegorczyk (1957) showed that the original definition is
equivalent to several others, including the following which is the one
most often used by analysts:

(i) / is sequentially computable: for each effectively computable sequence {r,} of
reals, { f(r,)} is also effectively computable, and

(ii) f is effectively uniformly continuous on rational intervals: if {x,} is an effective
enumeration of the rationals without repetitions, then there is a three place Turing
computable function / such that |f(r) — f(r')| < 1/2* whenever x,, < r, r < x, and
lr—7r| < 1/l(m, n, k)forallr, r € Rand all m, n, k € N*

Yet another equivalent definition in terms of an effective polynomial
approximation of fis given by Pour-El and Caldwell (1975).

Provisionally accepting Grzegorczyk’s definition, we will go on to
use it to answer questions about the relation between determinism and
effective computability in physics.

MECHANISM AND EFFECTIVE COMPUTABILITY 117

4. DETERMINISM AND EFFECTIVE COMPUTABILITY:
ORDINARY DIFFERENTIAL EQUATIONS

Consider the first order ordinary differential equation
(VL1) (1) = F(z, $(2))

subject to the initial condition
(VL2) ¢(0)= ¢y

Uniqueness for the initial value problem is not guaranteed if we merely
required continuity of F. Suppose in addition we demand that F
satisfy a Lifshitz condition on a rectangle about the origin. (Recall
that this means that there are constants a, B, and K such that
|F(x, y) — F(x, y')| € K|y —y’| for all (x, y) in the rectangle |x| < a
and |y — @,/ < B. K is called the Lifshitz constant.) Then local exis-
tence and uniqueness theorems for the initial value problem are
forthcoming.

Moreover, the existence theorem actually provides an effective
procedure for cranking out a sequence of approximations converging to
the (unique) solution. The Oth approximation is just the initial value @,.
The next approximation is

(VL3) ¢i(1)=¢, + L F(&, ¢,)d&

and in general

(VI4) ¢(t)= ¢ t+ L F(&, ¢i-1(8))dE, k=1,2,3,. ..

The convergence of this sequence is uniform, and it is also effective
since given a, B, K and the bound M > |F(x, y)| on the rectangle, we
can effectively compute how many times the crank needs to be turned
to come within the desired approximation of the solution. Further, if F
is an effectively computable function and the initial value ¢, is an
effectively computable number, then the approximating functions ¢, are
also effectively computable since plugging a computable number in a
computable function, composing computable functions, and integration
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are all computability preserving operations. The upshot is that if F and
the initial data are computable, then so is the (unique) solution; for if
¢, — ¢ uniformly and effectively, then ¢ is Grzegorczyk computable if
the ¢, are.

Of course, we know by cardinality considerations that most of the
solutions of (VI.1)—(V1.2) will not be Grzegorczyk computable even
when F is; for there are an uncountable number of solutions but only a
countable number of computable functions. But it is remarkable that
the solutions picked out by computable initial data are computable and
that there is an effective procedure for generating them.

When the conditions needed to prove uniqueness are relaxed, then
even though F is computable, the non-unique solutions need not be; in
fact, there are cases where none of the solutions are computable (see
Pour-El and Richards (1979)).

Thus, there is a strong and deep connection between determinism
and effective computability for first order ordinary differential equa-
tions. Higher order ordinary differential equations can sometimes be
reduced to a system of first order equations, in which case the connec-
tion between determinism and computability carries over. For partial
differential equations the story is both more complicated and more
interesting.

5. DETERMINISM AND EFFECTIVE COMPUTABILITY: PARTIAL
DIFFERENTIAL EQUATIONS

For the non-linear shock wave equation (II1.7) we saw that initial data
u(x, 0) = uy(x) determines a unique weak solution u(x, f), ¢t > 0, if
entropy conditions are imposed. We can choose uy(x) to be very
smooth and Grzegorczyk computable. But in general the computability
of the initial data is not preserved since u.(x)= u(x, c), 0 <c¢ =
constant, may not be continuous and, therefore, not Grzegorczyk
computable.

For the classical heat equation (II1.4) we saw that Laplacian deter-
minism in the future direction holds if supplementary boundary con-
ditions at infinity are imposed. We also saw that in the unique future
solution the smoothness of the initial data does not degrade — just the
opposite, any roughness in the initial temperature distribution dis-
appears after even so short a time — so that a breakdown in com-
putability cannot occur because of a loss of continuity. And in fact, a
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computable initial temperature distribution determines a computable
solution (see Pour-El and Richards (1983)).

The discussion of the relativistic wave equation (IV.1) requires that
we respect the separation already made between the case of one-
dimensional space and the case of higher dimensions. In the former
case the form of the solution

X+t

(VL5) u(x ) =2[fix + ) + fix — 1) +J _g(5)dé

X

shows that if the initial functions f(x) = u(x, 0) and g(x) = du(x, 0)/0x
are computable, then so is the solution u(x, ¢). In higher dimensions
we saw that C! initial data can degrade to C°® but not below, so
computability for solutions determined by differentiable initial data
will not break down for the sorts of reasons that applied to the shock
wave case. Nevertheless, Pour-El and Richards (1981) have con-
structed examples for the three-dimensional case where g(x!, x?, x°)
=0, f(x', x*, x*) is C! and computable, but the unique C°® weak
solution is not Grzegorczyk computable. Further, they give an example
where f(x!, x?, x*) is computable and therefore continuous but the
corresponding solution u,(x!, x?, x%) = u(x!, x%, x3 1) at t=1is
continuous but not computable.

6. EXTENDED COMPUTABILITY

On Grzegorczyk’s definition, discontinuity automatically brands a func-
tion of the reals as being non-computable. This is counterintuitive,’ as
indicated by the simplest example of a discontinuous function, a step
function such as s(x) = ¢ for x < x,, d for x 2 x,. If the jump point
x, and the jump values ¢ and d are computable numbers, then we
would like to be able to count s as being computable. This can be done
while maintaining contact with Grzegorczyk’s approach, for we can say
that the step function s is computable because it can be effectively

‘approximated by Grzegorczyk computable functions, at least if we are

willing to measure the degree of approximation in a sufficiently liberal
way. For simplicity, restrict attention to functions defined on a compact
interval [r;, ;] € R. The L?[r,, r,] norm for such a function is defined as

I, = U lf(E)I"dE] ’



120 CHAPTER VI

It is easy to see that taking the effective closure of Grzegorczyk
computable functions in, say, L', captures our step functions. It turns
out the choice of p does not matter much: for any 1 € p < + the
step functions captured in this way are exactly the ones with com-
putable jump point and jump values (Pour-El and Richards (1983)). In
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initial contents of the registers to be a, f(1), f(2), ... and take the
program instructions to transfer the contents of R, and R, , and halt.
A similar trivialization occurs if the program is allowed to contain an
infinite list of instructions. And beyond these trivial trivializations, other
more interesting ones lurk. While being aware of the trivialization

general, we can say that f is computable in the norm || || if there is a danger, we should not allow it to prevent us from exploring non-Turing
sequence of Grzegorczyk computable functions g, &, &3, . - . , such that * notions of computability.
lIf — gl converges effectively to 0 as k = . If || || is the usual sup i For functions of the reals more than idle curosity motivates the

norm then we collapse back to the original class of Grzegorczyk func-
tions.

We now have to rework the cases where determinism did not
preserve Grzegorczyk computability and ask whether computability in
the extended sense for some norm appropriate to the problem is
preserved. The qualifier ‘appropriate’ introduces an annoying vague-
ness, but in various concrete cases bounds on appropriateness are
usually evident.

For the relativistic wave equation what was true for Grzegorczyk
computability continues to be true for the extended concept of L7
computability: in three spatial dimensions the wave equation does not
preserve computability in the L” norm (p < +®). However, in the
energy norm, computable initial functions determine a computable
solution (see Pour-El and Richards (1983)).

For the shock wave equation we can restrict attention to cases where
u(x, 0) = uy(x) has compact support; then, u (x) = u(x, ), ¢ > 0, also
has compact support. The appropriate norm here seem to be L', and
for this choice computability in the extended sense need not be pre-
served since discontinuities in u(x) need not occur at computable
points or with computable jump values.

7. GENERALIZED COMPUTABILITY

Turing machines, URMs, and the other devices commonly used to
characterize effective computability are very special examples of deter-
ministic systems. It is therefore natural to wonder whether more general
deterministic systems can be used to ‘effectively compute’ functions
which are not Turing-Grzegorczyk computable. The scare quotes are an
acknowledgment of the danger that too hasty a generalization may lead
to triviality. If we allow the initial state of an URM to contain too much
information, any total function f of N becomes ‘computable’. Take the
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exploration. It seems more natural to try to characterize computability
for these functions directly in terms of analogue computers which are
designed to handle continuous variables than in terms of computations
on rational approximations to reals. It remains to be seen how analogue
computability of functions of the reals is related to Grzegorczyk com-
putability.

A paradigm example of a general purpose analogue computer is the
differential analyzer, used to solve ordinary differential equations. Each
variable in the equation corresponds to a shaft in the analyzer with the
value of the variable being proportional to the number of rotations of
the shaft. Mechanical connections among the shafts are used to enforce
the desired mathematical relations among the variables. Calling the
independent variable ¢ and the dependent variables v,, v,, ..., Uy,
Claude Shannon (1941) says that the system of equations is solvable by
the analyzer just in case when its independent shaft ¢ is turned, the
dependent shafts v, v,, ..., v, turn in accord with the equations for
any initial conditions. He says that a function f of R can be generated
by the analyzer just in case it is a solution function f(r) = v,(t) for some
i and some initial conditions.

If we abstract from the hardware, we are left with not much more
than the idea of a system which is governed by laws L that are
futuristiclly deterministic and time translation invariant (so that the
development of the system does not depend on the instant at which the
initial conditions are specified, as is discussed more fully in Ch. VII). If
(91, U3, . . ., Uy) is an allowed initial state at ¢,, the uniquely determined
solution functions uv,(f), t € [t,, +), can be said to be analogue
computable relative to the laws L. The justification for this terminology
is that there is a computer — Nature herself — which computes the
function as follows. We prepare the system in the state (¢, o, . . . , Jy)
at any instant £, wait ¢ — ¢, seconds, and then read off the values
displayed by the system.
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Shannon (1941) and Pour-El (1974) consider laws in the form of
first order ordinary differential equations representing the operation of
a general purpose analogue computer which performs the operation of
integrating a variable, multiplying a variable by a constant, and multi-
plying and adding two variables. They show that hypertranscendental
functions are not analogue computable (or generable in Shannon’s
terminology) by such a device. It follows that these devices are not
capable of computing (or generating) some functions which are digitally
computable by approximations, for some hypertranscendental func-
tions, such as the reciprocal of the gamma function, are known to be
Grzegorczyk computable. One would like to construct a more general
analogue computer which would compute all Grzegorczyk computable
functions, or else show why this is not possible.

Montague (1962) formalized the notion of a generalized computer
which computes functions as follows. If x is an argument for which the
function value is desired, the signal input variable w, is brought to its
special starting value w* and the argument input variable w, is brought
to the value x. The computer then chugs away until the output signal
variable w, flashes its special value w** indicating that the simultaneous
value y of the output variable w, is to be read as the value of the
function for the argument x. This generalized computer may be run
according to either deterministic or indeterministic laws. In either case
the laws are assumed to be time translation invariant, and for simplicity
it is assumed that if the signal output variable takes on its special value
w** then there is a first instant at which it takes it. The deterministic
mode of operation requires of the laws L that for any histories, primed
and unprimed, and any times ¢, and ¢, if wi(t,) = w; (), i =1, 2, 3, 4,
wi(t) = w* and if £, > (; is the first instant at which wj(#,) = w**, then
wi(t) = wi(t), i = 1,2, 3, 4. The value y is said to be computed for the
argument x just in case there is an allowed history and times ¢, and ¢,
such that w(z,) = w*, wy(f)) = x, t; 2 ¢, is the first instant at which
wy(t,) = w**, and w,(¢;) = y. The function f is said to be computable by
the computer just in case for every x € dom(f), y = f(x) is the value
computed for the argument x, and for every x ¢ dom(f) no value is
computed for the argument x. In the indeterministic mode of operation
it is required that for any allowed histories, primed and unprimed, and
for any time f, if wi(4) = wi(4) = w* and w)(t) = w,(4) and if
t, 2 1, is the first instant such that w;(¢,) = w**, then there is also a
first instant £, 2 0 such that wj(¢;) = w** and further wj(t,) = w,(t)).
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From the perspective of foundations it is useful to have a notion of
computability which is general enough that the various notions of
digital and analogue computability can all be obtained by specializing
the variables and the laws L by which the generalized computer
operates. That is what Montague’s approach promises to provide, at
least with a little fiddling which I will not attempt here. But the worry
arises that the sense of computability involved is so general as to be
useless; for if L is allowed to range over every kind of deterministic
law then presumably few if any functions will fail to be generalized
computable. The worry can be assuaged by emphasizing that the
generalized concept of computability is relativized to laws L. The
subject is given content by proving results about what functions are and
are not generalized computable relative to what laws, especially the
kinds of laws encountered in mathematical physics. As usual, I leave it
to the reader to supply the labor.

8. OBJECTIONS; CHURCH'S THESIS REVISITED

The notions of generalized computability introduced in the preceding
section are open to a series of objections which are worth reviewing
because their resolution serves to clear away several potential mis-
understandings. The consideration of the objections also serves as an
opportunity to the reconsider the meaning of Church’s thesis.

Objection 1. Your generalized ‘computations’ are presented in terms
of a Big Computer in Sky. This mythical machine violates a basic part
of any plausible definition of ‘computer’. In his book Analogue Com-
putation, Albert Jackson writes:

A computing device may be defined as a device that accepts quantitative information,
arranges it and performs mathematical and logical operations on it, and makes a
available resulting quantitative information as its outputs. (1960, p. 2)

But your Big Computer in the Sky does not make outputs available as
information in the sense of symbols printed on paper and the like.
Response. 1 view this aspect of computation as an engineering problem
and not as part of the analysis of computability per se.

Objection 2. You are missing the point. The key idea is that a
computer accepts and then outputs information. The exact definition of
‘information’ is not at issue here except in so far as it necessarily
involves symbolic representation. Thus the maxim, ‘No computation
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without symbolic representation’, which is grossly flouted in your
notions of generalized computability. Response. A definition of com-
putable function might but need not make use of a coding of values by
symbols. Whenever possible it seems best to characterize computability,
digital or analogue, without reference to coding; for while no one can
doubt that the standard Turing machine coding — a string of m
consecutive ‘1’s to code the positive integer m — is an effective coding,
the general problem of distinguishing effective from non-effective cod-
ings is equivalent to the problem of deciding when a function is effec-
tively computable, the very problem at issue. (It should be obvious, for
example, that if the coding of integers is not effective, then any set of
integers could be enumerated by a Turing machine.) In any case, when
we move from an abstract generalized computer to a physical realiza-
tion of it, there is representation; e.g., the variable v; (say) takes as
values volts and r volts represents the real number r.

Objection 3. What we want of a representation is that it enables us to
access the information, and the standard systems of symbolic represen-
tation, so conspicuously lacking in your characterization of generalized
computability, are designed to guarantee such access. Response. Epis-
temic access is an important issue. And I would suggest that it is not
merely the natural tendency to anthropomorphize when explaining the
intuitive basis of computability but also the concern with epistemic
access that explains the presence in Turing’s original paper of such
phrases as “scanning” a square, “immediate recognizability” of changes
in squares, and “states of mind” of the computing agent. This concern
also seems to be present in contemporary presentations of algorithms in
terms of “a computing agent . . . which can react to the instructions and
carry out the computations” (Rogers (1967), p. 2). But, to repeat, I do
deny that computability is an epistemological concept. Turing com-
putability can be presented in a purely abstract fashion, avoiding
questions of representation and epistemic access; and just as the mathe-
matical theory of Turing computability can be developed independently
of these questions, so can the theory of generalized computability.

Objection 4. Granting for sake of argument that the generalized
notions of computability do capture legitimate senses of effective,
mechanical computability, these senses are so different from Turing’s
original sense that it is misleading to speak as if there were a unified
concept of computability which covers all the bases. Response. It is and
it isn’t. It is useful to see Turing computability as a special case of a
general notion of effective computability which covers digital and

e

MECHANISM AND EFFECTIVE COMPUTABILITY 125

analogue computers and other deterministic devices as well. But Turing
computability is such an important and distinct special case that it
deserves special handling.

Start with the notion of a programmable or algorithmically com-
putable function of the integers. Roughly, this is a function which is
computable by means of a stepwise discrete procedure which can be
carried out according to a finite list of instructions each of which ...
(For the ellipsis, fill in your favorite intuitive account.®) Church’s thesis,
or proposal as I would prefer to call it, says:

(CP1) The class of programmable or algorithmically computable
functions of the integers is to be identified with the Turing
computable functions.

I have no doubts about the adequacy of (CP1)’, especially as regards
the originally intended application to Hilbert’s decision problem. (Recall
that Turing’s original paper was entitled “On Computable Numbers,
with an Application to the Entscheidungsproblem,” and that Church’s
notion of effective calculability was introduced in the papers “An
Unsolvable Problem of Elementary Number Theory” and “A Note on
the Entscheidungsproblem.”)

Church’s initial proposal (CP1) could be extended to functions of the
reals by

(CP2) The class of programmable or algorithmically computable
functions of the reals is to be identified with the Grzegorczyk
computable functions.

However, (CP2) does not carry the conviction of (CP1) because
Grzegorczyk’s definition, though useful for proving results in analysis, is
only one of various possible ways to generalize Turing computability to
functions of the reals.

It is here that Turing’s (monumental!) contribution ends. Turing is
sometimes represented as having set and achieved the more ambitious
goal of specifying the most general notion of what a ‘machine’ is and
then using this notion to explicate the general notion of a mechanically
computable function.® This corresponds to a third proposal.

(CP3) The class of effectively, mechanically computable functions is
to be identified with the class of programmable or algorithm-
ically computable functions and, thus, with the Turing-
Grzegorczyk computable functions.
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Even leaving aside the qualms about (CP2) that infect (CP3), (CP3) is
unacceptable, for it is simply wrong that a Turing machine is the most
general type of machine that can perform what is recognizably an
effective, mechanical computation of a function. What is true is that the
theory of non-Turing computability remains to be developed. Whether
the development along the lines suggested in Sec. 7 above will prove to
be worth the effort remains to be seen.

9. CONCLUSION

Our starting question about the relation between determinism and
mechanism can be given a partial answer. Determinism does not neces-
sarily entail mechanism in the Turing-Grzegorczyk sense of effective
computability, but various interesting partial entailments hold for many
types of deterministic laws in the form of ordinary and partial dif-
ferential equations. In the converse direction, effective, mechanical
computability does not entail determinism, but any function which can
be computed by an indeterministic Turing machine can also be com-
puted by a deterministic Turing machine (though the computations of
the latter may not be as efficient). In general, however, half of the
question tends to collapse, for any deterministic and time translation
invariant system can be regarded as an analogue computer which
computes values of the solution functions. As for the other half of the
question, an analogue computer need not operate deterministically, but
whether the resort to indeterminism enlarges the class of analogue
computable functions is a matter that has to be settled on a case by case
basis.

NOTES

! Rogers (1967) and Tourlakis (1984) provide comprehensive treatments of this and
other topics touched on in this section.

2 For examples, see Rogers (1967).

3 These machines were first discussed in Shepherdson and Sturgis (1963). A detailed
development is given in Cutland (1980) whose presentation I follow here.

* For functions of the reals with domains confined to a closed and bounded interval
with computable endpoints, clause (ii) simplifies to the requirement that there is a one-
place Turing computable function /: N - N such that |f(r) — f(r")| < 1/2* whenever
|r — r’'| <1/i(k). Clause (i) corresponds to S. Mazur’s (1963) definition of computable
function of the reals. There are weaker versions of clause (ii) which give rise to notions
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of computable function of the reals weaker than Grzegorczyk’s. Grzegorczyk’s defini-
tion has some nice consequences to which I will appeal to below. For example, if {f,} is
a sequence of Grzegorczyk computable functions that converges uniformly and effec-
tively to a function g, then g is Grzegorczyk computable; further, Riemann integration
preserves Grzegorczyk computability.

5 Or rather intuitions divide. The step function is clearly not computable in the sense
of being ‘programmable’ since there is no recursive procedure to decide whether x
equals x, (where x, is assumed to be a computable real).

¢ See, for example, Rogers (1967), Ch. 1.

7 But for the record I note that others have expressed doubts in both directions, some
questioning the idea that all recursive functions are effectively computable, and others
questioning the converse; see Péter (1957), Bowie (1972), and Thomas (1973).

¥ 1 do not know whether this representation is historically accurate, though I suspect
that it contains a kernel of truth. For example, because he thought of machine states on
the analogy with states of mind, Turing (1937) ruled out machines in which the states
can get arbitrarily close together, because otherwise the computing agent might confusc
them.

SUGGESTED READINGS FOR CHAPTER VI

Alan Turing’s (1937) original paper “Computable Numbers” still rewards the effort of
reading. Cutland’s (1980) Computability, Rogers’ (1967) Theory of Recursive Functions
and Effective Computability, and Tourlakis’ (1984) Computability cover the standard
topics in algorithmic computability for functions of the integers. For an introduction to
computable analysis, see Aberth’s (1980) book of that title. The series of papers by
Pour-El and Richards cited in the text provide definitive results about the preservation
of Turing-Grzegorczyk computability by linear partial differential equations. Pour-El's
(1974) “Abstract Computability and Its Relation to the General Purpose Analogue
Computer” presents a concept of analogue computability that covers the types of
analogue computers actually in use.



CHAPTER VII

DETERMINISM AND TIME SYMMETRIES

Now since infinite time must be assumed, no fresh

possibility can exist and everything must have appeared

already, and moreover an infinite number of times . . .
(Friedrich Nietzsche, “Eternal Recurrence”)

1. THE RECEIVED VIEW

Several of the classic treatments of determinism make various time
symmetries part of the definition of determinism or else an immediate
consequence of it. Recall that Russell’s treatment appealed to a
“uniformity of nature,” meaning that “no scientific law involves time as
an argument, unless, or course, it is given in integrated form, in which
case lapse of time, though not absolute time, may appear in the
formulae” (Russell (1953), p. 401). A similar sentiment is found in
Herbert Feigl’s discussion of the principle of causality:

The place and time at which events occur do not by themselves have any modifying
effect on these events. Mathematically this may be expressed by saying that the space
and time variables do not enter explicitly into the functions representing natural laws
... ‘Same causes, same effects’ makes sense only if there is a neutral medium as
space-time which is thus no more than a principium individuationis. Differences in
effects must always be accounted for in terms of differences in conditions, not in terms
of spatio-temporal location.!

Another kind of time symmetry involving eternal recurrence is found
in John Stuart Mill’s discussion of the “law of causation™;

The state of the whole universe at any instant, we believe to be the consequent of its
state at the previous instant . .. And if any particular state of the entire universe could
ever recur a second time, all subsequent states would return too, and history would, like
a circulating decimal of many figures, periodically repeat itself. (1904, pp. 400—401)

In an offshoot of the same tradition, Ernest Nagel also takes deter-
minism to embody eternal recurrence in that if a system is brought back
into the state it originally had at a given initial time £ and then is
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allowed to evolve of its own accord for an interval ¢, — ¢, it will exhibit
at the end of that interval the same state as it originally had at .2

It would be foolhardy to go against the combined authority of Mill,
Russell, Feigl, and Nagel. Not being overly foolhardy, I will declare that
our authorities are right — partly right. Before we can see in what part
they are right, we need to define our terms a little more carefully. The
next three sections discuss in turn three distinct but interconnected time
symmetry properties.

2. TIME TRANSLATION INVARIANCE

To keep matters simple, I will restrict attention to classical physics.
Only the technical details are changed when we make the transition to
special relativistic physics. General relativistic physics, however, pro-
duces a major shift in the terms of the discussion; the reasons for the
shift will be previewed at the end of this chapter and discussed more
fully in Ch. X.

All of the possible worlds %/, allowed by the putative laws L are
painted on the fixed canvas of Newtonian space-time (R*, G;, G,, .. .),
where R* is the space-time manifold and the G; are geometric object
fields on R* which characterize the geometric structure of space-time.
Exactly what is to be included among the G’s will have an important
influence on the perception of time symmetries, but as a start let us
assume the standard equipment listed in Ch. III. The definitions of the
various time symmetries are made easier by using a time function
t: R* = R whose level surfaces coincide with the planes of absolute
simultaneity and whose differences coincide with temporal duration. It
must be understood, however, that at this juncture ¢ is an auxiliary
device and that the origin ¢ = 0 has no special geometrical or physical
significance. .

Time translation invariance demands that the physical possibilities
are closed under the operation of time translation which shifts all of the
physical contents of space-time forwards or backwards on time by a
given amount.

Def.  The laws L are time translation invariant just in case for any
real A, if WeW,, then also W2 €%, where WA(r)=
W(¢ + A)for all times ¢.
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(For the pedants: Take a world corresponding to (R, G,, G,, . ..),
(P, P,, ...) where the P, are object fields describing the physical
contents of the space-time (R*, G,, G,, ...) which is held fixed from
world to world. We generate W2 = ((R*, G,, G,,...),(P%, P$,...)) by
choosing a homomorphism 4 of the space-time (i.e., 4 is a diffeomor-
phism of R* onto itself such that #*G, = G, for each i) such that

h-t(x)=t(x)+ A, x € R* Then P, =h*P,)

3. RECURRENCE: CONDITIONAL AND UNCONDITIONAL

Proofs of unconditional recurrence of a state of affairs can start either
from determinism or its negation. Any finite state Laplacian deter-
ministic system operating in discrete time must exhibit periodicities (see
Ch. VIII). The famous Poincaré recurrence theorem for continuous
state systems starts from Laplacian determinism and invokes finiteness
and conservation of volume in phase space to show that for almost any
given initial state and any £ > 0, the system will within a finite time
(which depends on the choice of initial state and ¢) return to within the
specified ¢ of the starting state.® Alternatively, we can start from the
assumption that the system evolves not deterministically but stochasti-
cally and then try to prove recurrence from conditions on the chances
or probabilities that describe the non-deterministic tendencies of the
system to pass from one state to another. We can achieve success if, for
example, we assume the system to be a finite Markov process.*

The kind of recurrence of concern here is conditional rather than
unconditional. Mill and Nagel’s claim is not that any state of the
universe will recur but only that if it repeats it will do so eternally. This
is made a bit more explicit in

Def.  The laws L are (conditionally) periodic just in case for any
WeW, and any , 4, &, &, if ; — , = 1, — ¢ and if
W(5) = W(k) then W(5) = W(4).
Of course, if an initial state can never repeat then our definition is
vacuously satisfied and conditional periodicity loses its interest.

4. TIME REVERSAL INVARIANCE

The final time symmetry property to be considered here requires that
the laws treat the past and future as symmetric mirror images of each
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other. More precisely, the physically possible worlds are closed under
the operation of time reversal.

Def.  Suppose that the laws L are time translation invariant. They
are then time reversal invariant just in case if We %/, then
also W7 € W, where W7(t) = [W(—¢)]® with []® being the
state reversal operator.

What we really have is a definition schema rather than a definition.
To turn the schema into a concrete definition requires that the action of
[]® be specified. This cannot be done in advance of a specification
of the ingredients of the instantaneous state description, and those
ingredients will vary from case to case. But two formal properties of [|*
are required to hold; viz., [ ]® is one-to-one on instantaneous states and
it is involutory, ie., [|-]¥]¥ = |-]. For a scalar field ®, it is usually
assumed that [®(x, #)]® = ®(x, ). For classical particle mechanics []?
acts by reversing the instantaneous velocities while leaving their posi-
tions fixed. In classical or relativistic electromagnetic theory the usual
assumption is that []® acts on electric and magnetic fields by |[E(x, ©)]?
= E(x, ¢) and [B(x, #)]¥ = —B(x, ¢).> The required formal properties
obviously obtain in all these examples.

This explanation of ‘time reversal’ makes it a misnomer since it is not
time but rather motions and field strengths that are reversed. While this
explanation has the virtue of removing the halo of mystery that hovers
around the notion of time reversal, it suffers the defect of failing to
provide an intrinsic prescription for obtaining W7 from W. Thus, for
example, to obtain the reverse of particle motions we would have to
choose a frame of reference and reverse three velocities relative to that
frame. The alternative would be to obtain W' from W by reversing
both the time orientation of W and the four velocities of the particles.
The details of how the time reversal operation is implemented do not
affect the following discussion.

5. TIME REVERSAL INVARIANCE AND FUTURISTIC AND
HISTORICAL DETERMINISM

From the intuitive meaning of time reversal invariance it should follow
that for time reversal invariant laws L, futuristic and historical deter-
minism stand or fall together. Let us verify this implication, showing for
example that trying to assume the time reversal invariant laws L to be
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futuristically but not historically deterministic leads to contradiction. If
historical determinism fails, then there are W, W, € %, and times ¢
and 4, f; < 4, such that W () = W,y(5,) but W (1)) # Wy(¢). Since time
translation invariance has been assumed, we can if necessary shift the
time origin so that £ < 0 < . By time reversal invariance W/,
Wiew,. Since Wi(—t) = [W(+p)|* and Wi(—5) = [Wy+p)" it
follows that W{(—#) = Wi(—¢). Similarly, from W](—4) = [W,(+)]*
and WI(—¢t) = [Wy(+4)]® and the properties of []* it follows that
Wi(—#) # WI(—¢). But this is a violation of futuristic determinism
since —t, > —¢, (see Fig. VIL1).

Fig. VIL1

While time reversal invariance is sufficient to guarantee that
futuristic and historical determinism stand or fall together, it is not
necessary. The classical heat equation studied in Ch. III provides a not
entirely perfect example: it is not time reversal invariant, but with the
temperatures at the ends of a finite rod stipulated, we have both
futuristic and historical determinism. The modified heat equation with a
non-linear term added (Ch. II1.2) provides an example where futuristic
determinism reigns but historical determinism fails. The reader should
attempt to supply cleaner examples.

6. DETERMINISM PLUS TIME TRANSLATION INVARIANCE
IMPLY PERIODICITY

We have seen that time translation invariance plus time reversal
invariance implies that laws are deterministic in both directions of time
if they are deterministic in either. Further, time translation invariance
coupled with determinism guarantees conditional periodicity;® in fact,
we are guaranteed the property that for any W,, W, € #, and any times
4, &, and any constant C, if W(f) = Wy(s) then Wi(4+ C) =
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W,(, + C). Again the proof is by contradiction. Suppose that W,(¢) =
W,(5,) but Wi (4, + C) # W (1, + C). By time translation invariance
Wiew,. Choose A = t — . Then Wi(5) = W) = Wy(t).
Similarly, Wi(s, + C) = W,(t; + C) # W,y(, + C), which is a violation
of determinism.

7. MILL, RUSSELL, FEIGL, AND NAGEL: VINDICATED?

I said that our authorities were partly correct. It is now time to explain
that half-hearted endorsement.

In standard Newtonian space-time time is absolute as regards
simultaneity and duration, but there is no distinguished time origin.
Time translation ¢t — ¢+ + A is thus a symmetry of the space-time.
Applying our principle (Ch. 111.2) that the symmetries of well-formu-
lated laws must be as inclusive as the symmetries of the space-time on
which they are based, we conclude that any laws based on standard
Newtonian space-time must be time translation invariant.” This is the
sense in which Russell and Feigl are correct. By the results of the
previous section it follows further that any deterministic laws based on
standard Newtonian space-time are conditionally periodic. This is the
sense in which Mill and Nagel are correct.

8. MILL, RUSSELL, FEIGL, AND NAGEL: REFUTED?

If there is no higher law decreeing that classical laws must be based on
standard Newtonian space-time, then the time translation symmetry of
the space-time can be broken by introducing as part of the geometrical
structure (the G’s) a distinguished time function ¢* whose zero identifies
a special origin of time. By our principle (Ch. II1.2) linking space-time
symmetries and symmetries of laws, this introduction must go hand in
hand with the breaking of time translation invariance for the laws of
motion. Towards the latter, let us imagine that the usual Newtonian
laws of gravitation are modified in favor of laws L* which imply that
the gravitational ‘constant’ K is not constant but a smoothly varying
function of time. If the new laws L* specify the time behavior K =
K (t*), then they should count as being every bit as deterministic as the
old laws. But if the laws L* allow different Newtonian position-velocity
states to coexist with the same K value then both time translation
invariance and periodicity seem to fail since the time of obtaining of the
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‘initial’ positions and velocities of the gravitating particles can make a
difference in the subsequent motions.

9. RUSSELL AND FEIGL: DEFENDED

In the face of such examples we may be met with a reiteration of Feigl’s
claim that differences in effects must be accounted for in terms of
differences in conditions, not in terms of differences in spatio-temporal
locations. In the case in point, Feigl would insist that the differences in
the temporal distances from the origin * = 0 don’t in themselves make
for differences in the particle motions; it is rather differences in the
values of the gravitational ‘constant’ K that account for differences in
the motions. In other words, the value of K is part of the conditions,
and since this value varies it must be included in the state description.
And under this more comprehensive state description, time translation
invariance and periodicity are restored.

10. MILL, RUSSELL, FEIGL, AND NAGEL: MODIFIED
AND QUALIFIED

Though there is something appealing about the move just made to
defend Russell and Feigl, there is also something more than a little
disturbing about the implications which emerge when the defense is
pushed to its logical limits. If differences in temporal evolution are
always chalked up to differences in ‘conditions’, then time translation
invariance is an a priori property of natural laws. This conclusion does
not sit well with an empiricist analysis which would explain symmetry
principles as deep but contingent laws. Even worse, if there is no limit
to what we are willing to pack into the category of the physical contents
of space-time (the P’s as opposed to the G’s) in order to satisfy Feigl’s
demand, then periodicity may be trivialized. For instance, if the
function ¢* is said to belong to P’s instead of G’s, on the grounds that it
is a scalar physical field on a par with the other physical fields, then no
state can repeat itself and periodicity is automatically and vacuously
fulfilled.

It is conceivable that careful observations on quasi-isolated systems
could rule out any plausible source equation for K and confirm instead
that the temporal evolution of K is independent of the amount and
distribution of gravitating matter and of any other known ‘physical’
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source. In that case denying to K the status of a Feigl ‘condition’ is not
only not an ad hoc move but is supported by the principle that the cut
between what goes into the geometrical structure of space-time itself
and what goes into the physical contents of space-time corresponds to
the cut between absolute and dynamical objects, the former being
objects than remain fixed in every physically possible world and the
latter being objects that vary from physically possible world to world.®
Recall Newton’s dictum that “Absolute space, in its own nature, without
relation to anything external, remains always similar and immovable”.
Substitute ‘space-time’ for ‘space’ and we have exactly the distinction
between the G’s and the P’s in our orthodox classical world models.
Moreover, the corresponding distinction remains valid for special
relativistic worlds as well.

I conclude that, contrary to Russell and Feigl, there are conceivable
circumstances in which the most natural and plausible description
would violate time translation invariance; and that, contrary to Mill and
Nagel, the same circumstances would also violate periodicity without
necessarily violating determinism. Such circumstances are farfetched in
that they are unlike anything found in the history of physics, and had
they arisen they would have caused an upheaval in the classical and
special relativistic conceptions of the nature of space-time. But it is
Nature and not philosophers who must decide whether or not to throw
such circumstances at us. There is no a priori prohibition against
them to be derived from conceptual truths about space, time, and
determinism.

11. PREVIEW: GENERAL RELATIVITY AND TIME SYMMETRIES

In general relativistic physics both of the distinctions geometrical space-
time structures vs. physical contents of space-time and absolute vs.
dynamical objects tend to collapse. With this collapse time translation
invariance as it was formulated above for classical and special rela-
tivistic theories becomes moot.” We can still talk about recurrence; but
unconditional Poincaré type recurrence may fail because time itself
runs out before the initial state has a chance to recur, and for the same
reason conditional recurrence can trivialize. Tipler (1980) shows that in
a spatially finite and deterministic general relativistic universe,'? the
initial state cannot recur if the universe begins to undergo gravitation
collapse. This impossibility result does not hold for spatially infinite
universes.
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NOTES

' Feigl (1953), p. 412. See also J. C. Maxwell (1920), whom Feigl cites as his authority
for the principle of the ‘homogeneity of time’.

? “Suppose then at time {, [the system] § is in a state describable as Py, Q,, R,, etc.,
that the state of § changes with time, and that at time ¢ § is in a state describable as
Py, O, R, etc. Next imagine that S is brought back into the state it originally possessed
at time {4, that it is then permitted to change of its own accord, and that after an interval
4, — 1, it once more exhibits the state describable as P,, Q,, R,, that is, its state is once
more what it was at time . A system which always behaved in this manner would be
one in which its state at one time uniquely determined its state at any other time”; E.
Nagel (1953, pp. 421—422). Nagel is attempting to use periodicity to define deter-
minism; this obviously won’t do if states cannot repeat. What is more plausible, and
what Nagel means to imply, is that determinism implies conditional periodicity. See also
E. Nagel (1961, pp. 279—280).

* See Ch. 1X below for a more detailed discussion of this and related matters.

* See Feller (1968), Ch. XVI. Nietzsche would have seen this as a proof of his ideas
about eternal recurrence, as noted in Tipler (1980).

5 In ordinary quantum mechanics, [y(x, 1)]* = y*(x, ¢), where y is the state function
of a spinless particle and **’ denotes complex conjugation; see Ch. X1 below. There are
many interesting problems about the physical motivation for the choice of []® in
particular cases, but the reader will have to explore these issues on his own.

6 Montague (1974) showed that conditional periodicity does not follow from deter-
minism per se. What is now at issue, however, is whether the implication holds if
‘plausible’ assumptions about the nature of space and time are added. This issue is
addressed in the next four sections.

7 For classical mechanical systems whose dynamics can be cast into Hamiltonian form
(see Ch. IX below) there is a tight connection between spatio-temporal symmetries and
conservation laws. In the case in point, time translation invariance holds if and only if
there is conservation of energy. Thus, for Hamiltonian systems, to the extent that time
translation invariance is secure, so is conservation of energy, and vice versa. In non-
Hamiltonian systems there is not always such a neat connection between symmetry and
conservation.

8 See J. L. Anderson (1967) and M. Friedman (1983) for attempts to make this
distinction precise.

® Sec R.Jones (1981) for an interesting discussion of these issues.

10 In the language of Ch. X below, the space-time possesses a compact Cauchy surface.

SUGGESTED READINGS FOR CHAPTER VIl

Montague’s (1974) paper “Deterministic Theories” injected some much needed preci-
sion into the discussion of the connection between determinism and the symmetries of
time translation invariance and (conditional) periodicity. But I have not been able to
locate a good general discussion of the relation of determinism to time symmetries which
shows how the relationship affects and is affected by space-time structure. There are
any number of technical treatises on symmetries and invariances in various branches of
physics; see, for example, Elliott and Dawber (1979) Symmetry in Physics.
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CHAPTER VIII

DETERMINISM, RANDOMNESS, AND CHAOS

Too keen an eye for pattern will find it anywhere.
(T. L. Fine, Theories of Probability)

‘Deterministic’ is variously contrasted with ‘random’, ‘disordered’,
‘stochastic’, ‘chancy’, ‘capricious’, and ‘haphazard’. If the contrasts were
true and sharp they might be used to enhance our understanding of
determinism. But each of the alleged contrast terms is as much in need
of analysis as is determinism. Certainly ordinary usage is confusing in
its incestuous interweaving of the terms. Thus, the Oxford English
Dictionary defines ‘random’ as “at haphazard, without aim, purpose or
fixed principle”; ‘chaotic’ as “utterly confused or disordered”; and
‘haphazard’ as “by mere chance, without design; at random”.

To bring some order to this confused situation I will propose a not
altogether arbitrary grouping of these terms. Within each group I will
distinguish a process sense from a performance sense, and I will attend
to distinctions among levels of description. Thus, for present purposes
I will group together chaotic, capricious, and haphazard. A chaotic,
capricious, or haphazard process I declare to be one which operates
“without fixed principle,” without the guidance of natural laws whether
deterministic or not. The output of a process is chaotic in the per-
formance sense if it is disordered or lacking in pattern. Process chaos, I
hold, is a coherent notion while utter chaos in the performance sense is
not. And attending to the levels distinction, we must be prepared to find
that chaos or caprice at one level of description gives way to order and
design at another level, or vice versa. Against the OED, I group random
with stochastic or chancy, taking a random process to be one which does
not operate wholly capriciously or haphazardly but in accord with
stochastic or probabilistic laws.! Whether there are in nature ultimately
random processes, processes that remain random no matter how deep
the level of description is pushed, is a controversial question that must
be broached in discussing quantum physics (see Ch. XI). But in the
present chapter the focus will be largely on performance randomness at
a level of description where the process is to all appearances stochastic.
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Randomness in performance is not an absolute concept, for which
features we look for in a random dance will depend upon what we know
or believe about the animating stochastic process. Nor is performance
randomness inevitable in the outputs of a random process, though it is
‘likely’. And randomness in performance does not always speak truly of
genesis randomness. These are some of the points I will try to clarify in
the coming sections.

Much of the early discussion of randomness derived from a wrong-
headed view of probability — the so-called frequency theory. Rather
than trace the tangled history of this subject, let us begin more con-
structively; contact with the historical tradition will be established once
we have laid the basic framework for an understanding of the issues.

1. DEFINING RANDOMNESS

Consider a binary state process operating in discrete time. Letting ‘0’
and ‘1’ denote the two possible states, a history of the process is a map
s:Z —~ {0, 1}, s(n) being the state at time ¢,. Corresponding to a history
is a doubly infinite binary sequence.

... 5(—2), s(—1), s(0), s(+1), s(+2), . ..

The collection of all such sequences is denoted by X*® and the collec-
tion of all initial finite segments starting from some place m and moving
into the future is denoted by X,.

A stationary stochastic model for our binary process assigns to finite
segments of member sequences of X probabilities that are indepen-
dent of their temporal location. To make this precise, let X” denote the
collection of the 2" binary sequences of length n > 0. For each n, the
model assigns a probability function Pr, to X", with the probabilities at
different levels meshing according to

Pr,(x) = Pr,,,(x0) + Pr,,,(x1), x€X"

Then for any m, the stationary probability for the finite stretch of
history s from time ¢,, to ¢,,, ., is

Pr ((s(m),s(m + 1),..., s(m + n)).
The subscripts on Pr will henceforth be dropped.

8
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The most familiar example of a stationary stochastic model is
provided by a Bernoulli process where the successive states are prob-
abilistically independent and the probabilities for 0 and 1 have (constant)
values p and 1 — p respectively. Then the probability for any finite
segment of length n containing n, 0’s and n, 1's is p"(1 — p)= =
p"(1 = p)y"~"™. In the special case where p = 1 — p = % (‘fair coin’)
every segment of length n has probability 1/2”,

Starting from our Pr assignments we can construct a measure u on
subsets of X®. The first step is to define 4 on the cylinder sets
X,., © X consisting of all elements of X* agreeing in places m
through n (m < n):

“(X,n) = Pr((s(m),s(m + 1), ..., s(n))

where s is any one of the agreeing histories. The measure is then
extended in the obvious way to the algebra of subsets of X generated
by the cylinder subsets. And assuming countable additivity,? there is a
unique extension to the full sigma-algebra of subsets of X .

The reader who has endured these definitions may have begun to
wonder where the randomness is. There is more — and less — here that
meets the eye! Consider the two infinite sequences:

@  ...0,1,0,1,0,1,0,1,0,1,...
®) ...0,1,1,0,1,0,0,1,1,0,...

Intuitively, (b) is random while (a) is not. But with p = % in a Bernoulli
process, the pictured finite segments of (a) and (b) both have the
probability 1/2!°, and both of the singleton sets consisting of (a) and of
(b) alone have u measure 0. So it would seem that either from the finite
or the infinite perspective, both cases are equally likely or equally
unlikely, though they differ in randomness.

Nevertheless, there is a sense in which infinite random sequences
are the likely outcomes of a random (= stochastic) process while the
non-random sequences are the unlikely ones; namely, if #, #/ C X
are respectively the collections of all random and all non-random
sequences, then

©  u@)=1, uA)=o.

The problem of defining randomness now boils down to choosing the
appropriate sets of measure 1 (or of measure 0).
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Start at some time, say f,, and move towards the future. We will then
be concerned for the moment with the singly infinite sequences X,
obtained by chopping off the past histories, and with the initial finite
segments X, If the process is Bernoulli with probability p for ‘0’, we
would expect that as we scan longer and longer stretches of some
x € X7 the relative frequency of 0’s will tend towards p. The strong
form of the law of large numbers shows that our expectations are
correct in the sense of u-measure: the u-measure of the set of X by
sequences in which the relative frequencies converges to p is 1. Having
proved this we will certainly want to have % be a subset of this set of
measure 1. And % will be a proper subset at that. For we can divide
the sequences X into segments of length, say, 4 and track the relative
frequency of, say, (1,0, 1, 1). Our expectations are that the frequency
will tend towards p(1 — p)’. Again, mathematics confirms our expecta-
tions in that the collection of all sequences in which the right con-
vergence takes place is also of u-measure 1. Now we will want .% to be
in the intersection of these two nice measure 1 sets. We can go on, and
on, and on in this way, but we must draw the line somewhere, else we
will end up taking # to be in the intersection of all subsets of X& of
u#-measure 1, leading to # = @ and violating (C).

There are two rather different attitudes towards this problem. The
first is to be liberal about what counts as a property of randomness and,
consequently, stingy about what counts as a random sequence. Thus,
Wald (1938) and Martin-Lof (1970) have proposed to count as a
property of randomness any property which has u-measure one and
which is expressible in a certain way. Wald’s version requires expres-
sibility in a standard logic such as Principia Mathematica. Martin-Lof’s
version requires that the properties be hyperarithmetical (roughly, these
are the properties expressible in an infinitary propositional calculus).
He shows that the intersection of all hyperarithmetical sets of u-
measure 1 is also of measure 1 so that (C) is satisfied for the Martin-
Lof random sequences %, .

The opposed strategy is to be more'stingy about what counts as a
property of randomness and, thus, more liberal about what counts as a
random sequence. The classic example of this approach arises from von
Mises’ (1957, 1964) theory of probability as the study of ‘Kollektives’.
Binary Kollektives are essentially subsets of X in which the limiting
relative frequencies of 0’s and 1’s converge. The limiting frequencies
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are required to be invariant under ‘place selection rules’. Thinking
of the orginal application of probability theory as a guide to betting
behavior where a bet on the outcome of the »n + 1% trial is made after
witnessing the first » trials, we can take a place selection rule to be a
function f from X} to {0, 1}. Applying the rule f to a member sequence
x of the Kollektives, the n + 1% item is selected or rejected according
as f(x(n)) = 1 or 0 where x(n) is the initial segment of length n of x.
Carrying the gambling analogy further, a successful gambling system
requires that an effective procedure for selecting the items on which
bets are to be laid. This led Church (1940) to suggest that the selection
rules should be Turing computable functions. Thus, a sequence x € X
is Church random just in case the limiting relative frequency of 0’s
converges to some value, say %, and the same limiting value exists in
every infinite subsequence of x produced by the application of a recur-
sive selection rule. Since there are only a countable number of selection
rules in the von Mises-Church sense the existence of Church random
sequences is assured, and the application of the u-measure for a
Bernoulli process with p = % verifies that the collection %, of all
Church random sequences fulfills (C).

It is known, however, that #. is too broad. It follows from the
results of Ville (1939) that % contains sequences in which the relative
frequency of 0’s in every initial finite segment is greater than or equal to
3. The observation of such a frequency behavior would surely lead us
to question the Bernoulli model with p = 3.

More adequate versions of the definition of infinite random se-
quences as those which pass effective statistical tests® have been offered
by Martin-L6f (1966), Schnorr (1971, 1971a), and T. Fine (1973). The
different versions yield somewhat different .%, s, but in general we have
Ry © Ry © H, where C is proper inclusion.

2. RANDOMNESS, DISORDER, AND COMPUTATIONAL
COMPLEXITY

The discussion so far has been defective in two ways: it has been silent
on what randomness for finite sequences means and it has not related
randomness to the intuitive notion of disorder. The concept of com-
putational complexity promises to overcome both defects.
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If A is a mechanical algorithm with £ + 1 inputs and x € X, then
define the conditional complexity K,(x/%,, i, ..., i;) of x on the
information i,, i,, ..., i, to be the length of the shortest ‘program’
P which joined to the information allows x to be computed, ie., A(P,
iy, I3, ..., i;) = x; if there is no such P, then the complexity is + 0.
Conditional complexity depends on the choice of algorithm, but much
of the arbitrariness can be removed by using Kolmogorov’s result that
there is an A* such that

K (xfiy, iy, ..

i) S Ky(Xfiy, gy o i) + €

where the constant ¢ may depend on A and A* but is independent of x
and the i’s. It follows that
K o(xhi), 1y, .

i) SlogyN(iy, iy,. .0 )+ ¢

where N(iy, iy, ..., i;) is the number of sequences for which the
information holds. In the special case where the information contains
only the length /(x) of x, N = 2/® and K ,.(x/(x)) < I(x) + c. From
here on the subscript on the complexity measure will be dropped.

Thus, for a finite sequence x we can say that x is random just in case
it has high complexity in that

(C)) K(xA(x)) = I(x) —d, danon-negative constant.

The choice of d is somewhat arbitrary, and thus so is the collection of
finite random sequences.

Note that although the complexity notion of randomness is based on
effective (digital) computability, there is no general effective procedure
for computing the complexity of finite sequences and, thus, for deciding
whether an arbitrary finite sequence is random. This fact is a corollary
of the lemma that deciding whether any given Turing machine halts for
any specified input is a recursively unsolvable problem.

Extending the computational complexity idea to infinite sequences
can be done in a number of ways, only one of which will be considered
here. For x € X again let x(n) be the initial finite segment of length 7.
We can call x complexity random just in case

(C,) K(x(ny/n) 2 n—d infinitely oftenas n - oo *
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For the u-measure derived from the Bernoulli model with p = } the
collection of all complexity random sequences .%.,, has measure 1 in
accord with (C).

For infinite sequences the notion of randomness as complexity does
not coincide with the notion of randomness as passing effective statis-
tical tests; in fact, . %, is a proper subset of #, on various definitions
of effective test. This has led Schnorr (1971, 1971a) to reject the
complexity approach on the grounds that it imposes properties of
randomness that have no physical meaning in that the failure of such a
property could never be detected by effective means.

There is another tension between randomness and complexity which
needs to be addressed. The tension can be exposed by flipping a bent
coin.

3. BIASED COINS

The computational complexity definition of randomness appears to fit
within the ambit of the approach adopted in Sec. 1, but that appearance
is an artifact of the choice of the value p = %. The root notion of
randomness in Sec. 1 is that a random output process is one which
reflects the probabilities of the underlying random (= stochastic) pro-
cess. But the complexity approach is absolute in that it makes no
allowance for different p values. Consider a coin tossing experiment
with a bent coin strongly biased in favor of heads (0) as against tails (1),
with p = 3/4. Then for large n we would expect that about 3/4 of the
flips to land heads, and in such a sequence the maximum (length
relativized) complexity is about (4/5)n. Thus, the sequence will be
rejected by criterion (C,) even though the (3/4)n heads are sprinkled
in as random an arrangement as could be hoped. Conversely, finite
sequences satisfying (C,) will tend to be rejected by statistical tests
postulating the p-value of 3/4.

It might be replied that flipping a bent coin is not a random experi-
ment. But such an attitude seems to me to reveal an unjustified bias in
favor of p = %, and it severely limits the application of the concept of
randomness. As a kind of compromise, the complexity measure could
be relativized not only to the length /(x) of a sequence x € X but also
to the weight w(x), defined as the number of 1s in the sequence. Since
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N(l(x), w(x)) = ( 52)) the new weight relativized complexity criterion

for finite sequences is

I(x)

Ci K(x/A(x), =1 -d
(€ K(xl(x), wx)) > log, ( (o) )
and the weight relativized counterpart of (C,) for infinite sequences is

(Cy)  K(x(n)/n, w(x(n))) > log, ( ix) ) —d

w(x)
infinitely oftenas n — oo,

Liberalizing the complexity criteria in this way puts us on a slippery
slope. If we relativize to weight, then why not to other features of the
sequence as well? But the more we relativize the more sequences that
are countered as random until finally no sequence is excluded on the
complexity approach. However the line is drawn the fact remains that
the contemplated relativizations do not properly take into account the
underlying p-value. (C}) and (C5) will count as random some finite and
infinite sequences which display a frequency of heads of 3/4, as would
be expected when p = 3/4. But they will also count as random some
sequences in which the frequency of heads is markedly different from
3/4, a result which is contrary to the root notion of Sec. 1 if indeed
p = 3/4.

A seeming virtue of the complexity approach is that it gives a
criterion of randomness for finite sequences that corresponds well to
the intuitive notion of disorder. But the criterion is wrong from the
point of view that a random performance is one which reflects the
probabilities of the underlying stochastic process. This point of view,
however, does not have a satisfying link to the notion of disorder for
finite sequences. We could say that a finite output sequence from a
Bernoulli process is random with respect to a p-value just in case the
sequence passes statistical tests on the hypothesis that p has the stated
value; that is, we do statistical hypothesis testing but reject sequences
rather than the hypothesis.> But for p = ¥ all finite sequences are
equally likely, so all sequences or none will pass regardless of how
‘ordered’ or ‘disordered’ the sprinkling of heads and tails. And for any
p-value, the independence of trials means that all sequences with the
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same number of heads and tails are equally likely, so all or none of
these sequences will pass, again regardless of how ‘ordered’ or ‘dis-
ordered’ the sequence.®

We have to face the fact that there are two concepts of performance
randomness, or as I would prefer to say, the fact that there is a concept
of randomness and a separable concept of disorder. The concept of
disorder is an intrinsic notion; it takes the sequence at face value, caring
nothing for genesis, and asks whether the sequence lacks pattern. The
various complexity measures, relativized to length, weight, etc., provide
different explications of this notion of disorder or pattern-freeness. By
contrast, the concept of randomness is concerned with genesis; it does
not take the sequence at face value but asks whether the sequence
mirrors the probabilities of the process of which it is a product. There
is a connection between this concept of randomness and the concept of
disorder, but it is not a tight one. The various explications of random-
ness for infinite sequences guarantee the absence of pattern, but not in
as strong a sense as the computational complexity approach; and for
finite sequences the connection is looser still, with no guarantee that a
sequence that passes statistical tests for a postulated p-value will be
disordered in the complexity sense.

4. UTTER CHAOS

Chaos in the genesis sense — the absence of any lawlike guiding
principle — is, I would argue, at least a conceptual possibility (see Ch.
V, Sec. 6). But performance chaos — the absence of any pattern or
order — may not be a coherent notion. Taking high complexity to mean
low order and lack of pattern, we might try to define x € X to be
utterly chaotic just in case

(Cy) K(x(n)/n)2n-—e for all n (e non-negative constant)

It has been shown by Martin-Lo6f that there is no such sequence! It
follows, of course, that there is no sequence for which the inequality in
(C;) holds for all but a finite number of initial segments. The next most
chaotic thing would be for the inequality to hold infinitely often, i.e., the
sequence is random in the complexity sense; but this minimal form of
chaos implies that the relative frequency of 0’s converges to a limit. Out
of chaos order arises!
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A similar result holds for the weight relativized complexity measure
on finite sequences. If (C;) holds then the sequence x = (x,, x,, . ..
X)) seems to converge in that

’

max i Yx — wx) ,
mej<iny | ] i I(x)
d+c 1/4
where ¢ = ( ) (see T. Fine (1973)).
m

Rather than give up on the notion of utter performance chaos one
may choose to abandon the computational complexity approach to it.
The challenge is then to find an alternative approach and to demon-
strate that it makes coherent sense of utter and complete performance
chaos. I predict that the challenge cannot be met.

5. DETERMINISM AND PERFORMANCE RANDOMNESS

Genesis randomness is no sure guarantee of performance randomness,
though in the x-measure sense it leads to a strong expectation of a
random dance. Conversely, randomness or disorder in a performance
of finite length is no guarantee of genesis randomness, as is illustrated
by ‘random number’ generators in digital computers.

However, there are conflicts between determinism and randomness
in infinite sequences for discrete state devices. Consider a time transla-
tion invariant finite state device operating in discrete time. If the state at
any instant is uniquely determined by the states at the preceding K
instants, K finite, then any infinite sequence of states that constitutes an
allowed history will exhibit periodicities which, on any reasonable
definition of randomness, will brand the sequence as non-random. For
a binary state device, for example, the maximum period is of length 2K,

To bypass this difficulty, let us allow that the future state may
depend on the entire infinite past history. Call a collection D C X<
weakly futuristically (respectively, historically) deterministic just in case
for any x, x" € D and any m € Z, if x; = x, for all i < m (respectively,
for all i > m), then x’ = x. For any chosen criterion of performance
randomness in infinite sequences, there will be weakly deterministic
collections D some or all of whose member sequences are random.
(For a doubly infinite sequence x we take randomness to mean that
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each of the singly infinite sequences x,,, x,,,,, ..., starting from any
m € Z is random.) But there is a more subtle conflict between weak
determinism and performance randomness. A binary state deterministic
device is severely limited in its ability to mimic the outputs of a random
(= stochastic) process in that the possible output sequences D can
cover only an insignificant fraction of the possible random sequences #
which could result from, say, a Bernoulli process; for (D) = 0 for any
weakly deterministic D and any Bernoulli based ux-measure, with
0 < p < 1.7 To prove this we will assume without any real loss of
generality that p = 2. Divide the collection D into two parts D~ and
D* according as there is a 0 or a 1 in the Oth place of the sequence. Let
D™* be the result of replacing 0 by 1 at the Oth place in each of the
member sequences of D™. Then D™* N D* = @ since from the defini-
tion of weak determinism two member sequences of D cannot differ in
only one place. Further, from the construction of the Bernoulli mea-
sure, u(D™*) = u(D7) and u(D™ U D*) < %. Thus, u(D™* U DY)
= u(D~ U D*) = u(D) < 4. Now iterate the procedure, starting from
the deterministic collection D, = D~* U D*. Divide D, into D7 and
DT according as there is a 0 or 1 in the first place, and let D,™* be
the result of replacing 0 by 1 at the 1st place in each of the member
sequences of D,. Then u(D7* U DY) = w(D7 U DY) = u(D) < 1/4.
And in general u(D,) = u(D) < 1/2", with the result that x(D) = 0. A
similar conflict arises when we generalize from binary 0—1 states to
any finite number of states.

If we go to continuous state systems operating in continuous time
and permit a shift in levels of description, the conflict between deter-
minism and performance randomness can disappear. Indeed, such
systems can develop in a strictly Laplacian deterministic manner, and
yet on a coarse-grained level of description almost every coarse-grained
sequence of states can be random and every such random sequence will
be generated by an underlying deterministic sequence. These matters
will be taken up in the following chapter.

6. PHYSICAL PROBABILITIES:
FREQUENCIES OR PROPENSITIES?

While there is no disagreement about how to manipulate the formalism
of stochastic models, the interpretation of the formalism has been and
continues to be one of the most contentious areas in philosophy of
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science. I will simply ignore the contentions of those probability
theorists who assert that all probability statements ultimately refer to
subjective or personal degrees of belief. The theories of physics purport
to give us truths about probabilities that are objective and observer
independent, and it is the nature of these probabilities we seek to
understand. The traditional battlelines of philosophical interpretation
pit the propensity theorist against the frequency theorist.?

To call probabilities propensities is only to attach a label that does
not explain anything. And worse, attaching that label raises the fears
that non-Humean powers are being attributed to Nature. Recall from
Ch. V the basic Empiricist demand on laws;

(E\) For any worlds W, and W,, if W, and W, agree on all
occurrent facts, then they agree on laws.

If we are confident that non-probabilistic laws are Empiricist in this
sense, then we will also be confident of

(D) For any worlds W, and W,, if W, and W, agree on all
occurrent facts, then they agree on non-probabilistic disposi-
tions, such as solubility.

For, presumably, occurrent facts about the microstructure of salts and
crystals together with the Empiricist laws will determine everything that
is true about the solubility of these materials. An Empiricist will also
insist that (D) continues to hold when extended beyond garden variety
dispositions such as solubility to the more exotic species of probabilistic
propensities:

(D’)  For any worlds W, and W,, if W, and W, agree on all
occurrent facts, then they agree on all physical probabilities.

But it is far from clear why (D’) should hold on the ‘single case’
propensity interpretation of probability; indeed, it is clear that (D) will
fail if the only relevant occurrent facts are those about the outcomes of
chance experiments. If two Bernoulli processes disagree on p-values, it
is unlikely that their output sequences will agree — unlikely in any
particular case but perfectly possible, and inevitable within the full
range of possibilities. Of course, different p-values may be grounded on
other kinds of occurrent facts in such away that (D’) is satisfied. But it
is up to the propensity theorist to show how this grounding is achieved.
Not only do we get no help from the propensity theorist, but the avowal
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that propensities involve a “new physical hypothesis (or perhaps a new
metaphysical hypothesis)” (Popper, 1959) suggests that no such
grounding is possible.

Frequency theorists disavow any new physical or metaphysical
categories and propose to analyze physical probabilities in such a way
that (D’) is satisfied. The goal is worthy but the analysis is both
unworkable and wrongheaded. Defining probability as the actual limit-
ing frequency fulfills (D’) but it makes the probability concept virtually
inapplicable since actually infinite sequences of trials rarely if ever exist.
Thus, a resort to hypothetical sequences of trials is inevitable. A resort
to hypothetical outcomes is already familiar from the standard analysis
of non-probabilistic dispositions such as solubility. That object o is
soluble is taken to mean that o would dissolve if it were put into water;
or in possible world talk, “o is soluble” is true (in the actual world Wy)
just in case in every world W which is physically possible (relative to
W) and in which o is immersed in water, o dissolves. If ‘W is
physically relative to Wy’ means that W satisfies the laws of W, and if
laws fulfill (E,), then this analysis of solubility guarantees that (D) is
fulfilled. Hypothetical frequency theorists, hoping to satisfy (D’), ape
this approach, using hypothetical occurrent frequencies in place of
hypothetical occurrent dissolvings. Call a world W an infinite future
extension (ife) of Wy just in case W agrees with the actual (finite)
outcomes of the chance experiment in question and also W extends the
repetitions of the experiment ad infinitum. Then the hypothetical fre-
quency analysis would take “The probability for the outcome 0’ is p”
to be true (in W,) just in case in every (or almost every) ife W which is
physically possible (relative to W), the limit of the relative frequency
of Os is p® The strong (‘every’) reading is unacceptable, for any
reasonable interpretation of physical probability has to allow for the
physical possibility that the frequency fails to converge or else con-
verges to a value different from the true p-value. The weak (‘almost
every’) reading escapes this difficulty, but it provides no definite truth
conditions until the crucial ‘almost every’ clause is cashed in. Fetzer and
Nute (1979, 1980) suggest a way to cash in frequency terms. Let W,,
W,, . . . be an infinite sequence of ife worlds each of which is physically
possible relative to W,. The ‘almost every’ is taken to mean that
lim, . ,#(W,)/n =1, where #(W,) is the number of worlds among the
first n in which the limiting frequency of Os is p. But if there are an
infinite number of physically possible worlds in which the frequency
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converges to p there are surely also an infinite number in which the
frequency doesn’t converge or else converges to a value p’ # p. Thus,
satisfaction of the truth conditions for a given p-value will depend on
the choice of the ife worlds and the choice of the ordering of these
worlds (see Eells, 1983). Since the frequency theory provides no non-
arbitrary basis for making these choices, the proposed truth conditions
seem to rely upon a measure theoretic notion not explicable in fre-
quency terms. In the following chapter we will see one possible basis
for this measure.

The hypothetical frequency approach is not only unworkable but is
wrong-headed as well. Suppose that some appropriate explication of
‘almost all’ has been given and that almost all of the infinite repetitions
of the chance experiment result in a limiting frequency of p for ‘0.
Would we then be justified in concluding that the probability of ‘0’ is p?
Not if the outcome sequences lack other probability 1 properties
characteristic of the given p-value. Which probability 1 properties shall
we then take to be definitory of probability? One solution, suggested by
von Mises’ work, would focus on those properties characteristic of
randomness for the given p-value. We have seen, however, that there
are many different possible explications of randomness for infinite
sequences. The frequency theorist must hold that only one of these
possible explications captures the true notion of randomness, or else he
must admit that there are many different concepts of physical prob-
ability, one for each possible definition of randomness. The need to
divine the ‘true’ concept randomness or else to multiply concepts of
probability is avoided if we reject the need for a ‘definition’ of prob-
ability in terms of relative frequency or the like. Although they are not
explicit on this point, frequency theorists seem to have two motivations,
both bad, in striving for a definition. First, there is the felt need to
establish a connection between probability assertions and observable
and measurable quantities such as frequencies. But the connection
doesn’t require the addition of a new axiom or definition to probability
theory; standard probability theory already establishes whatever valid
connection exists between probabilities and limiting frequencies via the
strong law of large numbers (compare Doob (1941) with von Mises
(1941)). Second, there is the related desire to locate physical prob-
abilities within the Empiricist framework. But again, a definition of
probability as hypothetical limiting frequency is not a requisite con-
dition for this goal.

The example of ergodic theory studied in the next chapter provides a
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tertium quid to propensity and frequency theories. It eschews the
definitional approach of the frequency theory but shows how the
physical probabilities of classical statistical mechanics can be grounded
in accord with the Empiricist demands. The example is especially
interesting from the point of view of this work since the laws that do the
grounding are deterministic.

The inference: ‘objective’ as applied to probabilities implies that the
probabilities are irreducible, which in turn implies that determinism is
false: goes wrong at the first step. p = # (say) for a coin can represent
an objective tendency for the coin to land heads up. And the attribu-
tion of such an objective tendency is not undercut by the discovery that
the outcome of any flip is uniquely determined by the prior micro-state
of the system; indeed, if classical statistical mechanics is our guide,
determinism can form part of the explanation of the tendency to land
heads up # of the time. The second step of the inference can be secured
by making it part of the meaning of ‘irreducible’. Then to imagine a
world with irreducible probabilities is necessarily to imagine an indeter-
ministic world. If we try to imagine a world whose laws are not only
indeterministic but also purely stochastic we imagine ourselves into a
problem for the grounding of probabilities. Certainly the frequency
theorist’s attempt at a definitional grounding is of no help. Recall that
the hypothetical frequency approach bases the truth of a probability
assertion on the relative frequencies in hypothetical situations obeying
the laws of the actual world. On pain of circularity, ‘laws’ here must
be taken to mean non-probabilistic laws; but since in our imagined
stochastic world there are no such laws the frequentist truth conditions
collapse. Since we have rejected the frequency theory this collapse need
not be seen as an immovable obstacle to an Empiricist grounding of
physical probabilities. But until it is shown how such a grounding
can be provided in non-deterministic worlds, we are shadowed by a
dilemma: with determinism irreducible probabilities are impossible;
without determinism irreducible probabilities are possible but they
portend non-Empiricist powers.

NOTES

! Perhaps we should put scare quotes around ‘laws’ since at this stage we do not know
whether there are in nature any irreducibly probabilistic laws or even what it would
mean to say that there are such laws.

? This is needed for the strong form of the law of large numbers used later.
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* Schnorr (1971, 1971a) has provided a general framework for discussing effective
statistical tests for infinite sequences. An effective test is defined informally in terms of
a function F: X, - R such that

(A1) Fis given by algorithms
(A2) There is rule which assigns to F a null set 4}, the set of sequences that
fail the test.

Given a precise implementation of these axioms, we can say that an infinite sequence is
random just in case it passes all effective tests. To carry forward the gambling analogy,
we could think of F(x(n)) as the again after the nth trial. Then for a fair coin (p = 1)
we would want the Martingale property that F(x) = }F(x0) + $F(x1). The associated
null set could be defined as A = {x € X;: lim sup F(x(n)) = o }. However, Schnorr
recommends that we exclude the possibility that F(x(n)) grows so slowly that the
growth cannot be recognized by effective means. Write elim sup F(x(n)) = o if there is
recursive monotone unbounded g: N — N such that lim sup (F(x(n) — g(n)) > 0. Then
Schnorr's associated null set is {x € X,: elim sup F(x(n)) = «|.

* It might seem more natural to write “for every n” in place of “infinitely often as
n — .” We will see in Sec. 3 that this is not a live option.

5 If the test is to be effective, the p-value must be a computable number; see
Martin-L6f (1966).

¢ Alternatively, we could say that a finite sequence is (&, n, ) random with respect to
a p-value if the frequency of Os in the sequence is approximately (within €) p and is
approximately (again within ¢) invariant under any selection rule which is in the family
# and which selects out a subsequence of length at least as great as n (see T. Fine
(1973)). For infinite sequences the (&, n, #) relativization can be removed by taking &
to be 0, n to be +%, and # to be the family of all effective selection rules. For finite
sequences the relativization to £ and n cannot be removed, and the removal of the
relativization to & is problematic. Finite sequences cannot stand up to all effective
selection rules, and the limitation to ‘non-contrived’ effective rules puts randomness at
the mercy of our intuitions of naturalness.

7 What follows is a version of a proof that was kindly provided by D. Malament and S.
Zabell. )

* Proponents of the propensity theory include Popper (1959, 1962); Giere (1973,
1976); and Fetzer (1981). Frequency theorists include von Mises (1941, 1957, 1964);
Reichenbach (1971); and van Fraassen (1977, 1980). The survey articles by Kyburg
(1974) and Eells (1983) provide good overviews.

? See Kyburg (1974). 1 have made no attempt to follow the niceties of Kyburg's
definitions. And to simplify the discussion I ignore the possibility that the laws of
physics might make impossible an infinite repetition of the chance experiment by
implying, for example, that the world ends after a finite time, as can happen in general
relativistic cosmological models (see Ch. X).

SUGGESTED READINGS FOR CHAPTER VIII

An accessible treatment of von Mises’ theory of Kollektives and the von Mises-Church
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definition of random sequence is to be found in Martin-L&f’s (1969) “The Literature on
von Mises’ Kollektives Revisited.” Kyburg’s (1974) “Propensities and Probabilities”
describes various frequency and propensity theories of probability. T. Fine’s (1973)
Theories of Probability is a gold mine of information on many of the topics of this
chapter. Chatin’s (1975) Scientific American article “Randomness and Mathematical
Proof,” gives a sketch of the computational complexity approach to randomness and
also links it to Godel's incompleteness theorem.



CHAPTER IX

DETERMINISM, INSTABILITY, AND
APPARENT RANDOMNESS

- . . the rock loosed by frost and balanced on a singular
point of the mountainside, the little spark which
kindles the great forest, the little word which sets the
world fighting, the little scruple which prevents a man
from doing his will, the little spore which blights all
the potatoes, the little gemmule which makes us
philosophers or idiots . . . At these points, influences
whose physical magnitude is too small to be taken
account of by a finite being, may produce resuits of the
greatest importance.

(James Clerk Maxwell, “Does the progress of Physical
Science tend to give any advantage to the opinion of
Necessity (or Determinism) over that of the Con-
tingency of Events and the Freedom of the Will?")

In the terminology of Hadamard’s classic work, Lectures on Cauchy’s
Problem, a Cauchy initial value problem is “correctly set” if the initial
data determine a unique solution and solutions depend continuously
on the initial data. Implicit in this terminology is a methodological
injunction: if your mathematical model of a physical system entails an
initial value problem which exhibits non-uniqueness or else uniqueness
but instability, then assume that the fault is not in Nature but in your
model. In previous chapters we have seen how fruitful the first part of
this injunction can be; tracing the reasons for a failure of uniqueness
often leads to the discovery of restrictions on ‘physical’ solutions that
were neglected in the original model. The second part of the injunction
has also proved fruitful but to a lesser degree. For despite the seemingly
straightforward appeal of the notion of continuous dependence of
solutions on initial data, there are many inequivalent ways to gauge
continuity, and especially in the case of partial differential equations,
the verdict on stability can vary with the choice of gauge. For particles
as opposed to fields, the gauge is much less open to choice, but we have
learned that in the case of particles Nature sets and solves many ‘non-
correctly set’ problems where determinism but not stability holds.
Moreover, this instability is the foundation of one of the important
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bridges from micro-determinism to macro-randomness. The main pur-
pose of this chapter is to show that by crossing this bridge a micro-
deterministic system can on the macro-level violate even the weak form
of determinism studied in Ch. VIII and behave like a Bernoulli system.
Though precise mathematical results in this area are of fairly recent
origin the basic ideas have a venerable history. Writing in the 1870’s,
Clerk Maxwell was careful to distinguish the maxim that ‘The same
causes will always produce the same effects’ from a second maxim that
‘Like causes produce like effects’. The former he interpreted in terms of
a time translation invariant determinism while the latter “is only true
when small variations in the initial circumstances produce only small
variations in the final state” (1920, p. 13). And while the latter demand
is often satisfied, it is not always so, “as when the displacement of the
‘points’ causes a railway train to run into another instead of keeping its
proper course.” To this homely example Maxwell added the paren-
thetical but prophetic remark that

We may perhaps say that the observable regularities of nature belong to statistical
molecular phenomena which have settled into permanent stable conditions. In so far as
the weather may be due to an unlimited assemblage of local instabilities, it may not be
amenable to a finite scheme of law at all. (1920, p. 14).

1. STABILITY AND INSTABILITY FOR FIELDS

Stability in the initial value problem for a field law can be formulated
abstractly as the requirement that for any two sequences of solutions
{u"}, {u’"}, convergence in the initial data implies convergence overall,
ie, if (u"(x,0) — u'"(x,0)) = Oas n = o, then (u"(x, ) — u'"(x, 1)) = 0
as n — oo, Different senses of stability are produced depending upon
how uniform the convergence is required to be and upon how the
convergence is to be measured. If we have a norm || || defined on
instantaneous states u(f) = u(*, t), we can take future stability to mean
that whenever ||u"(0) — u'"(0)|| = 0, then also {|u"(¢t) — w'"(t)|| = O
for + > 0.! There are generally many choices for || ||, but any accept-
able choice must meet the demand that if # and u’ agree on what is to
be counted as initial data, then [[#(0) — «'(0)|| = O. It then follows
from stability that initial data determine a unique solution, and in fact
determinism is frequently demonstrated as a corollary of a stability
proof. When convergence of solutions is required to be uniform on
compact intervals of # we can rephrase stability as the requirement that
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there is non-negative and non-decreasing function F(¢) such that for
any solutions u and u’,

@X1) [lw() = u(o)il < F(@)|

u'(0) = u(0)

We can illustrate these ideas for the examples of field laws studied in
Chs. III and IV. For the shock wave equation (III.7) consider the space
of weak solutions which are piecewise continuous with all discon-
tinuities in the form of shocks, and let the norm be the L! norm. Then
lu'(¢) — u(t)ll is a decreasing function for ¢ > 0 for any solutions u
and u’. Future stability and determinism are immediate (see Lax
(1973)).

For the heat equation (II1.4) applied to a unit rod with temperatures
at the ends kept at zero, consider the space of continuous solutions
equipped with the sup norm or else the space of L? (p > 1) solutions
equipped with the L” norm. Then for ¢ > 0, |lu(¢)|| < ||u(0)]], and
using linearity, future stability and determinism are immediate. How-
ever, past stability, which would require that the function F(¢) in (IX.1)
exists for negative time and that F(—r) is non-decreasing for ¢ > 0,
fails. In fact, there is such a great instability in the past direction of time
that the slightest inaccuracy in the measurement of the final tempera-
ture distribution will undercut any finite retrodiction task of retrodict-
ing with specified finite accuracy the temperature distribution over a
specified finite past interval of time. In more ordinary &£ — & talk, for
any t <0, any ¢ > 0, and any é > 0, there are solutions « and u’
such that [|&'(0) — w(0)|| < 6 but ||u’'(f) — u(¢)l| > & (In the sup
norm, consider 4 = 0 and u}; ,(f) = d sin(nzx)exp(—n?t).)

For the relativistic wave equation (IV.1) consider first the ordinary
C? solutions with finite energy. If we take the norm to be the energy
norm || || then past and future stability follow from linearity and the
fact that || u(¢)l|z = ||u(0)||¢ for all t. However, if we want to consider
weak C,(R’) solutions (continuous solutions which vanish at spatial
infinity) the appropriate norm might seem to be the ordinary sup norm.
But then stability is lost since focusing effects can cause a wave initially
small to grow unboundedly large in the focused region. For Maxwell’s
equations, which reduce to the relativistic wave equation, stability also
fails in the sup norm applied to electromagnetic fields whose com-
ponents are- Cy(R?). It also fails in the L” norm for solutions whose
components are L?(R’) unless p = 2. There are ways to restore stability
by renorming the space of solutions, but these matters are too technical
to permit discussion here (see Fattorini (1983) for details).
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2. CLASSICAL DYNAMICAL SYSTEMS

In the mathematician’s terminology, an abstract dynamical system is a
triple (X, {¢,}, u). The space X is usually assumed to have a manifold
structure. {¢,} is a one-parameter family of automorphisms ¢,: X — X,
¢t € R, with the group properties ¢, = id, ¢, © @, = ¢, +,,, ¢ l=d_.
This is just a formalized way of reexpressing the assumptions of
futuristic and historical determinism in time translation invariant laws
for a classical system: the possible instantaneous states of the system
correspond one-one to the points of X and ¢, is the time evolution
operator giving the state ¢,(x) at time ¢ when the initial state at =0
is x € X. The u of the abstract dynamical system is a measure on X
which is normalized (#(X) = 1) and which is invariant under the flow
(u(A) = u(¢_,(A)) for any measurable A S X).

We are now in a position to state a version of Poincaré’s recurrence
theorem. Let U S X be a measurable set and let U, denote the set of
all x,€ U such that there is a T > 0 such that for all ¢ 2 T,
#.(x)) N U = B, ie., the orbit determined by x, eventually leaves U
permanently. Then u(U) = 0.

In the Hamiltonian formulation of classical mechanics X = R?"
is called the phase space, and a phase point is denoted by x = (q,,
Qs --- 5 Gus Pis P2s --- » Pn) Where the g, and p; are respectively
the canonical position and momentum coordinates satisfying Hamilton’s
equations

dg, oh L
1x-2) ds ap, ’ ds 9q; ’

where h(q, p) is the Hamiltonian. The equations (IX.2) define a one-
parameter group of automorphisms on R>" called the Hamiltonian flow.
The main application to be considered here is to particle mechanics;
for N particles n = 3N since three position coordinates and three
momentum coordinates are needed to specify the instantaneous state of
each particle. The Hamiltonian is a constant of the motion if, as we
have assumed, / is not an explicit function of time:

0
) dp;
LU, _ah_ﬂ+£’£.i)
de¢ t ; \ 0q; dt Jp, dt

=):(_dp,~ dg; |, dg; dp.-)so.

de dt de dt
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The natural volume element dq, ... dq,dp, ... dp, on R?** is
preserved by the Hamiltonian flow (Liouville’s theorem) as can be
shown by verifying that the divergence of the vector field (dq,/d¢, . . .,
dp,/dt, ...) vanishes. For a system confined to a finite volume of
phase space we thus have a normed invariant measure and can apply
Poincaré’s recurrence theorem. Define a phase point x to be recurrent
just in case for each open neighborhood N(x) of x and every time
T > 0 there is a t 2 T such that ¢,(x) N N(x) # @. Then the set of
non-recurrent points has zero volume in phase space. Define a point x
to be quasi-recurrent just in case points arbitrarily close to x eventually
return to the vicinity of x, ie., for any neighborhood N(x) and any
T > 0, there is a time ¢ 2 T such that ¢,(N) N N # @. Then since the
set of non-quasi-recurrent points is open and has zero volume, it is
empty, i.e., every point is quasi-recurrent.

From here on I will assume that the system of interest is isolated and
that all possible histories have the same constant energy E. Thus the
Hamiltonian flow is confined to a (2rn — 1)-dimensional energy surface
Sz. The volume element on R?** induces on S, an invariant area
measure dv, and if we assume that our system is spatially bounded
(eg, particles in a box with rigid walls), then [;_du is finite and we
can satisfy the definition of a dynamical system by taking u(A)=
fadv/[s, dv. The physical justification for taking this measure as a
guide to the probabilities of outcomes of macroscopic measurements
will be discussed in due course.

3. MACRO-RANDOMNESS: WHAT WE WANT

For macro-randomness the first thing we want to be assured of is that
the macro-past history of the system does not determine the future. To
make this more precise, consider a partition of the time axis into finite
intervals. v > 0, so that ¢,,, — ¢, = 7, and a partition of the energy
surface Sy into finite sized cells R, (U;R; = S, and R, N R, = @ if
J # k). Physically, we suppose that there is a macro-operation that
takes time 7 to perform, that allows us to tell into which of the cells R;
the state of the system falls, but that allows no finer discrimination.

Then for these partitionings, the macro past history will be a record
R R, ... R,

I
of the cells R, into which the state was found to fall at times ¢_,. To

n—1
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assert that the system behaves non-deterministically at the macro-level
is to assert that for any such partitions of the energy surface and the
time axis, the resulting past macro-history does not confer certainty on
the macro-state at the next instant. Expressed in terms of the u-
measure this means that

(IX.3) w(R/$«R;) N $2e(R;)) N ... N B.(R,))

does not approach 1 or 0 as n ~ o where u( /) is the conditional
measure defined by u(A/B) = u(A N B)/u(B). Interpreting u as prob-
ability (an interpretation still to be justified), u#(R;/¢.(R;) N $,(R;))
for instance, is the probability that the state will be found in cell R; at
given thatit was foundincell R; at ¢ ,andincell R; atr_,.

For macro-randomness we want more than lack of determinism. We
want the system to behave as if it were a Bernoulli process. This
requires that not only does the expression (IX.3) not approach certainty
but that, as in the spin of a fair roulette wheel, the past history is
probabilistically irrelevant to the future:

(IX4) u(R/$(R;)) N $2:(R;)) N ... N B(R,)) = u(Ry)

for any j and any n. To make contact with the discussion in the
preceding chapter, we can specialize to the case of a two-element
partition {R,, R,}, coding R, with ‘0’ and R, with ‘1’. Thus, a macro-
history is a doubly infinite binary sequence with the probability of
p = u(R,) of being ‘0’ and a probability of 1 — p = u(R,) of being ‘1’
The Bernoulli measure on the collection of all possible macro-histories
(not to be confused with the u of the dynamical system) is constructed
as before.

These then are the ultimate properties of randomness we want our
system to have. They are based on weaker properties which deserve at
least honorable mention. The historically first and the weakest of the
properties, called ergodicity, was introduced by Ludwig Boltzmann and
Clerk Maxwell. On Maxwell’s formulation, ergodicity meant that “the
system, if left to itself in its actual state of motion, will, sooner or later
pass through every phase consistent with the equation of energy [ie.,
through every x € S;|”.? We now know from dimensionality considera-
tions that this original form of the ergodic hypothesis is, with one
exception, false: since every orbit ¢,(x) is one-dimensional it cannot fill
up S; if dim(S;) > 1. However, we can preserve the spirit of Maxwell’s
idea in the form of the quasi-ergodic hypothesis: almost every x € S
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gives rise to an orbit ¢,(x) which meets every region R C S, such that
#(R) > 0. (Here ‘almost every’ means except for a set of u-measure 0.)
Thus for an ergodic system the phase orbit wanders ‘all over’ the energy
surface never becoming trapped in any proper sub-region: if p(A)=A
for all ¢, then u(A) = 1 or 0. Further, if we start with at any instant, say
t = 0, and keep track of the relative sojourn time(A)/t of the phase
point in A, then in the very long run, lim, ., , ,, time(A)/t = #(A).2 The
wandering nature of the orbits and the emergence of limiting frequency
probabilities is some sign that the system behaves randomly at the
macro-level. But the sign may not be strong enough. A simple harmonic
oscillator is ergodic as well as quasi-ergodic, but if we choose 7 to
coincide with the period of the oscillator, 8..(R;) = R; and the desired
properties of randomness are violated.

Another interesting feature of quasi-ergodicity is that it implies the
non-existence of any other measure x4’ which is invariant under the
flow and absolutely continuous with respect to u (ie., if #(A) = 0 then
#'(A) = 0).* This provides some justification for using u in the abstract
dynamical scheme since sets of zero u-measure are intuitively negli-
gible; but as yet we have no justification for aligning our expectations
about the outcomes of macro-measurements to fit the u-rule of equal
probabilities to equal areas of §;. Mixing is the next higher ergodic
property which moves us in the direction of the required justification.

Formally, mixing demands that

(IX.5) lim u(g,(A) N B) = u(A)- u(B), for all measurable A, B
t—= tw

A mixing system is necessarily quasi-ergodic. For if $(A) = A for
all £, we have from (IX.5), taking B = A, u(A) = (u(A))?, implying that
#(A) = 0 or 1. But the implication does not always go in the other
direction — the simple harmonic oscillator is ergodic but not mixing,

To see how mixing connects with macro-expectations, suppose that
we start with an ensemble of systems distributed over region A at time
¢ = 0 with a constant density 0,(x) = 1/u(A) if x € A, 0 otherwise.

: -5,
A ¢((A);: Z}ﬁ

Fig. IX.1
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Then by Liouville’s theorem for Hamiltonian systems, p/(x) =
Po($-,(x)), and so the fraction of points of the original ensemble which

areinBat¢ > Ois
#(¢(A) N B)
pdv=J Oo(p_(x))ydo= ""7007 7
J’MA)n B ' $(A)N B o)) H(A)

For a mixing system this fraction approaches u(B) for large enough .

Applying this result to our macro-experiment, suppose that our
observation at ¢+ = 0 places the state in cell R, of the partition. Since
our measurement does not allow any finer discrimination, our initial
knowledge is represented by a uniform probability density over R, at
t = 0. If the system is mixing and our next observation is made at t = 7
with large enough 7, then our conditional probability that the outcome
will correspond to cell R,, given the previous outcome, will be nearly
“(R).

(Til)e rub comes in the qualification ‘large enough’; mixing (IX.5) is an
asymptotic property and does not by itself assure that the mixing takes
place within the chosen macro time scale. The Bernoulli property
guarantees rapid mixing, for it implies that u(R,/¢.(R,)) = u(R,) so
that u(R, N ¢.(Ry)) = u(R)) - u($(R;)) = u(R))* u(R,). Thus, the
Bernoulli property provides both the justification for taking x4 as a
guide to macro-expectations and the justification for believing that
these expectations are equivalent to those for a roulette wheel.

4. MACRO-RANDOMNESS: CAN WE HAVE WHAT WE WANT?

We have reviewed what we need to have macro-randomness emerge
from micro-determinism in classical dynamical systems. The question is
now whether we can have what we want for physically realistic systems.
Integrable Hamiltonian systems — those possessing constants of
motion other than the energy — cannot exhibit even the humblest of the
ergodic properties; for the extra constants mean that a measurable set
of states will generate orbits that cannot wander all over §; in the
manner required by quasi-ergodicity. For some time it was the fond
hope of workers in classical statistical mechanics that the hierarchy
of ergodic properties would be exhibited in typical non-integrable
Hamiltonian systems. This hope was dashed by the work of Kolmogorov,
Amold, and Moser who proved that a wide class of non-integrable
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systems possess ‘invariant tori’ of dim n; so except in the case of n = 1
and dim(S;) = 2n — 1 = 1, not even the lowest order ergodic property
can hold.?

We can look for randomness in the gaps between the KAM tori. Or
we can try to escape the KAM result in one of two ways. The first is to
go to a ‘thermodynamic limit’, in which the number N of particles goes
to infinity while the ratio of N to the volume remains finite, hoping that
the limit will force out the ergodic hierarchy. To even begin to formu-
late ergodic theory in the limit we would first have to prove existence
and uniqueness theorems for the motions of infinite collections of
particles — no easy task as we saw in Ch. III — and we would have to
show how to transfer the measure theory to an infinite dimensional
state space — again, a non-trivial task. The second tack is to leave N
finite but to search for systems which do not fall prey to KAM. This is
the line I will explore, not because it is necessarily the ‘right’ one but
because it illustrates how it is possible for randomness to emerge from
determinism even for small V; indeed, even N = 1 will do!

If we want to find a system which is sufficiently far up the ergodic
hierarchy it is intuitively evident that we must search for an unstable
system: the dispersal of points required by mixing and the higher order
ergodic properities indicates that initially close phase points diverge
rapidly.

5. INSTABILITY IN CLASSICAL PARTICLE SYSTEMS

For Hamiltonian mechanics the discussion in Sec. 1 of stability and
instability for field theories can be paralleled by using a norm on
the tangent vectors of the phase space. However, it is more intuitive
to work with a measure of the distance between phase orbits. Any
Riemann metric 4 on the phase space X will generate a distance
measure dist,(x, x°) defined as the greatest lower bound on the A-
length of paths joining x and x’. When X is compact (as we nave been
assuming here) the choice of # has no significant influence on con-
clusions about stability and so the subscript on dist will be dropped.
Using dist any number of different definitions of stability and in-
stability can be concocted. For instance, Lyapunov instability expresses
the failure of uniform convergence of phase orbits with respect to the
initial data. The phase space is Lyapunov stable at x (or equivalently,
Lyapunov stable with respect to the unique phase orbit ¢,(x) through x)
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just in case for any £ > 0 there is a 6 > 0 such that for any y and any
time ¢ > O, if dist(y, x) < J then dist(g,(y), (x)) < &. If the actual
state of the sysiem corresponds to a Lyapunov unstable point then for
some £ > 0 the ongoing prediction task of forecasting the future state
with accuracy ¢ for the indefinite future will prove to be impossible if
there is even the slightest error in ascertaining the initial conditions.
Other senses of stability can be related to the conditions needed to
carry out various of Popper’s other ‘prediction tasks’ (see Ch. II) in the
face of uncertain knowledge of the initial positions and velocities of the
particles. Our aim, however, is not to do Sir Karl’s work but to
investigate the kind of instability needed to generate stochastic behavior
at the macro-level.

Note that, paradoxically, the framework we have chosen automat-
ically entails that the systems under study cannot be radically unstable.
The system has, by assumption, only a finite volume of phase space
available to it, and as a consequence there will be stability in Poincaré’s
sense at almost all x € S in that ¢,(x) returns infinitely often to any
chosen neighborhood N(x) of x. This form of stability holds for all
finite Hamiltonian systems and is not negated by ergodic properties.
It is often pointed out that in typical macro-systems the magnitude
of the Poincaré recurrence time is quite large — often larger than the
age of the universe. But for our purposes this is irrelevant; for even
if the recurrence time is short in comparison with the time scale of
the macro-measurements, the system can nevertheless exhibit macro-
randomness due to the facts that no macro-measurement can precisely
determine the initial state and that phase points within the range of

étror can be rapidly dispersed and can have very different recurrence

times. Here we meet a second way in which our framework limits
instability. In dynamical systems the points in N(x), u(N(x)) <1,
cannot disperse to cover the entire energy surface or even a larger area
of it. And for a Hamiltonian flow it cannot be the case that all of the
phase orbits emanating from points in N(x) are dispersing (a form of
Liouville’s theorem).

We can, however, have Hamiltonian dynamical systems which are
what Anosov calls the C-systems,® possessing a strong dispersal prop-
erty. At each x € X there is a submanifold X%x) of exponentially
dilating orbits: for x’ € X4(x)

dist(g,(x), ,(x")) 2 aexp(at)dist(x, x’), t > 0
dist(@,(x), §(x")) < bexp(—at)dist(x, x’), t <0
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where a4, b, and a are positive constants and dim(X%(x)) > 0 and is
independent of x; there is also at each point x € X a submanifold X*(x)
of contracting stable orbits defined by reversing the inequalities in the
definition of X“(x).

Measure preserving flows with the C-property are, with one class of
exceptions, K-systems whose technical definition T will not discuss
except to say that K-systems have the first of the desired properties of
macro-randomness; namely, the past macro-history does not determine
the future macro-development. Concrete examples of Hamiltonian
particle systems which have been proven, because of Anosov instability,
to be K-systems (almost everywhere) are (1) two or more hard spheres
in a rectangular box with perfectly reflecting walls and (2) a single
point mass in a ‘Born box’ which contains stationary convex scatterers.
Small changes in initial directions are rapidly multiplied as the spheres of
model (1) collide with one another or the particle of model (2) collides
with the stationary scatterers. Born’s model is sufficiently unstable to
generate a Bernoulli flow (almost everywhere): for any choice of 7 > 0
there is a partition of S, coarse enough to have the Bernoulli property
(IX.4) but fine enough that different dynamical states can be discrimi-
nated by some possible sequence of macro-observations.

6. STRANGE ATTRACTORS

Our discussion has neglected dissipative systems. At first glance such
systems appear to be poor candidates for exhibiting random or chaotic
behavior. Assuming futuristic determinism we still have a flow ¢, on the
phase space of the system, but the flow may only have a semi-group
property if ¢, is not invertible because of the loss of historical deter-
minism. Further, neither energy nor volume in phase space need be
preserved, and typically the phase space will contain regions A (‘attrac-
tors’) towards which the flow takes all the states in a neighborhood of
A. (More formally, call A C X an attractor under the flow ¢, if Ais
compact, §,(A) & A for all ¢ > 0, and there is a neighborhood N(A)
of A such that all the future oribits originating in N(A) are pulled into
A, ie, lim,. ., §(N(A)) € A. It is usually also required that A be
indecomposable, i.e., if B < A is an open set and ¢(B) = B for all
t > 0, then either B = A or B is empty.) In the simplest case the
system dissipates some ‘noble’ form of energy, generating heat and
settling down to an equilibrium state; and it settles down without the

INSTABILITY AND APPARENT RANDOMNESS 165

fuss or bother that is read on the macro-level as randomness or chaos.
Nevertheless, if the attractors have a complicated enough structure and
the flow is unstable enough (‘strange attractors’) there can be plenty of
fuss or bother. (A strange attractor A under the flow ¢, is generally
defined to be an attractor such that there is future Lyapunov instability
at every point in some neighborhood of A.)

An indication of the fuss and bother can be supplied by a technique
first exploited by Poincaré. Choose an (n — 1)-dimensional section § of
the phase space X and keep track of the successive intersections with §
of an orbit under ¢,. With strange attractors present the pattern of
intersections can look quite irregular. Poincaré’s device also provides
an alternative way to characterize strange attractors. By futuristic
determinism, if the future orbit through x € § meets S again the next
meeting place y € § is unique; f(x) = y then defines the Poincaré map
on § or on the subset of all the points of S which generate reintersect-
ing orbits (usually S can be chosen so that f is defined on all or almost
all of S). An attractor A C § of § is then defined as before using
iterates of the Poincaré map in place of ¢,. (The attracting properties of
A are that f(A) € A and that there is a neighborhood N(A) C § such
that lim, .. ,, f"(N(A)) & A, and Lyapunov instability at x € S means
that there is an £ > 0 such that for any 4 > 0 there is a y € § and an
n > Osuch that dist(y, x) < 6 butdist(f*(y), f(x)) > &.)

In 1963 Edward Lorenz modeled the process of atmospheric con-
vecting using the system of equations

dx

6) — = —ax +
(IX6) -4, ax + ay
dy
— = —x7 + bx —
dr XZ y
bz -
a7

Oscar Lanford has charted the behavior for the case a = 10, b =28, and
¢ = 8/3. A solution which starts at the origin (0, 0, 0) of the phase space
R? makes a loop to the right around (6,2, 62, 27), then several loops
to the left around (—6{2, —62, 27), then more loops to the right,
etc. in an irregular pattern (see Fig. 3 of Ruelle (1980)). Sensitivity to
initial conditions is indicated by the fact that the slightest change in the
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initial state changes the number of loops to the left and to the right.
Little wonder, if Lorenz’s model is correct, that the weather man has
such a tough time forecasting! It can be shown that all of the future
orbits in the phase space are pulled into a bounded region B of R
Further, the flow g, shrinks volume at the rapid rate exp(—13.67¢) so
that in unit time a unit volume has shrunk to roughly 1/106. Thus, all of
the future orbits converge to lim, ., ¢,(B), which has measure zero.
(In other cases, the attractors can have a positive invariant measure.)
For the chosen values of the parameters there are stationary solutions
at (642, 642, 27) and (=642, —62, 27), and for the section z = 27
the Poincaré map is defined almost everywhere; for a description of the
fascinating and intricate details of the action of this map the reader is
referred to Ruelle (1977a) and Lanford (1977). Computer calculations
indicate that the time correlation between functions of state approaches
zero as t —~ +% — a feature which in Hamiltonian systems is equi-
valent to the property of mixing — and that this mixing-like behavior
occurs at a rapid and, possibly, exponential rate.

It is hoped that the study of strange attractors will have payoff in the
form of an explanation of turbulence in fluids and gases, one of the
most familiar but least understood phenomena of physics. The older
approach of Landau and Lifshitz (1959), which defined turbulence in
terms of quasi-periodic orbits, was found to be defective in various
ways: it does not always lead to mixing-like behavior and it does not
apply to those viscous fluids which may not possess quasi-periodic
orbits.

7. CONCLUSION

No attempt was made to answer the still controversial question of
what in fact accounts for the apparent macro-randomness in classical
dynamical systems. Perhaps it is due to internal instability; or to
instability under external perturbations; or to a thermodynamic limit; or
to a fourth factor; or to a combination of factors. The points to be
made were conceptual: determinism need not march in lock step with
the stronger property of stability in the initial value problem; and when
stability and determinism are out of step, prediction and determinism
can part company if the predictions are to be based on initial data that
involve even the slightest error; and more, certain kinds of unstable
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micro-determinism are not only compatible with but actually entail
macro-randomness. Because of such cases we can anticipate one of the
lines of defense a determinist will use to resist the move from apparent
randomness to the conclusion of an ultimate, irreducible randomness in
nature. Whether or not such a defense is unbreachable is a question we
will have to confront in Ch. XI on quantum physics.

APPENDIX: THE BAKER’S TRANSFORMATION

The ‘baker’s transformation’ provides the simplest known explicit
example of a measure preserving flow with the Bernoulli property. The
flow is non-Hamiltonian and it operates in discrete time; nevertheless,
it is useful in illustrating some of the features we expect to find in
Hamiltonian systems. Most of the standard works on ergodic theory
discuss this example, but because of the rather forbidding character
of these references, it may not be amiss to outline some of the essential
features here.

In a way, the example is a cheat: we start with a Bernoulli process
and then work backwards toward what we want. Recall the treatment of
a binary Bernoulli process (e.g., coin flipping) from Ch. VIII. Assume
that the probabilities for ‘heads’ (0) and ‘tails’ (1) are each 1/2 and that
the flips are probabilistically independent. We indicated how to use
these probabilities to construct a Bernoulli measure 4 on X*, the
possible outputs of the process (i.e., doubly infinite binary sequences).
The new element added here is the Bernoulli shift transformation ¢:
X” = X%, where ¢(x) = x’ with x} = x,, . It is obvious that ¢ is mea-
sure preserving: for example, if X} is the cylinder set {x € X*:x, = i},
i=1or0, then u($(X()) = u(Xjr1) =4 = u(X}).
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The trick is to transfer this apparatus to a 2-dimensional ‘phase
space’ # whose points (g, p) fall in the unit square 0 < g, p < 1. Each
binary sequence x € X* corresponds to a phase point

+ —
X X
(IX.7) q=Z—f.. p=z—_:+—,
k= 2 k=0 2
Writing (g, p) in binary notation (0.q,q, ..., 0.p,p, .. .), the action of

¢ is: 09,9, ..., 0pp, ...) = (0pq,q; ..., 0p,p, ...). Orin
more familiar notation

(9/2,2p)if0 < p < %

IX.8) (g, p)=
(X8 $(@p) (@2+1/2,2p—1)ifs < p < 1

The name ‘baker’s transformation’ comes from the fact that (1X.8) is
like the kneading of dough; it squashes the loaf down, tears it in half,
and stacks one half on top of the other. The ¢ of IX.8 provides the
dynamics of #: if at time ¢ = n the state of the system is (g, p), then at
t =n + 1 the state is ¢(q, p), and at t =n + m it is ¢"(q, p). Since ¢
is invertible, we have both historical and futuristic determinism operat-
ing in discrete time. (Note that, considered by itself, the evolution of the
p coordinate is futuristically but not historically deterministic.) The
measure 4 on X transfers to the microcanonical measure on # giving
equal weights to equal areas.

At the macro-level we have random behavior with respect to the
two-fold partition {R,, R} of phase space given by R,: 0 < p < 3},
R;: 3 < p < 1. We see that (g, p) = (0.9,q, ..., 0.p,p, ...)is in
R, or R, according as p, is 0 or 1. So from the construction of x4 we
have the desired properties of randomness, u(R,) = u(R,) = % and
#(R;/P(R;)) = u(R;). Nevertheless, if (g, p) #* (q', p’), then there is an
n such that ¢%(q, p) € R,and ¢"(q’, p’) € R, or vice versa.

NOTES

' Note that this sense of continuous dependence on initial data is not the same as
Hadamard’s (1952); see Fattorini (1983) for details.

? Maxwell (1890). For a history of the ergodic hypothesis, see Brush (1976).

* A theorem of Birkhoff shows that in any abstract dynamical system, ergodic or not,
the time average exists for almost all orbits. Ergodicity is needed to show that the
average is independent of the orbit and equal to u(A).
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4 Malament and Zabell (1980) show that absolute continuity is equivalent to a require-
ment (“translation continuity”) with a more obvious physical content. Translation
continuity demands that the probability of finding the system in an open set varies
continuously with small displacements of that set.

* See Arnold and Avez (1968) and Markus and Meyer (1974). However, a result of
Oxtoby and Ulam (1941) goes somewhat in the other direction. They show that among
the continuous measure preserving automorphisms of certain compact spaces the
ergodic or metrically transitive ones are generic in the topological sense that they
constitute all the automorphisms except for a set of first Baire category.

® See Arnold and Avez (1968). The more suggestive term ‘Y-system’ (from the Russian
‘ycbl’-mustaches) is also used.

SUGGESTED READINGS FOR CHAPTER IX

A very readable survey of ergodic theory is to be found in the article “Modern Ergodic
Theory” by Lebowitz and Penrose (1973). David Ruelle’s (1980) “Strange Attractors”
introduces this topic to non-specialists. Under the somewhat misleading title “Indeter-
minism in Classical Physics,” Hoering (1969) provides a nice discussion of various
concepts of instability. More advanced treatments of ergodic theory, turbulence, chaos,
attractors, etc., include: Arnold and Avez (1968), Ergodic Problems of Classical
Mechanics; Helleman (1980), “Self-generating chaotic behavior in non-linear me-
chanics”; Lichtenberg and Lieberman (1983), Reguiar and Stochastic Motion; and
Garrido (1983), Dynamical Systems and Chaos.



CHAPTER X

DETERMINISM IN GENERAL RELATIVISTIC
PHYSICS

Of the general theory of relativity you will be
convinced, once you have studied it. Therefore I am
not going to defend it with a single word.

(A. Einstein to A. Sommerfeld, 8 February 1916)

For Newton, “Absolute space, in its own nature, without relation to
anything external, remains always similar and immovable.” This is also
an accurate description of the space-time background of both classical
and special relativistic worlds. In general relativistic worlds, however,
the space-time does not remain similar and immovable; it is rather an
active participant in the unfolding drama of the world, and as a result
its structure varies from physically possible world to physically possible
world, and perhaps, from one instant to another within the same
world. Since space-time is no longer a fixed canvas on which the world
history is to be painted, the laws of nature, if they are to be
deterministic, must specify how the structure of space-time itself
evolves — the canvas and the painting are constructed simultaneously, a
neat conjuring trick if it can be brought off.

1. GENERAL RELATIVISTIC WORLDS

A general relativistic space-time consists of a connected differentiable
manifold M without boundary and Lorentz signature metric g defined
on all of M. Minkowski space-time is included as the special case where
M is the standard R* and g is the Minkowski metric (see Ch. IV above).
To serve as the basis of some space-time metric g the manifold M must
either be non-compact or else, if compact, must have Euler charac-
teristic zero. Otherwise, the topology of M can be quite wild. However,
it will be assumed here that the topology is tame enough that the space-
time is temporally orientable so that it admits a globally consistent time
sense. (M, g is said to be temporally orientable just in case there is a
continuous division of the lobes of the null cones of g into two classes,
the ‘past’ and the ‘future’ lobes. Choose any point p € M and label one
of the lobes of the null cone at p ‘future’ and the other ‘past’. Then
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choose any closed curve a through p, and transport a future pointing
tangent vector at p around a by any method that is continuous and
keeps timelike vectors timelike. Temporal orientability requires that
upon return to p the vector shall not have flipped over into the past
lobe of the null cone at p (see Fig. X.1). If M, g is not temporally
orientable there always exists a covering space-time that is; thus, the
failure of temporal orientability can be conceived as the result of the
Creator’s having made some nasty identifications of events.) How the
assignment of the future direction of time is to be made is part of the
problem of the direction of time, a problem which I will not attempt to
resolve here.

future ?

Fig. X.1 (Non-temporally orientable space-time)

The distribution of matter-energy throughout the space-time is
described by a means of the stress-energy tensor T, a symme.tric tensor
field of type (2,0). The exact form of T must be derived fro.m
knowledge of the matter-energy fields present, but whatever the details
of T, it is required to satisfy three structural principles: (i) Local
conservation of energy in the sense that 7Y, = 0. (ii) The energy
condition, T7V,V, > 0 and T?V, non-spacelike for every timelike
vector V. This condition implies that, as measured by any observer, the
energy density is non-negative and the energy flow i.s non—spacel.ike.1
(iii) T vanishes on an open neighborhood U C M if and only if all
matter fields vanish on U.

The Einstein field equations specify the relations between the struc-
ture of space-time, as given by g, and the distribution of matter-energy,
as given by 7, in terms of a set of 10 partial differential equations. Two

equivalent forms of the equations are

(X.1) R, —4Rg, +Ag,=8xT;

e ek B o b
. e fap
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and
(X2) R, =8x(T, —Tg,)+Ag,

where R, is the Ricci tensor, R the scalar curvature, T = Trace (T),
and A is the cosmological constant.? The conservation law () is an
immediate consequence of (X.1)—(X.2).

A general relativistic cosmological model consists of a triple M, g, T
satisfying the conditions listed above. If physically possible worlds
correspond one-to-one with these models, then Laplacian determinism
fails and fails miserably. The sections that follow investigate some of the
more important hedges needed to make determinism viable in the large
and the small.

2. TIME SLICES

Kurt Godel (1949) found a remarkable solution to Einstein’s field
equations. Godel's cosmological model is a dust filled universe (T¥ =
oV'VI where p is the density of the dust and V' is the normalized
velocity field of the dust). The dust is everywhere rotating relative to
the local inertial structure; that seems a bit strange, but in itself it hardly
prepares us for the mind boggling global features of the Gédel space-
time. The Godel manifold M is the standard R*. That implies that the
space-time is temporally orientable, and in keeping with the stipulation
of the preceding section, I assume that the time directionality has been
fixed. The space-time trajectory of each dust speck is a timelike
geodesic, and each such world line is open, i.e., topologically a real line.
And yet, through each event in the space-time, there is a closed, future-
directed, timelike curve. It follows that the Godel model does not
contain a single global time slice! Assume for purposes of contradiction
that such a slice S exists. § would be two-sided, for by definition S is
spacelike and the everywhere defined, continuous, and timelike vector
field which gives the temporal orientation is non-tangent to S. Pick any
point x on S. There is a future directed timelike curve which departs
from S in the future direction from side 1 and returns to S from side 2.
Such a curve cannot get around to side 2 by intersecting S from sidel,
for then temporal orientability would be contradicted. Nor can it get to
side 2 by going around an ‘edge’ of S since S is a global time slice. And
finally, it cannot get to side 2 by travelling around a ‘doughnut hole’ in
the space-time since the standard R* does not have any such holes. We
have run out of possibilities and into a contradiction.
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There are three ways to construe the doctrine of Laplacian deter-
minism in the large: as being conditioned on the existence of global
time slices; as unconditionally asserting their existence; or as pre-
supposing their existence as a condition of applicability of the doctrine.
The first alternative is unacceptable since it has the consequence that
Laplacian determinism in the large holds for any universe which admits
no time slice. We are left with the conclusion that either global
Laplacian determinism fails to apply to Godel’s universe or else applies
falsely. I will leave it to the reader to choose between these two ways of
describing the failure of determinism.

3. PARTITIONING BY TIME SLICES

Suppose that we restrict attention to cosmological models which can be
partitioned by time slices. Even within the bounds of this restriction,
determinism fails. As a trivial example, set the cosmological constant
A = 0 and consider two models, both of which are empty (7 = 0
everywhere); one has Minkowski space-time as its space-time, the other
has a rolled up version obtained by identifying two points (x,, #,) and
(x), 1) just in case x; = x, and f, = ¢, modulo some positive constant.
As illustrated in Fig. X.2, the two models agree on the slices S, and S,
(and on finite neighborhoods thereof) but do not agree globally.

Fig. X.2.
4. CAUSALITY CONDITIONS

The examples from the two preceding sections involve intuitively
objectionable causal features. Thus, besides the question-begging desire
to save determinism, there appears to be an independent motivation for
narrowing the class of physically possible worlds as previously defined.
The first problem facing such a tack is an embarras de richesses: there
is a large hierarchy of ever stronger causality conditions to choose
from. The most attractive solution from the point of view of deter-



174 CHAPTER X

minism is to choose a condition strong enough to rule out all causal
anomalies like closed, or almost closed, or almost ... almost closed,
causal curves but which is not so strong as to beg the question of
determinism. Part of this bill seems to be filled by the requirement of
stable causality which is satisfied by a space-time M, g just in case there
is another space-time M, g’ whose null cones are wider than those of
M, g (ie., at each x € M every tangent vector which is non-spacelike
with respect to g is likewise non-spacelike with respect to g’ but not
conversely) and which does not contain closed timelike curves. The
physical motivation for stable causality is that we do not want a small
perturbation in the mass-energy distribution and, hence, in the metric
to eventuate in a closed causal loop.

Stable causality can be shown to be equivalent to the existence of a
global time function in the sense of a differentiable map +: M - R
whose gradient is timelike (see Hawking and Ellis (1973)). The level
surfaces ¢ = constant then partition M, g by the time slices. Stable
causality rules out every causal anomaly in the form of closed, almost
closed, almost . . . almost closed causal curves and is thus arguably the
strongest reasonable causality condition. Of course, there is a loose
sense in which any condition framed in terms of the null cone structure
can be counted as a causality condition; but if the condition does more
than rule out causal anomalies in some sufficiently tight sense, it is in
danger of begging the question of determinism.

-~ remove

X

Fig. X.3

Having touted stable causality, I now must note that it guarantees
neither that the world possesses an intuitively acceptable time structure
nor that the world is made safe for determinism. By removing two
baffles from the space-time of Fig. X.2(b) we get the stably causal
space-time illustrated in Fig. X.3.® This example provides some intima-
tion of how difficult a road we have before us in trying to make general
relativistic worlds safe for determinism without blatantly legislating in
favor of determinism.
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5. THE STATUS OF CAUSALITY CONDITIONS

In evaluating the proposed imposition of a causality condition —
whether it be stable causality or some other — two kinds of cases
should be distinguished. In the case of the actual world, we do have
some evidence against the existence of a space-time structure which
permits causal anomalies. The existence of closed timelike curves, for
example, usually imposes consistency conditions on relativistic equa-
tions of motion or field equations of the usual hyperbolic type. As an
example of how severe the consistency conditions can be, Hawking and
Penrose (1970) found that in the acausal toroidial space-time formed
from two-dimensional Minkowski space-time by identifying the points
(x, £) and (x + m, t + nm), n, m positive integers, the only solution to
the scalar wave equation 0w/di? — d*w/dx? = 0 is u = constant. But in
the portion of the universe we can observe, there is an impressive
variety of initial and boundary conditions, and moreover, the only
restrictions on our ability to create new initial and boundary conditions
seem to be those imposed either by known laws or engineering limita-
tions. Of course, such arguments need to be handled with care. In the
finite number of observations we make, we never see enough variety to
rule out all possible cases of closed causal curves passing through the
portion of the universe observationally accessible to us. Or perhaps the
consistency conditions imposed by acausal space-time structure operate
in some subtle manner on our desires so as to assure that we never try
to set up configurations that would violate these conditions. Nor does
the existence of closed causal curves invariably give rise to consistency
conditions. As Geroch and Horowitz (1979) note, if we crop off
enough of each end of the cylinder of Fig. X.2(b), any local solution of
the source free Maxwell equations can be made global; intuitively, the
electromagnetic disturbances, which propagate along null directions, go
off the ‘edge’ of space-time before they have a chance to wrap all the
way round the cylinder. But this model is both artificial and doubly
undesirable, being not only acausal but singular as well (see Sec. 10
below).

But even if we grant that the argument does force the conclusion that
the space-time structure of the actual world is causally nice, the
doctrine of Laplacian determinism is not necessarily saved for the
actual world. Again we need to remind ourselves that the doctrine
quantifies over all physically possible worlds. So if there are non-actual
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but physically possible worlds with ugly causal structures, the actual
world can fail to be Laplacian deterministic even though it is causally
beautiful; we might inhabit a nice world like that of Fig. X.2(a) but have
determinism wrecked by the possibility of the ugly world of Fig. X.2(b).

What then is the argument for requiring that all physically possible
cosmological models have nice causal structures? The best known type
of argument turns on the existence of paradoxes which are supposed to
spring from acausal space-time structure; e.g., if there could be closed
future directed timelike curves, an observer could travel into his own
past and shoot himself-at-an-earlier-time thus preventing himself from
living long enough to shoot himself. But such paradoxes do not
demonstrate closed timelike curves are either logically self-contradic-
tory or physically impossible. In fact, the paradoxes are simply a
dramatic way of bringing out the point made above that acausal space-
time features usually entail the existence of consistency conditions.
And, although we may have some evidence against the existence of
such conditions for the observationally accessible part of the actual
world, I have yet to see a convincing argument against their realization
in any physically possible world.

To appreciate the threat of acausality within the class of general
relativistic cosmological models, two points need to be recognized in
tandem. First, for some given gravitational source problems, the only
known or the provably unique solution to Einstein’s field equations
exhibits acausal features (see Tipler (1974)). Second, these acausal
features can be intrinsic to the model in the sense that they do not
result from the kind of trickery used in Fig. X.2(b). More precisely, the
acausal features are intrinsic if they cannot be removed by passing to a
covering space-time. The closed causal loops of the space-time of Fig.
X.2(b) are ‘unwound’ in passing to the space-time of Fig. X.2(a). By
contrast, since Godel space-time is simply connected, it is its own
universal covering and so no unwinding is possible without doing
damage to the local structure of space-time,

6. CAUCHY SURFACES

In order that the discussion not bog down on questions about
acausality, let us agree to consider only world models whose causal
structure is suitably well-behaved. In particular, it will be useful to
assume at this juncture that there are global time slices which divide the
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space-time into three disjoint pieces: the slice § itself; the future F(S)
of §, consisting of all the points on the future side of §; and the past
P(S) of S, consisting of all the points on the past side of S. Then, as in
the case of Minkowski space-time, we can say that S C M is a future
(respectively, past) Cauchy surface for M, g just in case F(S) © D*(S)
(respectively, P(S) © D7(S)), and that S is Cauchy simpliciter just in
case it is both past and future Cauchy.

Three ways in which the Cauchy property can fail are illustrated in
Fig. X.4. In Fig. X.4(a) the causal curve t wraps endlessly around the
universe without ever meeting S, so that none of the points on 7 belong
to D(S,). But we have already agreed to ignore the acausal behavior
involved in such an example, so let us turn to the other reasons for the
non-existence of a Cauchy surface. Fig. X.4(b) is a schematic rendering
of a feature of the Reissner-Nordstrem cosmological model, repre-
senting the exterior gravitational field of an electrically charged,
spherically symmetric body without angular momentum or dipole
moment. S, fails to be a Cauchy surface because the causal curve p
does not register on S, but emerges unpredictably from the singularity.
Fig. X.4(c) illustrates the behavior of the null cones in the universal
covering of anti-de Sitter space-time. The causal curve w comes from
spatial infinity without announcing itself on §,, and in this way apes the
behavior of the Newtonian invaders from infinity (recall Ch. IIT).

P
X
Sb/ O
singularity
(a) (b)
Fig. X.4

The anti-de Sitter cosmology can be regarded either as a solution to
Einstein’s field equations for empty space for A = 1R, R being the
constant (negative) curvature scalar, or else as a solution with A = 0 for
a perfect fluid with negative density R/32s. Under the latter inter-
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pretation the model violates the energy condition imposed in Sec. 1.
Under the former interpretation the model can be ruled out by the
requirement that A = 0, a requirement for which there is both
experimental and theoretical justification. However, the plane wave
solutions of Penrose (1965) provide other examples of empty space
solutions which are singularity free (at least in the sense of being
geodesically complete), which do not contain closed causal curves, and
which do not admit Cauchy surfaces. Of course, a pure plane wave
solution is an idealization, and so one can wonder whether the relevant
features carry over to more realistic solutions. And more generally, one
can wonder whether there are any physically realistic solutions to
Einstein field equations which are free of singularities and causal
anomalies and yet do not possess Cauchy surfaces. If the determinist
could establish a negative answer, his worries would be reduced to
worries about singularities, a matter that will receive our attention
below in Sec. 10.

If the space-time M, g does contain a Cauchy surface S, then M
must be diffeomorphically § X R; in fact, there must be a diffeo-
morphism d: M —~ S X R such that d7'(§ X {i}), 4 € R, are all
Cauchy surfaces, and the map - M —~ R such that t(d'(S X {A})= 1
is a global time function so that the space-time is stably causal. But if no
Cauchy surface is present, the topology of space can change in the
dramatic fashion illustrated in the trousers model of Fig. X.5. Let us say

Fig. X.5

that M, g has an upright trousers structure iff M, g admits a global time
function, and for every such function ¢ there are constants ¢, and ¢,
such that for all A < ¢, the ¢+ = A time slices consist of two (or more)
topologically disconnected components, whereas for all 1 > c,, the ¢ =
time slices are connected.* Barring soothsaying and the like, the
inhabitants of one ‘leg’ have no way of foreseeing that ‘another world’
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will merge with theirs. Such a structure was once postulated for the
actual universe in order to explain the appearance of new visible matter
in the heavens (see Kundt (1967)).

7. THE CAUCHY INITIAL VALUE PROBLEM

Let us now focus on the class of general relativistic worlds which do
possess Cauchy surfaces and see how determinism fares for these
worlds. For simplicity, consider the initial value problem for the source
free (T = 0) gravitational field. Here the initial data specify the state of
the space-time itself, and since the space-time is not given a priori, the
specification must come in a self-contained intrinsic form. A potential
value set consists of a triple S, h, k, where S is a three manifold, 4 is a
positive definite Riemann metric on S, and k is a symmetric tensor of
type (0, 2) defined on all of S. Intuitively, 4, the “first fundamental form’
of S, describes the internal spatial geometry of S, while k, the ‘second
fundamental form,” describes how § is to be imbedded as a spacelike
hypersurface of some space-time. Einstein’s field equations (X.1)—(X.2)
pose constraint conditions on the potential initial data. If these condi-
tions are filled, S, A, k is called an admissible initial data set. One now
wants to find a space-time M, g such that Einstein’s field equations are
satisfied (with 7' = 0), S is a Cauchy surface of M, g, and the first and
second fundamental forms of S considered as a submanifold of M are
h and k respectively. More precisely, a Cauchy development of the
admissible initial data S, A, k is a triple M, g, 6 where M, g is a space-
time satisfying the field equations (with 7 = 0) and 6: S -~ M is a
diffeomorphism such that 6(S) is a Cauchy surface of M, g and the first
and second fundamental forms of 6(S) are A and k. The principal
result of the source free Cauchy initial value problem is this: for any
given admissible initial data set there is a unique, up to a diffeo-
morphism, maximal Cauchy development (see Hawking and Ellis
(1973)). The maximality of M, g means that it is an extension of any
other such development. If M;, g, 6, and M,, g, 0, are both develop-
ments of S, A, k, then the second is said to be an extension of the first if
there is a diffeomorphism ¥: M, — M, which isomorphically imbeds
the first space-time into the second and which leaves § fixed (ie.,
67'W 0, = identity). The empty space initial value problem exhibits
stability in that in an appropriate topology the solutions depend
continuously on the initial data. Extending these results to include
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sources involves details of the dynamics of the sources and will not be
discussed here (see Hawking and Ellis (1973) and Wald (1984)).

There have been attempts to put the Laplacian initial value problem
for Einstein’s field equations in a more classical form. From previous
chapters we are accustomed to having initial data consisting of
instantaneous values of basic quantities and their time derivatives, both
of which are freely specifiable at the initial instant f,. Thus, it is natural
to try to take the gravitational initial data (for matter-free space) to
consist of the inner metric 4(4) of the initial data hypersurface S(x)
and the time derivative h(t,)) = dh/dt|, of h. With h and h specified,
the constraint equations entailed by Einstein’s field equations can be
regarded as equations for the ‘lapse’ N, and the ‘shift vector’ N, (a =
1, 2, 3) which together specify how a nearby hypersurface § (H+dpis
to be constructed from S(z). Wheeler (1964) conjectured that N, and
N, are uniquely determined by the constraint equations, thereby fixing
how $(4) is to be imbedded in space-time. Unfortunately, this ‘thin
sandwich’ conjecture proves to be false, as both existence and unique-
ness can fail, so that only under very special conditions can the
Laplacian initial data be divided into a part freely specifiable (h and h)
and a part (N, and N,) uniquely determined by the constraint equations
(see Belasco and Ohanian (1969) and Christodoulou and Francaviglia
(1979)).

8. THE SIGNIFICANCE OF THE CAUCHY INITIAL
VALUE PROBLEM

Several features of the initial value problem call for further comment.
The uniqueness result holds only for maximal developments, because
for any given development of S, we can produce another by deleting a
closed set of points from the manifold in such a way that S remains a
Cauchy surface. A trivial illustration is given in Fig. X.6. S is a Cauchy
surface for the truncated space-time that results from deleting all the
points on or above the time slice / = high noon on April 1, 1988. Such
truncated models offend deepseated metaphysical intuition: there is no
sufficient reason why Nature (or God if you prefer) should stop
building at 1988. This intuition can be codified in the requirement
that any acceptable space-time model must be inextendible, i.e., not
isometrically imbeddible as a proper subset of another space-time. But
whatever the validity of this intuition as regards global inextendibility,

GENERAL RELATIVISTIC PHYSICS 181

e

[

P ’
t=1988 =~ p*s)

Sl

S
4

Fig. X.6

we will see below that our intuitions become strained when we turn to
the stronger inextendibility conditions needed to support localized
versions of Laplacian determinism.

The second aspect of the uniqueness result that needs empbhasis is
the ‘up to a diffeomorphism’ proviso. I claimed that the major revolu-
tions of 20th century physics were not caused by self-conscious reflec-
tions on the problems and prospects of determinism. That claim is
correct in the sense that these revolutions were neither initiated nor
brought to fruition by such reflections. But reflections on causality and
determinism did delay Einstein’s discovery of the gravitational field
equations. In 1913 he tried but failed to find acceptable generally
covariant equations. What he could not do, Einstein became convinced,
could not be done at all. The culprit, he decided, was general
covariance, and to show why he concocted an argument to the effect
that general covariance is incompatible with the determination of the
gravitational field from the distribution of matter-energy. The result was
a wild goose chase, lasting over two years, after non-covariant field
equations (see Norton (1984)).

Einstein’s instincts were partly right and partly wrong. General
relativity does mark a break with the classical formulation of the
doctrine of determinism, but the break is not due to general covariance
and it does not signal a demise of determinism. The laws of classical
and special relativistic physics can be written in generally covariant
form, but this mode of presentation makes for no significant difference
for determinism. It is rather the absoluteness of the space-time, the fact
that the space-time structure remains similar and immovable, that
makes possible the description of the classical and special relativistic
initial value problems against a fixed scaffolding. Whether the scaffold-
ing allows a freedom to perform diffeomorphisms which is harmful to
Laplacian determinism is a matter that has to be examined on a case by
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case basis. In Minkowski space-time the freedom is -effectively
squelched since any global isometry which reduces to the identity on a
(Cauchy) initial value surface is the identity everywhere. By contrast, a
symmetry mapping of Leibnizian space-time (Ch. II1.2) can be chosen
to reduce to the identity on a neighborhood of a plane of simultaneity
but differ from the identity outside of the neighborhood. To rescue
Laplacian determinism either the structure of Leibnizian space-time has
to be beefed up by passing, for example, to Newtonian space-time, or
else the space-time models have to be interpreted along the lines
suggested by Leibniz in his correspondence with Clarke (Ch. IIL.3). In
the case of the general theory of relativity only the latter option is open
since the theory banishes absolute structure and the freedom to
perform diffeomorphisms is unlimited. As a result, if M, g solves
Einstein’s source free field equations and possesses a Cauchy surface S,
then it is easy to generate another solution M, g’ such that § is also a
Cauchy surface for M, g’ and such that g = g’ on a neighborhood of §
but g # g’ otherwise. For let d be any diffeomorphism of M onto itself
which is the identity in some neighborhood of § but not otherwise and
choose g' = d*g (see Earman and Norton (1986) for details). Thus, to
save determinism the diffeomorphically related models must be
regarded as merely different modes of presentation of the same physical
reality. As indicated in Ch. III, I believe that an intrinsic description of
the underlying reality necessitates performing the trick of doing without
the manifold M as a point set while retaining the differentiable structure
and the structure of the g-field. This is perhaps what Einstein had in
mind when he wrote:

If we imagine the gravitational field, i.e. the functions g, to be removed, there does not
remain a space [of the relativistic type], but absolutely nothing, and also no ‘topological
space’ . . . There is no such thing as empty space, i.e. a space without a field. Space-time
does not claim an existence of its own, but only as a structural quality of the field.
(1961, p. 155).

The combination of general relativity and a faith in Laplacian
determinism makes an implementation of the Leibniz-Einstein vision
imperative. Physics has accomplished what Leibniz’ Principle of
Sufficient Reason could not.

The third comment concerns the status of the requirement that S is a
Cauchy surface. Recall the remark from Ch. IV that the statement that
S is a Cauchy surface for M, g is a statement about the entirety of M, g.
That caused no embarrassment in the setting of special relativity theory
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where M, g is always Minkowskian and where Cauchy surfaces exist
and can be recognized as such by local characteristics. But in the
context of general relativity the hypothesis that § is Cauchy is
potentially pernicious, for it cannot be tested by measurements made
only on or near § and it rules out in advance various possibilities
allowed by Einstein’s field equations. To assume that S is Cauchy is
thus to make a substantive assumption to the effect that the space-time
structure is not such as to harbor unsettling surprises; and that is an
embarrassment since it assumes what determinism was supposed to
guarantee. The embarrassment would be overcome if the existence of a
Cauchy surface were made an entrance requirement for the class of
physically possible world models. Arguments in support of that require-
ment will be discussed in Sec. 11 below.

9. LAPLACIAN DETERMINISM IN THE MEDIUM AND
THE SMALL

Most of the challenges to Laplacian determinism discussed so far arise
from large scale features of space-time structure and, thus, are relevant
only to determinism as it concerns the evolution of the entire universe.
This naturally raises the question of whether a more modest form of
determinism as applied to the local scene can hold even if determinism
breaks down in the large. In particular, if the spacelike hypersurface S is
not Cauchy for M, g then the state on S cannot determine the state
throughout M, g; but it would be nice to be able to say that the state on
S, whether a partial or full time slice, determines the state throughout
its domain of dependence D(S), which may be a proper subset of M.
This will be true only if we are dealing with a space-time M, g where
for each spacelike S the maximal Cauchy development of S is attained
within M, g. More precisely, the condition is that M, g be hole free
(Geroch (1977)), which obtains just in case for any spacelike §
(assumed to be achronal) there do not exist a space-time M’, g’ and an
isometric imbedding W: D(S) - M’ which makes W(D(S)) a proper
subset of D(W(S)).

The truncated space-time of Fig. X.6, Minkowski space-time with a
compact ball removed, and other similar examples are obvious illustra-
tions of non-hole free space-times. But these examples are already
ruled out by our previous agreement to consider only maximal or
inextendible space-times, so it might seem that we have already made

;,T_A_‘_i,l,. -
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general relativistic worlds safe for local determinism. Alas, there are
two rubs here. The first is a potential conflict between the demands of
maximality and hole freeness. The maximality demand can always be
met since any space-time can be imbedded in another space-time which
itself is not properly extendible. But not every hole free space-time has
a hole free maximal extention (see Clarke (1976)). Perhaps there are
plausible regularity conditions on initial data which will rule out such
latent holes, but I know of no specific results on this point. The second
rub is that maximality does not guarantee hole freeness. Start with
Minkowski space-time and remove the two-plane of points x =0, t = 0
where (x, y, z, ) is an inertial coordinate system and then take the
universal covering space-time. The end product is inextendible but not
hole free (Clarke (1976)). Strengthening the inextendibility demand by
imposing local as well as global inextendibility will banish this counter-
example. Following Hawking and Ellis (1973), let us say that M, g is
locally extendible just in case there is an open U C M with non-
compact closure in M and a space-time M’, g’ and an isometric
imbedding W: U - M’ such that W(U) has compact closure in M’
Local inextendibility does guarantee hole freeness, but unfortunately
the price for this guarantee is too high since, for example, standard
Minkowski space-time is locally extendible, as shown by the construc-
tion of Beem (1980) illustrated in Fig. X.7. A more stringent form of

t

Fig. X.7

local inextendibility, called local b-inextendibility (see Sec. 10 below)
escapes this embarrassment while still guaranteeing hole freeness.
However, it is not clear that this and other local maximality require-
ments are acceptable a priori demands on space-time models. And I
know of no place where research workers in general relativity use such
requirements to justify hole freeness; indeed, the typical procedure is a
direct appeal to hole freeness on the grounds that we should not
tolerate a breakdown in determinism due to a capricious appearance of
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uncaused singularities (see Ellis and King (1974), Clarke (1976), and
Ellis and Schmidt (1977)). As always, fiat stands ready to establish
determinism where honest toil does not suffice.

All of these worries can be avoided by retreating to a small enough
level. For any cosmological model M, g, T and any point x € M, we can
always find a small enough neighborhood U of x such that U, g|,
possesses a Cauchy surface and U, g, T|; is a maximal, and therefore,
unique Cauchy development of the initial data on S. The usefulness of
this triumph of determinism in the small depends upon how small small
is. The resultant sense of determinism will be epistemologically useless
if the existential clause is filled only by regions so minute as to be
irrelevant to typical prediction problems. And in any case, we may have
no way of knowing in advance how large or small the region is.
Ontologically, determinism in the small does not sustain James’ vision
of a world in which the womb of the future contains no ambiguities.
The myriad of miniature subworlds within which James’ vision is
fulfilled may not join together into a Jamesian absolute unity in which
there is no equivocation or shadow of turning.

10. SINGULARITIES

The topic of singularities is at once one of the most exciting and vexing
in general relativistic physics. A good part of the vexation comes from
the difficulty of capturing intuitions about singularities in a precise and
tractable definition. Intuitively, a singular point in space-time is a place
where the space-time metric becomes singular, e.g., undefined or
non-differentiable. But such points can be excised from the manifold,
leaving a space-time where the metric is everywhere regular. In effect,
our definition of a relativistic space-time M, g assumes that such
excisions have been made since g is assumed to be defined on all of M.

It thus appears that the key question in determining whether a given
space-time M, g is singular is whether any points have been omitted.
Extendibility signals that regular points have been omitted. Since any
space-time can be imbedded in an inextendible space-time, we may
therefore concentrate on maximal space-times, and our task reduces to
that of devising a criterion for detecting the omission of non-regular
points in these space-times. The presence in a maximal space-time
of geodesics which cannot be extended to arbitrarily large values of
an affine parameter is generally regarded as sufficient to signal a
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true singularity. But it is apparently not necessary since there are
geodesically complete space-times which contain inextendible timelike
curves of bounded acceleration and finite proper length (Geroch
(1968)). The unfortunate observer whose rocket ship traces out such a
curve would surely have just as much right to regard his finite life span
as due to a singularity as would an observer who free falls along an
incomplete timelike geodesic. A still stronger condition of complete-
ness, called b-completeness, requires that every C! curve be extendible
to an arbitrarily large value of a generalized affine parameter.’ But one
can wonder whether b-incompleteness in maximal space-times is a sure-
fire sign of a genuine physical singularity. The answer depends, of
course, on what we count as a ‘physical’ singularity. But we can make
the problem more precise by asking: Might not the curvature of space-
time remain well behaved along a b-incomplete curve? Could it not be
that the missing points are quasi-regular in that they can be recovered
by local extensions along the b-incomplete curves? In the space-time M,
g let o(A), A € |0, r), be a b-incomplete curve which cannot be extended
beyond A = r. Then M, g is said to be locally extendible along o just in
case there is an open neighborhood U C M of o, a space-time M’, g’
and an isometric imbedding ¥: U — M’ such that ¥(o(4)) is continu-
ously extendible beyond A = r. Clarke (1973) shows that such an
extension is possible just in case the components of the Riemann
curvature tensor taken in a frame parallel propagated along ¢ approach
a limit as A - r~. Thus, the singularities involved are labeled quasi-
regular.

The non-quasi-regular or curvature singularities can be classified in
various ways, depending upon whether or not a curvature scalar fails to
approach a limit, whether the limit fails because of blowup or oscilla-
tory behavior, etc. Details of the classification and theorems on the
existence of singularities in general relativistic models are reviewed in
articles by Ellis and Schmidt (1977) and Tipler, Ellis, and Clarke
(1980). Suffice it to say here that a series of results, initiated by
Hawking and Penrose, establishes that the existence of space-time
singularities in the sense of geodesic incompleteness is a highly generic
feature of the cosmological models of general relativity. Results on the
existence and nature of curvature singularities are more piecemeal.

Singularities can entail a breakdown in determinism, as indicated in
Fig. X.4(b). But singularities can peacefully coexist with local and global
determinism; indeed, a space-time can be singular and still admit
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Cauchy surfaces, the Kruskal maximal extension of the Schwarzschild
solution (Fig. X.8) and various ‘big bang’ cosmologies of the Robertson-
Walker type being relevant examples. The cosmic censorship hypothe-
sis, discussed in the following section, can be read as an attempt to show
that in reasonable models of cosmology and of gravitational collapse
such peaceful coexistence is the norm. But before turning to that topic,
something must be said about an issue that has been skirted.
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The discussion thus far has been deliberately ambivalent over the
issue of whether singularities are legitimate objects of physics. Our
definition of a general relativistic space-time implies that they are not
fully legitimate objects since they are not part of space-time. To this we
could add the viewpoint that they are wholly illegitimate objects of
scientific enquiry; for singularities imply a breakdown in the picture of
space-time as a Lorentzian manifold, and since all of the currently
known laws of physics presuppose this picture, the enterprise of physics
as it is currently practiced is condemned to silence as to what transpires
at a singularity. Some would go further and add that entities that are
not the subjects of scientific enquiry cannot occur in nature. The
Hawking-Penrose theorems, showing that singularities are a pervasive
feature of general relativistic models, then become part of a transcen-
dental proof of the falsity of the general theory of relativity. The most
prevalent conjecture as to what goes wrong is that the singularities (in
the sense of incompleteness) are typically associated with regions of
unbounded curvature and that in these regions quantum effects, which
are neglected in the classical theory, become dominant. However, it is
far from clear that quantized gravitation will avoid space-time singu-
larities (see Wheeler (1977)). And even if singularities are avoided, it is
likely that the amalgamation of quantum theory and the general theory
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of relativity will result in a radically new conception of space-time;
whether or not this new conception will permit the application of
Laplacian determinism in a form that is recognizably akin to its classical
form is now a matter of pure speculation.

The alternative viewpoint takes general relativity at face value and
accepts the conclusion that, most probably, space-time singularities
occur in the actual universe, either at the initial big bang or at the end
of gravitational collapse. Of course, these singularities do not literally
occur as events in space-time. But the next best thing would be to speak
of them as occurring at ideal points attached as boundary points of the
space-time manifold. Unfortunately, all of the attempts to construct
such boundaries have unsatisfactory features (see Tipler et al (1980)).
It remains to be seen whether the deficiencies can be remedied by
technical modifications of the constructions or whether the deficiencies
indicate that space-time singularities are too intractable to admit a
satisfactory characterization as limit points of ordinary space-time. In
either case nothing more can be said about the happening at these ideal
points, suggesting that functionally nothing much rides on whether we
say that singularities ‘really’ occur in nature.

Even when they do not clash with the existence of a Cauchy surface,
singularities are an ugly stain on the success of determinism in general
relativity. Focus on the subclass of models with Cauchy surfaces. Then
by our definition of determinism and the results of the gravitational
initial value problem, Laplacian determinism holds. But for models with
singularities the victory of determinism has a Pyrrhic flavor, for at best
the prediction of singularities is a prediction of the breakdown of the
laws of the theory. That breakdown is not countenanced as a break-
down in determinism since the ‘places’ where the singularities occur are
not countenanced as part of the arena where determinism wins or loses.
The ever more clever means by which determinism avoids falsification
are as impressive as its straightforward successes.

11. COSMIC CENSORSHIP

In 1978 Roger Penrose wrote that “possibly the most important
unsolved problem of classical general relativity theory” is the cosmic
censorship question: Does GTR enforce cosmic censorship, forbidding
singularities that develop in physically realistic cases of gravitational
collapse to appear ‘naked’ to the world? Today the problem remains
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unresolved, partly because of the difficulty in defining naked singu-
larities and partly because of the difficulty in separating ‘realistic’ from
‘unrealistic’ behavior. There is a direct connection between cosmic
censorship and determinism; indeed, the strong cosmic censorship
hypothesis (CSH) is sometimes formulated in terms of the existence of
a global Cauchy surface while the weak CSH is sometimes formulated
in terms of a Cauchy surface for the exterior of a black hole.

To see what is at stake in the CSH it is helpful to run through a
series of examples, starting with Schwarzschild-Kruskal space-time (Fig.
X.8), the Robertson-Walker ‘big-bang’ models (indicated in schematic
from in Fig. X.9(a)), and the various gravitational collapse models
illustrated in Figs. X.9(b)—(e). In the first two cases, we can ‘see’ (with
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the help of microwave antennae) the initial singularity, but we do not
regard this as a violation of the CSH, strong or weak, since the
singularitics were there at the beginning of time. By contrast, the
singularity of collapse that develops in case (b) is as naked as a babe,
violating any reasonable form of the CSH. In cases (c) and (d) nature
has exerted some modesty in hiding the singularities behind the event
horizons® labeled with Hs. These horizons serve as one-way causal
membranes, allowing influences to go in but none to come out; in short,
both cases contain black holes. The difference between (c) and (d) is
that in the former case an observer who enters the black hole can see
the singularity while his unfortunate counterpart in case (d) is snuffed
by the singularity before he gets a chance to view it. Summarizing, we
would like to be able to say that the Schwarzschild-Kruskal space-time,
the Robertson-Walker ‘big bang’ models, and the collapse model (d) all
illustrate the strong CSH; while model (c) satisfies the weak but not the
strong CSH; and model (b) violates the weak CSH.

A means of capturing these intuitions is supplied by a construction
of Geroch and Horowitz (1979). Define the naked viewing set N of a
space-time M, g to be the collection of all points p € M such that there
is a g € M which precedes p and whose own causal past entirely
contains a timelike or null curve y which is maximally extended in the
future but which has no future end point. The existence of such a y
indicates that some form of singular behavior develops; what kind of
singularity depends upon what further conditions we impose on y, e.g,,
we could require that y is future b-incomplete, that the space-time is
locally b-inextendible along y, that a curvature scalar blows up along 7,
etc. The rest of the definition of N guarantees that this singular
behavior is not veiled from observation by an external observer. For
Schwarzschild-Kruskal space-time, the big-bang models, and example
(d), N = 0. In cases (b) and (c) N # @, but N is empty for the
complement of the black hole in (c).

Thus, we are encouraged to try the following formulation of cosmic
censorship. M, g satisfies the strong CSH just in case N = @; and it
satisfies the weak CSH just in case N = @ for E, g|, where E C M is
the exterior of a black hole. It is easy to see that the existence of a
global Cauchy surface implies that the strong CSH holds; and likewise
the existence of a Cauchy surface for each connected component of E,
g|¢ implies that the weak CSH holds. And if N is defined without any
further requirement on y other than that it is maximally future
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extended but trapped in the causal past of g, then the existence of a
Cauchy surface is necessary as well as sufficient for the validity of the
strong CSH (see Geroch and Horowitz (1979)).

Penrose (1978) has questioned whether the proffered form of the
strong CSH is strong enough. In example (e) collapsing matter produces
a singularity that emits an infinite pulse of radiation that destroys the
universe as it goes. Isn’t this a case of a cataclysmic naked singularity
par excellence even though N = §? (e) is not literally a counterexample
since if the pulse of radiation does produce a real curvature singularity
that cuts off future development, then it is not part of the space-time,
and the singularity cannot literally be seen though it can be ‘seen to be
coming.’

More worrisome is whether our formulation of cosmic censorship is
too strong. In Taub-NUT space-time, some of whose causal features are
rendered in Fig. X.4(a), N # §, but it is not clear that the kind of
singular behavior exhibited counts as a violation of cosmic censorship.
But this need not cause embarrassment if we assume, as we have
already, that acausal space-times have been excluded from the realm of
the physically possible. Another potential embarrassment comes from
the anti-de Sitter space-time (Fig. X.4(c)) which is stably causal and
singularity free and yet has a non-empty naked viewing set on the most
liberal way of defining N. This suggests that we should stick to the more
restrictive forms of definition on which 7 is required at the least to be
future b-incomplete. If this suggestion is taken to heart the existence of
a Cauchy surface is not a necessary condition for the validity of the
CSH.

However, the existence of a Cauchy surface is (pace Penrose’s
qualms) sufficient for the validity of the CSH, and so it is not
unexpected that the proponents of censorship have offered to convince
us that a Cauchy surface should exist. The future Cauchy horizon
H*(S) of the spacelike slice S is defined as the future boundary of
D*(S) (ie., the closure of D*(S) minus the chronological past of
D*(S)). Intuitively, H*(S) separates the part of the future determined
by the state on § from the part not so determined. Of course, § is
future Cauchy just in case H*(S) = . Now consider a space-time
which does not contain a Cauchy surface. Choose an appropriate slice
S, for which by assumption H*(S) # @, and try to show that a small
change in the initial data on § destroys H*(S). In the case of the
Taub-NUT space-time (Fig. X.4(a)) a dust cloud introduced on §
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accumulates near H*(S), creating a singularity that destroys H*(S) and
cuts the lower part of the space-time off from the upper part.
Analogous instabilities are also found in the Reissner-Nordstrem
space-time and the anti-de Sitter model. However, all of these are
examples of homogeneous cosmologies and not much is known about
the inhomogeneous cases. My own guess is that perturbations in
inhomogeneous models won't in general destroy Cauchy horizons
without creating new ones.’

Even if it could be shown that Cauchy horizons in cosmology are
unstable, a leap is needed to get to the conclusion that models of
cosmology without Cauchy surfaces are beyond the pale of the physi-
cally possible, or else that they are ignorable because they are of
measure zero or because of some other reason. It is instructive to
compare the situation here with that in ergodic theory (see Ch. IX). For
hard spheres in a rectangular box with perfectly reflecting walls, there
are initial states that do not lead to mixing or even quasi-ergodic
behavior; imagine, for instance, that the particles are initially arranged
so that they follow non-intersecting parallel trajectories that are perpen-
dicular to the walls of the box. Not only are such initial conditions
exceptional (measure zero), but they are also unstable under external
perturbations. No attempt to isolate the box will be proof against such
perturbations; there is no shield against gravitational attraction, and the
attraction of even the distant stars may be enough to wreck the
coherence of the initial trajectories and reinstate mixing. (Maybe there
is something to astrology after all.) This double improbability of non-
mixing behavior is not equivalent to physical impossibility, but it comes
close. In cosmology there is no corresponding double improbability
since the universe is all there is and so there can be no external
perturbation.

Turning now from cosmology to gravitational collapse, which after
all was the initial focus of the CSH, the evidence is more ambiguous.
Yodzis et al. (1974) have shown that naked singularities violating the
weak CSH can emerge from a spherically symmetric collapse of a fluid
and that the result is stable under small but still spherically symmetric
changes in the initial data and under small changes in the equation of
state. Nor is the result attributable to the spherical symmetry, as is
shown by Szerkeres’ (1975) non-spherically symmetric model. How-
ever, these cases have been dismissed as spurious counterexamples to
the CSH on the grounds that they are ‘unphysical’ with the singularities
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being merely artifacts of the continuum approximation (see Hawking
(1979)). Details of this debate about what equations of state are needed
to qualify a model of gravitational collapse as being physically realistic
are too technical for us to follow here, but we should not be surprised
at the existence of the debate; for every time there is an apparent
breakdown of determinism an attack is made on the reasonableness of
the determinism breaking examples.

12. PREDICTION

Special relativity (sans tachyons) made the world safe for determinism
by screening off the invaders from spatial infinity. But the very space-
time structure which screens off the invaders also screens off observers
from causal contact with past events in such a way as to make predic-
tion impossible. We have seen that the message general relativity holds
for determinism is mixed. As we will now see, the message for predic-
tion is equally mixed.

The domain of prediction for each point in Minkowski space-time is
empty. The same is true of many of the cosmological models of general
relativity, e.g., the Robertson-Watker models which have been used to
describe a universe beginning or ending with a ‘big bang.’ But in some
cases prediction is possible on a grand scale. In the best of all models
the space-time M, g is such that for each x € M, there is a Cauchy
surface § C C7(x). All observers everywhere are always in a position
to obtain enough information to predict the future of the entire
universe. These best of all predictable worlds must be spatially finite,
for it can be shown for a Cauchy surface S to be contained in the
causal past of a point entails that S must be compact. The converse is
not true; not every model with a compact Cauchy surface is a best
predictable world. The de Sitter cosmological model is a case in point.
The behavior of the null cones of de Sitter space-time is illustrated
schematically in Fig. X.10. Note that § is a Cauchy surface, but § is not
contained in C~(x) for any point x.In fact DP(x)=§.

It is natural to wonder whether there are cases where some predic-
tion is everywhere and always possible, but where there is neither a
Cauchy surface nor the possibility of global prediction. The answer
depends upon how extensive the domain of prediction is required to be.
If it is required only that it be non-empty, then, as illustrated in Fig.
X.11, there is a space-time M, g where for every x € M, DP(x) # @,
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but M, g has no Cauchy surface. This model, however, has the curious
feature that the domain of prediction of the point p contains all events
having a spacelike relation to it, but many of the events in the causal
future C*(p) are not in p’s domain of prediction. Since the events an
observer is most likely to want to predict are those in which he can
participate or influence, it is natural to wonder about the requirement
that for every x € M, C*(x) C DP(x). Budic and Sachs (1976) show
that under reasonable causality conditions this requirement entails that
C™(x) contains a Cauchy surface, which by the above results must be
compact.

Much more could be said about prediction in general relativistic
worlds, but the examples given already are enough to motivate the
‘meta-theorem’ that for almost any hypothesis one can dream up about
predicton, there is a cosmological model to illustrate it.

13. GEOMETRODYNAMICS

The successful theories of physics, from Newton’s time to the present,
have used or tolerated various dualisms, such as particles and fields.
But until this century, the most persistent and seemingly unbridgeable
dichotomy has been that which separates the G’s (the geometry of

[
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space-time) from the P’s (the physical contents) of the world models
(M, {G,}, {Pg}). Einstein’s general theory moved in the direction of
absorbing the P’s into the G’s; in particular, this theory banishes
gravitational force and views the gravitational field as an aspect of the
space-time geometry rather than as a separate physical field. However,
on the orthodox version of general relativity, space-time is still
colonized by various matter-energy fields as described by the stress
energy-tensor 7. Geometrodynamics is a program whose avowed goal
is to end this colonialism either by doing without the P’s or else
reducing them to metrical and/or topological aspects of space-time
(‘curved empty space-time is all there is’).

My concern here is not with the general desirability of plausibility of
such a program but rather with the role of determinism in any
acceptable realization of it. As a case in point, the Misner-Wheeler
‘already unified’ theory of gravitation and electromagnetism appeared at
first to carry the program a step forward by showing how, within the
bounds of Einstein’s general theory, the electromagnetic field could be
identified with features of the space-time geometry. However, the initial
value problem in this theory argues against such an identification, at
least if determinism is to be maintained. For purely geometric measure-
ments made on or near a spacelike hypersurface are not sufficient to
determine a unique development of the electromagnetic field in the
Misner-Wheeler scheme. This failure of determinism was taken by
proponents and critics of the theory alike as an indication that the
sought after unification had not been achieved and that the electro-
magnetic field remained a colonizing entity (see Wheeler (1962, 1968)).

14. THE CHARACTERISTIC INITIAL VALUE PROBLEM

In Ch. II we noted the possibility of non-Laplacian varieties of
determinism, but subsequently our focus has been drawn almost
exclusively to the Laplacian form. By way of justification we can point
to the facts that when philosophers discuss the meaning, the truth, or
the implications of determinism it is almost always Laplace’s version, or
a close cousin, they have in mind and that most of the standard
mathematical analysis of the existence and uniqueness of solutions to
the equations of physics deals with the case of instantaneous initial data.
It would be remiss, however, to close the discussion of determinism in
relativistic physics without at least mentioning that in this context a
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characteristic initial value problem, with data given on a null surface, is
in some ways more natural and attractive than a Laplacian type initial
value problem,

Null surfaces are more natural and important, both ontologically and
epistemologically, than spacelike surfaces; for electromagnetism and
gravity propagate along null directions, and much of our information
about the far reaches of the universe comes to us on a series of null
surfaces. The characteristic initial value problem for Einstein’s field
equations has been studied by Sachs (1962), Penrose (1967), and
Miiller zum Hagen and Seifert (1979). They find that a bonus of this
approach is that, in contrast to the Laplacian initial data which must
meet constraint conditions (see Sec. 7 above), the characteristic initial
data needed to determine a unique solution can be freely specified. At
the same time, their results raise a puzzle about how to count degrees
of freedom of the gravitational field, for four independent pieces of
Laplacian data (four real numbers at each point) are needed for a well
posed problem, whereas only two pieces are needed in the charac-
teristic problem. This difference is not due to differences in domain of
dependence, since, for example, the past null cone and the spacelike S,
in Fig. IV.2(c) have exactly the same domains of dependence (the
interior of the past cone).

In the future direction of time there is a sharp break between
predictability and determinism via null hypersurface data; for to
determine the state, say, in the interior of the future lobe A4 ,‘j of the null
cone® through a point p, null data must be given for all of A" » (or some
other null surface extending into the future in such a way as to capture
A5 in its domain of dependence), and such data are inaccessible to any
observer existing at the present moment. But by now the wedge
between predictability and determinism has been driven in far enough
that this break can hardly be counted as a reason for dismissing the
characteristic initial value problem as a mathematical artifice. The
feeling of artificiality may also derive from the metaphysical intuition
that the future is extruded from the present so that only the Laplacian
form of determinism properly reflects the true ontological unfolding of
events. It is, however, difficult to point to anything in the laws of
physics to support this intuition, and in any case it is hard to square the
intuition with the structure of relativistic space-times which make no
provision for an invariant notion of the instantaneous present.
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15. CONCLUSION

While determinism in the small is a certainty in general relativistic
worlds, determinism in the medium and the large remains an open
question. Additional observational and theoretical results could help to
resolve some of the remaining uncertainty; but the ultimate fate of large
scale determinism turns on some sticky interpretations problems about
what counts as a reasonable space-time model, and these problems
resist narrowly scientific solutions. If this is true for the general theory
of relativity, then it is doubly true for the quantum theory, as we will
now see.

NOTES

! Thus we disregard here the possibility of tachyons.

2 For definitions and mathematical details, see Hawking and Ellis (1973). In some
formulations of general relativity theory A is required to be 0.

3 Should time in the space-time of Fig. X.3 be considered ‘open’ (because of the
existence of a global time function) or ‘closed’ (because of the seemingly circular
structure of the time dimension)? Draw the level surfaces of a global time function for
this space-time. .

4 Fig. X.5 is only schematic, for there is trouble at the crotch point p in defining a
Lorentz metric.

5 Let V() be the components of the tangent vector 6(4) and let (E;, E,, E;, E,) be a
frame of linearly independent vectors parallel propagated along o(4). Then the
generalized affine parameter is defined by

s EJ [.Z (g,kV’E{F)Z]’d}.

[}

The curve o(4) is finite in s iff it is finite in any other s° obtained by using another
frame. If o(4) is a geodesic, then s is an affine parameter. ]

& The (future) event horizon of an observer O (as represented by a timelike worldline)
is the boundary of O's past. In Minkowski space-time, an observer who is unaccelerated
and who lives forever (no future end point to O’s worldline) has an empty event horizon
— O’s past light cone eventually sweeps out all of Minkowski space-time. Ho.wever, there
are in Minkowski space-time timelike curves which have no future end points and yet
have non-empty evnt horizons. (Reader: Draw such a curve.) In an asymptotically flat
space-time, the event horizon is defined as the boundary of the past of ‘future null
infinity’ (roughly, the boundary of the events which can be ‘seen’ fron,l near future
infinity); if this boundary is non-empty there are said to be ‘black holes’ present (see
Hawkings and Ellis (1973)).

7 For some contrary evidence, see Moncrief (1982). ‘

$ Here A, refers to the global null cone at p, generated by the null geodesics through
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A good introducton to the issues discussed in this chapter is to be found in Geroch
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Structure of Space-Time and Wald (1984) General Relativity. A number of useful
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Relativity, and Held (1980) General Relativity and Gravitation.

CHAPTER XI

DETERMINISM IN QUANTUM PHYSICS

... I should not want to be forced into abandoning
strict causality without defending it more strongly
than I have so far. I find the idea quite intolerable that
an electron exposed to radiation should choose of its
own free will, not only its moment to jump off, but
also its direction. 1n that case I would rather be a
cobbler, or even an employee in a gaming-house, than
a physicist.

(A. Einstein to M. Born, April 29, 1924)

There is an ironic twist to the timing of Einstein’s letter to Born: during
the following two years Schrodinger and Heisenberg created the
formalism of the ‘new quantum theory’ and in 1926 Born proposed his
statistical interpretation of the formalism, work for which he received
the Nobel Prize. Over the years the divergence between Einstein and
Born in their attitudes towards the quantum theory continued to grow.
In 1944 Einstein wrote to Born that “We have become Antipodean in
our scientific expectations. You believe in the God who plays dice, and
I in complete law and order in a world which objectively exists ...”
(Born (1971), p. 149). By the late 1940s a tone of exasperation began
to creep into Einstein’s remarks to Born on the foundation of quantum
mechanics. At one point Einstein wrote, with wholly uncharacteristic
asperity, “I do not want to take part in any further discussion, such as
you seem to envisage. I content myself with having expressed my
opinion clearly.” (Born (1971), p. 212). The intercession of Wolfgang
Pauli was required to put the discussion back on track.

Einstein’s uneasiness with the quantum theory was not simply a
function of his conviction that at base the world is not a dice game,
though that was a frequently voiced complaint. The theory grated
against several ontological and methodological principles Einstein held
to be fundamental, and the failure of his friend Born to appreciate the
force of these principles and Born’s tendency to try to reduce all
objections to a failure of classical causality was to Einstein a source of
annoyance. Pauli reported to Born that “Einstein does not consider the
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concept of ‘determinism’ to be as fundamental as it is frequently held to
be (as he told me emphatically many times) ... Einstein’s point of
departure is ‘realistic’ rather than ‘deterministic’ . . .” (Born (1971), p.
221). Nevertheless in trying to understand the status of determinism in
quantum physics we will, inexorably, be brought face to face with most
of Einstein’s worries.

Since my main concern has been with ontological determinism,
previous chapters on the implications of various parts of classical and
relativistic physics have begun with a sketch of the assumed ontological
world structure. It is impossible to begin this chapter in a similar
manner, for the nature of quantum ontology is the locus of the most
basic and controversial of unresolved foundations problems. All that
can be said initially is that ordinary non-relativistic quantum mechanics,
the main focus of this chapter, does nothing to change the classical
space-time assumed in Ch. III. How to characterize what goes on within
that framework will prove to be a key issue. We will have to grope our
way towards an answer.

1. QUANTUM MECHANICS AS MORE DETERMINISTIC THAN
CLASSICAL MECHANICS

Ernest Nagel has noted that “relative to its own form of state descrip-
tion quantum theory is deterministic in the same sense that classical
mechanics is deterministic with respect to the mechanical description of
state” (Nagel (1961), p. 306). There are important caveats to be
discussed below, but to the extent that Nagel is right he understates
his case: quantum mechanics is more deterministic than classical
mechanics.

The Schrodinger equation for a single particle moving in an external
potential V(q) in one spatial dimension labeled by g reads

2 2

dy __ # 0 1/2) + v
ot 2m dq

XL1) ik

where (g, 1) is a complex valued function variously called the ‘state
function’, the ‘wave function’, or just the ‘psi function’. In the case of a
free particle (XI.1) reduces to

2 2
iﬁaw_ (KGR

XI1.2 -
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which bears a superficial resemblance to the classical heat equation
studied in Ch. III. There are, however, major differences. Unlike the
heat equation, (XI.2) does not smooth out initial data, and while the
heat equation is not time reversal invariant, (XI.2) is, at least if we adopt
the convention that the state reversal operation (see Ch. VII) is given by
[w(g, ]* = v*(q, 1), where *’ denotes complex conjugation.

But a crucial point of contact is that both the heat equation and
(XL.2) are of the parabolic type and thus allow infinitely fast propaga-
tion of disturbances. In the case of the heat equation this feature
created problems for Laplacian determinism because of the possibility
of disturbances coming in from spatial infinity. In the case of quantum
mechanics y(q, ¢) will be interpreted, following Born, as a probability
amplitude, and this supplies the boundary condition at infinity sufficient
to prove uniqueness: for probability to normalize, we need

(X1.3) J \9(q, 1)[2dg < o forall 1,
R

and if we restrict attention to complex valued square-integrable func-
tions L*(R)e, the initial data (g, 0), —© < g < +<, fix a unique
solution of (XI.2) for all past and future times. This fixation seems to
contradict the claim made in Ch. III that it is impossible to have a
Galilean invariant law for a scalar quantity that allows the quantity to
vary in space and that determines the future value of the quantity from
its present value. The resolution of the seeming contradiction is that if
the Schrodinger equation is assumed to be Galilean invariant, then y is
not a scalar (see Sec. 2 below).

Moreover, Schrodinger time evolution preserves the L? norm | |, on
states (that is, |y(¢)|, = ||¥(0)|,) implying stability in the past and
future, in contrast to what happens in classical particle mechanics
where sensitive dependence on initial conditions is often the case and
where as a result precise prediction from initial data containing any
error is an impossibility (see Ch. IX). And, again in contrast to classical
particle mechanics, a confined quantum system (particles in a box) can
never exhibit the property of mixing or any of the higher reaches of the
ergodic hierarchy that in the classical domain helped to bridge micro-
determinism and macro-randomness (see Ch. IX). In sum, quantum
mechanics seems not only as deterministic but more deterministic,
more predictable, and less stochastic than classical mechanics.
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We will gradually see why these first impressions are grossly mis-
leading,

2. THE QUANTUM STATE: A CLOSER LOOK

The L*[R). functions form a concrete realization of the axioms for a
Hilbert space ), a separable linear vector space over C equipped with
a strictly positive scalar product (-, -)." It is a basic assumption of the
quantum theory that a physical system S is to be described by a Hilbert
space ¥ with each observable o of S being represented by a linear
self-adjoint operator 0 on J#;. Exactly how the associations S - K
and o ~ 0 are to be implemented is left somewhat to the creative
imagination of the physicist, though some guidance is provided by
concrete examples and recipes for cooking up a quantum description
from a classical Hamiltonian description.

Problems arise especially for recipes for cooking up the quantum
operators corresponding to products of classical observables whose
operators are non-commuting. The problems are most acute for
products g™p" of classical position ¢ and momentum p. Von Neumann
(1955) proposed the following restrictions on correspondence rules:

(VN) (1)if 0 = 0, then g(0) ~ g(0)

(2)if o~ 0and o’ ~ 0, then
o+ o0 = 0+ 0 (regardless of whether 0 and 0’
commute).

Using the canonical commutation relations
© [P,Q]=PQ—QP=—ix

for the operators P and Q corresponding respectively to p and g2 the
(VN) rules can be shown to be inconsistent with the understanding that
~ associates a unique 0 with each o (see Shewell (1959)).

Special cases of the von Neumann rules are essential to ordinary
quantum mechanics. For instance, it is assumed that the quantum
description of a simple harmonic oscillator with classical Hamiltonian
h(p, q) = p*/2m + 1aq* is obtained by using H(P, Q) = P?/2m +
3aQ?. Hermann Weyl’s (1950) correspondence rule does give h » H
for this case, but it also implies that 0(h%) # [0(h)]?, leading to the
counterintuitive result that there should be energy dispersion even in an
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eigenstate of energy. A number of other correspondence rules have
been proposed, e.g., Born and Jordan (1925), Dirac (1926), Rivier
(1951), and Kerner and Sutcliffe (1970). Dirac’s rule, like von
Neumann’s, is inconsistent. Among the consistent rules linearity (VN2)
is generally implied while only special cases of (vN1) emerge. The
observable-operator correspondence problem has been rediscovered in
recent years under the label of the ‘problem of hidden variables’. We
will have several occasions to return to it below, but let us now turn to
a closer look at the quantum state.

In what is called the ‘Schrodinger picture’, the instantaneous
quantum state of the system § is given by a ray or one-dimensional
subspace of . It is conventional to choose a normed vector (||y| =
1) belonging to the ray and refer to ¥ as the state vector, any other
normed ¥’ belonging to the same ray being related to y by a constant
phase factor. Once the quantum H is cooked up from the classical
Hamiltonian, the change of state in the Schrodinger picture is given by

(XL4) if W _ Hy

ot

The quantum history of the system S is a path ¢ = (¢) in#;. That
agreement of histories at one point of a path, located in a Hilbert space
which resides in Plato’s heaven or wherever it is that Hilbert spaces
reside, forces agreement on the entire path is a kind of determinism,
but it is not the kind we are used to. All of the other fundamental
theories of physics, be they Newtonian, special relativistic, or general
relativistic, are space-time theories in that the history of a system is
specified by geometric object fields on the space-time manifold,> and
determinism for these theories means that agreement of physically
possible histories on the values of the space-time quantities in one
region of space-time forces agreement on the values in another region.

The L*(R); realization of ) for a system S consisting of a single
spinless particle seems to make contact with the space-time picture, but
even in this simple case some fiddling is required. The wave function
¥(q, t) is not, as might be expected, a scalar field on Newtonian
space-time. The value y’(q’, ¢') in a new Galilean frame (q’, ¢) is not
uniquely determined by the value (g, ) in the old frame (g, ¢) and the
transformation from (g, ¢) to (q’, t), for requiring that (XL2) is
Galilean invariant forces ’(q’, t') to depend essentially on the mass.
(This fact implies Bargmann’s superselection rule for mass, forbidding
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the superposition of states of different mass in non-relativistic quantum
mechanics.*) Declaring m to be a scalar, ¢ can be viewed as part of a
composite geometric object (y, m).

For a composite system S, + S, another postulate of the quantum
theory states that the appropriate Hilbert space is the tensor product
Hs, ® H; . For two non-identical spinless particles we can realize the
Hilbert space structure by LR X R), functions. But when the particles
interact, the composite state function ,,(¢, ¢, t) is generally not
factorizable into the product ¥,(gy, 1) * ¥,(qy, t), and so the composite
wave function cannot be considered (part of) a local geometric object
field on space-time.

This non-local, holistic feature of the quantum description was one
of the reasons Einstein found the theory to be “fundamentally unsatis-
factory.” In “Quantum Mechanics and Reality” he wrote:

If one asks what, irrespective of quantum mechanics, is characteristic of the world of
ideas of physics, one is first of all struck by the following: the concepts of physics relate
to a real outside world, that is, ideas are established relating to things such as bodies,
fields, etc., which claim a ‘real existence’ that is independent of the perceiving subject
... It is further characteristic of these physical objects that they are thought of as
arranged in a space-time continuum. An essential aspect of this arrangement of things
in physics is that they lay claim, at a certain time, to an existence independent of one
another, provided these objects are ‘situated in different parts of space’. Unless one
makes this kind of assumption about the independence of the existence (the ‘béing-
thus’) of objects which are far apart from one another in space . . . physical thinking in
the familiar sense would not be possible. It is also hard to see any way of formulating
and testing laws of physics unless one makes a clear distinction of this kind. (Born
(1971), p. 170).

The kind of reality characterized by a space-time theory seems to be
precisely what Einstein had in mind. The local geometric object fields
O; on the space-time manifold M certainly have a ‘real existence’
independent of perceiving subjects, frames of reference, points of view,
etc. And they illustrate the ‘being thus’ or independence of existence of
objects situated in different parts of spacetime; for if U and V are any
open neighborhoods of M, the restrictions O,,, and O/, of these O, to
U and V respectively are well defined, and the state on the combined
region U U V is nothing more than the ‘sum’ of the restricted states.
But if this is the correct explication of Einstein’s views, then I cannot
agree with his conclusion that it is hard to see any way of formulating
and testing physical laws outside of the space-time format; indeed, the
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laws of elementary QM and their experimental tests can be taken to
constitute a counterexample. Nor is determinism necessarily under-
mined by the use of non-local objects, for giving the value of the
two-particle wave function ¥, on every pair of points on a plane of
absolute simultaneity suffices to determine it for all other times. Local
determinism is, however, partly undermined. Specifying the values of
Y., for every pair of points either in a compact region R of a time slice
t, or on the boundary of R for ¢, < t < ¢, will determine ¥,, for pairs
of points within R X [¢, #]; but the ‘sum’ of such local determinations
for a partition of £, need not add up to a complete determination of ,,
fory, <t <.

Part of Einstein’s concern is addressed by relativistic quantum field
theory (QFT) which describes quantum phenomena in something
approaching a space-time format. The basic quantum observables are
taken to be operator-valued geometric object fields on Minkowski
space-time. Admittedly, some locality is lost since the quantum fields
may not exist at individual space-time points except in a distributional
sense and since the distributions may not restrict to a spacelike
hyperplane. Nevertheless, much of the non-local holism of ordinary
QM either disappears or else is rendered non-mysterious. Thus, the
y-function is now seen to be functional of local quantum fields, and the
non-local character of this functional is no more mysterious or
disturbing than that of a functional of Newtonian or classical relativistic
fields. Moreover, the local nature of determinism is restored, or so the
field theorists hope to show. In the ‘Heisenberg picture’ (which is
unitarily equivalent to the Schrodinger picture) the state vector is fixed
and the quantum operators evolve. Thus, in this picture the closest
quantum field theoretic analogue of local Laplacian determinism states
that the field operators on the local sandwich S, of some finite
thickness € > 0 (see Fig. XI.1) uniquely determine the fields on the past
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and future caps C and C’ subtended by S. This is just the ‘diamond
property’ that local axiomatic QFT demands.’

Thus far I have pretended that quantum ontology is not all that
different from the familiar classical world ontologies. This pretense is
pierced by Born’s notion that the y-function represents a “complete
description” of reality, implying that prior to an act of observation or
measurement, a quantum system may not possess sharp or determinate
values for some of the observables corresponding to the quantum
operators. Einstein complained to Born that, unless to the contrary, the
y-function gives only a partial and incomplete description, quantum
measurement involves ugly actions-at-a-distance. It is to the quantum
measurement process that I now turn.

3. THE PROJECTION POSTULATE

Another caveat concerning Nagel’s assertion that the quantum theory
is deterministic derives from the Projection Postulate which appears
in von Neumann’s classic Mathematical Foundations of Quantum
Mechanics and which is repeated in many standard textbooks. Accord-
ing to von Neumann’s reformulation of the Schrédinger picture, the
quantum state changes in two fundamentally different ways. When the
system S is left to itself the state evolves in the smooth and deter-
ministic manner specified by the Schrodinger equation. But when a
measurement is made on § the state changes in a discontinuous
and non-deterministic manner governed by the Projection Postulate.
Suppose that the observable being measured has a corresponding
Hilbert space operator 0 with a purely discrete spectrum. The
eigenvalue equation

XL5) 09, =49,

determines the possible values A; (guaranteed to be real by the
condition that 0 is self-adjoint) of the outcome of the measurement.
The eigenvectors form a basis for ¥, and if we expand the state vector
at any instant in this basis

XL6) y = Z G

the |c|* give the probabilities that a measurement of 0, should it be
made at that instant, would return the value 4,. If the measurement is
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actually made, returning the value 4, (say), then v is thrown away and
replaced by ¢,. This replacement rule is unambiguous only when the
spectrum of 0 is non-degenerate, with eigenvectors corresponding
one-one to eigenvalues. In cases of degeneracy supplementary rules,
such as that of Liiders, have been proposed; the various difficulties to
which these rules are subject will not be reviewed here (see Stairs
(1982) and Teller (1983)).

This replacement process is sometimes referred to as the ‘collapse of
the wave packet’. The name comes from picturing the probability
density | (g, 1)|* from the L2(R) realization of Hilbert space as a wave
in ordinary space. If an approximate position measurement is made,
localizing the particle within some compact region R, then 1(q, before)
whose support may have been all of R, collapses to a (g, after) whose
support is R (see Fig. X1.2).

tlvl®

Before Measurement ———/\

.D"

After Measurement

Fig. X1.2

There is nothing in the least mysterious about this collapse if the
quantum probability density |1(q, r)* is comparable to the ensemble
density o of classical statistical mechanics (see Ch. IX), which also
evolves in a dualistic fashion. When the system is left to itself to evolve
unobserved, o changes in the deterministic manner given by the
Liouville equation

op .
X1.7) ——={p, h} ({} = Poisson bracket
or h = classical Hamiltonian)

But when we make a macroscopic observation on the system the
development (XI.7) is interrupted and o collapses to a new density
function p” whose support is confined to the subregion of phase space
compatible with the result of the observation.
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For the comparison to be apt ¥ must, in Einstein's terminology,
represent an incomplete description of the real state of affairs. Einstein
exploited examples of measurements on a composite system, first in a
1935 paper written jointly with Podolsky and Rosen (the ‘EPR
paradox’) and later in 1948 in “Quantum Mechanics and Reality,” to
argue that unless the quantum description is incomplete the collapse of
the wave function implies action-at-a-distance. Consider a composite
system §; + S, consisting of two particles which are ‘widely separated’
in space, and let us suppose that the composite state function can be
written as

XL8) 1y, = X P ® @y

where the ¢,; are the eigenfunctions of the operator A on J?Sl. If we
measure A ® I on S, + §, and find (say) g,, where Ag,; = a,¢,,, then
the Projection Postulate tells us that y,, collapses to ¢,, ® @,,. We
could have chosen instead to measure B ® I where [A, B] # 0, and we
can arrange it so that the ¥, of (XI.8) can also be written as

XL9) ¥, = Z Cj‘P'lj ® ‘P'zj
i

where the @, are the eigenfunctions of B. Finding the value b, (say)
implies a collapse to @}, ® @3. The point is that whatever the
measurement results g, and b,, the corresponding states ¢,, and @5, for
§, are never equal. But recall that §; and S, have been well separated in
space so that if there is no action-at-a-distance the measurement on §,
can affect only that part of space to which 8, is confined and can have
no direct influence in the physical reality in the remote part of space in
which §, is confined. From what we have seen, however, the Projection
Postulate implies that this is impossible if ¢,, and @3, represent
different “real states of affairs.”

Einstein had an uncanny ability to locate weak points in a theory,
and the present case is no exception. But it is not easy to say what
the force of his non-locality objection is. In non-relativistic QM it is
hardly disturbing to have action-at-a-distance; indeed, we have already
seen that the Schrodinger equation in Newtonian space-time implies
infinitely fast disturbances in the y-field. In relativistic QM it would be
disturbing to have action-at-a-distance in the form of causal signals
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propagating faster than light; but an analysis of Einstein’s thought
experiment shows that the correlations between S, and S, cannot be
used to send messages from one wing to the other. This is not the place
to try to discuss further details of locality and non-locality in quantum
physics. But what we must do is to examine Einstein’s assumption that
it is an open option to grasp the second horn of his dilemma: either
QM involves action-at-a-distance or else the y-function is an incom-
plete description of reality, a reality that, presumably, is recognizably
similar to that of non-quantum worlds. We will now see why there must
be some hesitancy in reaching for the second horn.

4. THE INCOMPLETENESS OF QUANTUM MECHANICS:
JOINT PROBABILITIES

That quantum mechanics gives an “incomplete description” of reality
is most obviously interpreted to mean that quantum mechanics is
analogous to classical statistical mechanics where the ensemble density
©o(p, q) represents our partial knowledge-partial ignorance of the exact
microstate (p, q). Trying to take this analogy literally leads to a maze of
problems which are worth exploring for the light and shadow they case
on quantum ontology.

In the L*(R). realization of Hilbert space, the quantum state gives a
probability density |y(q)|* for position g and, taking the Fourier
transform ¢(p), a probability density |¢(p)]* for momentum p. But
standard quantum mechanics gives no joint probability density for p
and g corresponding to the ensemble density o(p, q). Of course, we
can trivially create the joint density

(XL10) oou(P, 9) = |¥(P)]* - |$(q)]

But (X1.10), which makes p and g probabilistically independent, does
not do justice to the quantum correlations coded in 3. An initial
indication of this can be gained from the fact that (XI.10) contains less
information than does y; that is, o,y does not always determine 3 up
to a constant phase factor, as can be verified by considering cases
where ¥ and y* are not equivalent.

To do justice to quantum correlations we would have to consider
functions of p and g, but this leads us back to the still unresolved
problem of the observable-operator correspondence. Nevertheless, we
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can obtain some results, albeit negative, without first having to solve
this problem.

Let ,u;,f , be a probability measure on Borel sets of RXR. To
interpret this measure as the joint quantum momentum-position mea-
sure we must certainly have:

(@) The marginal measures ,uz’(S )= ,u;f,q(S XR) and ,uf( =
Uy, (R X T) agree respectively with the quantum mechanical
probabilities Pri(S) = [;|¢(p)?dp and Pr}(T) =
{7 |w(q)|? dq for any Borel sets S and T.

Further, if f is a two-place Borel function, then we can define the
probability of the phase space combination f(p, q) by

A1t 0(S) = #7 F7(S)
Thus, if F(P, Q) is the self-adjoint operator corresponding to the
classical phase space observable f(p, q) we should also have:

(b) ,u;f JLIS) = Pr,'f(,,’ ¢)(8) for any two-place Borel function f
and any Borel set S.

Fine (1982b) shows that the combination of (a) and (b) is inconsistent
with ordinary quantum mechanics in that it implies that [P, Q] = 0.

This inconsistency can be cast into what is perhaps an even more
disturbing form. In the Heisenberg picture the position operators Q,
and Q,, for ¢ # ¢', do not commute. Thus, under the above strictures
there is no joint quantum probability for position at different times.
Note also that, contrary to what is sometimes asserted, the Heisenberg
uncertainty relation

U) Ap-Agq=h

where Ap and Agq are respectively the quantum standard deviations for
momentum and position, does not by itself preclude the existence of a
joint momentum-position distribution, as shown by the fact that (U) is
entailed by the trivial joint defined in (XI.10) (see Cohen (1966a,
1966b)).

What is the origin of this impossibility result? For a particular phase
function f(p, q) we may well be able to choose an appropriate corre-
sponding self-adjoint F(P, Q) such that for a classical probability
measure y , we have u} (f~!(S)) = Prfp o,(S). But we cannot do this
systematically, preserving functional relations. If g is a one-place Borel
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function, we would expect that for the operator G(P, Q) corresponding
to g - f(p, q) we have

Ky (8 * 1T'(S) = Prlip o)(S)
=ut,(FES))
= Prﬁ(,,‘ o&7'($)
= Pr;m’, Q))(S)

Since this is to hold for all quantum states, we have, if we identify
operators which are probabilistically indistinguishable,

(XL.11) if 0 = 0, then g(0) = g(0) for any
o = f(p, ) and any one-place Borel function g,

which is the first half of von Neumann’s correspondence rule. The
computations of Cohen (1966a, 1966b) show how the breakdown in
defining joint quantum momentum-position probabilities occurs at just
this stage of trying to mirror functional relations among classical
observables in the corresponding quantum operators.” There is an even
darker side of this breakdown, as we will see in the next section.

5. THE THEOREMS OF GLEASON AND KOCHEN-SPECKER

If the correspondence + between classical phase space observables
and self-adjoint operators were one-one and satisfied the von Neumann
rule (XI.11), then each classical micro-state (p*, g*) would define a
real-valued valuation function val(-) from quantum operators (in the
range of ) such that

(V) val(g(0)) = g(val(0)),

for we can set val(0) = f(p*, q*) where o = f(p, q) is the classical
phase space observable corresponding to 0.

We can now ask the more general question of whether there is a
valuation function, based on classical phase space or not, from some set
0 of self-adjoint operators to R (say) satisfying (V) for all Borel
functions g. There are various answers, most of them strongly negative.
To see why this is so let us first note some easy but important
consequences of (V).
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If A and B commute, they can be written as functions of a common
C, with the result that (V) requires the sum and product rules:

(Sum) val(A + B) = val(A) + val(B)

for commuting A and B.

(Prod) val(AB)=val(A) - val(B)

Next note how val must act on projection operators. A projection
operator E is self-adjoint and idempotent, ie., EE = E, with the
consequence that val(E) must be 0 or 1. Projection operators are in
one-one correspondence with the closed subspaces of 3, and for
projections E; onto mutually orthogonal subspaces we have from (Sum)
that val(Z, E;) = Z; val(E,) for finite sums. The identity operator I is a
projection and we assume that val(I) = 1, with the consequence that
val(®) = 0 for the null operator ©.

From (V), val(x[4])(0)) = x[A](val(0)), where A € R and x[4] is the
characteristic function of the set {4}. So for any real 4, val(0) = A just in
case val(x [A](0)) = 1. But x[A](0) is the projection operator onto the
subspace spanned by the eigenvectors of 0 with eigenvalue A. Thus we
have the spectrum rule

(Spec) val(0)is an eigenvalue of 0.

Fine and Teller (1978) establish that requiring (Spec) plus (Sum) for all
self-adjoint operators is equivalent to (V), as is requiring (Spec) plus
(Prod).

For operators, like position and momentum, with purely continuous
spectra, there are no eigenvalues so that we already have an impossi-
bility of a valuation function satisfying (V) if 6 contains such operators.
So let us restrict attention to operators with purely discrete spectra. For
dim(#) = 3, consider a triple a, B, y of mutually orthogonal one-
dimensional subspaces of # and let E,, Eg and E, be the corre-
sponding projection operators. If 8 contains all such projections as a,
B, vy range over all triples of orthogonal one-dimensional subspaces,
then there can be no val: 6 = R satisfying (V). For from the above
results we know that val must assign 1 to exactly one of the projectors
of each triple and 0 to the other two; but a theorem of Gleason (1957)
shows that such an assignment is impossible. Kochen and Specker
(1967) and Bell (1966) independently strengthened this impossibility
result by showing how to find a finite subset 6§’ C @ for which no val
obeying (V) exists. For a Hilbert space of dimension greater than 3 we
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can, of course, prove an analogous result. The case of dimension 2 is an
exception; but the previous result on the non-existence of joint prob-
abilities for non-commuting operators continues to hold.

6. BELL’S THEOREM

A related impossibility result is due to J. S. Bell (1964). We begin with
a set 6 containing at least four self-adjoint operators A,;, B (i,j=12),
all of which are assumed to be bivalent having eigenvalues *1 (say).
A, and A, are non-commuting, as are B, and B,, but A;(A,) commutes
with B,(B,). In an attempt to give a classical interpretation we imagine
that there is a generalized phase space € and that for each state w € €
there is a real valued valuation function val, satisfying the spectrum
condition val(A;) = +1, val (B;) = £ 1. Next we assume that there is
a normalized probability density p¥ on € which returns the correct
quantum probabilities for the quantum state i for singleton members
of 6 and for commuting pairs. For example, the generalized phase
space probability for, say, A, =+1is

(XL12) pr¥(A;=+1) = J p¥(@)1[Af](@)dw

where x[A7] is the characteristic function of the set {w € Q: val ,(A;) =
+1}. And the generalized phase space probability for A4, = +1 and B,
=+1is

(XL13) pr¥(A; =+1, B, =+1) EJ p¥(@)x[AT N BY|(w)do

=J p¥(@)x[AT (@) - x[Bf)(w) do

If 6 is large enough we run into the Gleason—Kochen—Specker
problems (Fine (1982b)). Specifically, suppose that there are C; € 6
such that A; = f(C;) and B; = g(C;) for Borel functions f and g and
that for any Borel set S, y(A;) € 6 and x4(B,) € 6. Then for almost any
w € Q, val , must obey the Kochen—Specker valuation rule (V) and the



214 CHAPTER X1

product rule (Prod). But even if 6 is not large enough, we are still in
contradiction to the statistical predictions of quantum mechanics.

To see this, we pull out of thin air a purely number theoretic result
due to Clauser and Horne (1974):

Lemma. Ifx,x’,y y’, X, Y are real numbers such that
0<x,x"<Xand0 < y,y < Y,then
XY <xy—xy +x'y+xy —Y¥x' —Xy<0.

In our application the characteristic function is bounded by 0 and +1
so by taking X = Y =+1 we have

(XL14) =1 < x[ATl(@) - x[Bi](w) = x[A{[(@) - x[BI}(w)
t x[43)(@) - 2[B{l(0)+ 2]A3)(@) - x[Bi)(w)
~ x[AZl(@) — x[Bi](w) < 0
Multiplying by 0¥ and integrating over € we obtain
(XL15) =1 < pr(A;=+1, By=+1)—pr(A,=+1, B,=+1)
+ pr(A, =+1, B, =+1) + pr(A4,=+1, B, = +1)
—pr(A,=+1)—pr(B,=+1) <0

The family of such relations is referred to collectively as the Bell—
Clauser—Horne inequalities. There are quantum states for which the
quantum probabilities are provably in violation of the BCH inequalities.
Moreover, experiments confirm the quantum mechanical predictions
(see Clauser and Shimony (1978) and Aspect et al. (1982)).

Much of the discussion of the Bell theorems has focused on the issue
of locality vs. action at a distance. In the folklore the theorems are often
glossed as establishing the impossibility of a local hidden variable
interpretation. But, in the first instance, the issue of locality is a red
herring. The version of the Bell theorem presented above is not
correctly represented as establishing the conditional (locality +
X) = Bell’s inequalities. The only locality used in the above derivation
was semantic locality in the sense that the A; and B; correspond to non-
relational quantities. Nor does any amount of honest Newtonian action
at a distance in the form of non-contiguity or infinitely fast signals —
both of which are compatible with the classical space-time structure
assumed in ordinary quantum mechanics and the second of which is
implied by the Schrodinger equation — block the impossibility result.
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The impossibility emerges from the X — the existence of a phase space
representation — whether or not Nature operates locally or at a
distance. Since the phase space representation gives rise to the
existence of joint probabilities for non-commuting operators, the
impossibility can be seen as an expression of the quantum theory’s
prohibition against such joints.* In fact, the BCH inequalities are
sufficient as well as necessary for the existence of a joint probability for
the quartet A;, A,, B,, B, returning the correct quantum probabilities
for singleton operators and commuting pairs (Fine (1982a)).

The Bell theorems do have an indirect bearing on the issue of
locality in the quantum domain. It is precisely because the derivation of
the Bell inequalities does not require an assumption of physical locality
that the Bell impossibility result is strong support for the conclusion
that quantum observables do not have simultaneously sharp values.
This conclusion deepens the mystery of quantum measurement. And
when a sharp value emerges on one wing of an experiment as a result of
a local measurement operation on a distant wing, some kind of spooky
action at a distance does seem involved. The mystery of measurement
will occupy us in the sections to come. It has been claimed that Bell’s
theorem tolls for determinism; this claim will be evaluated in Sec. 10.

7. REALISM AND THE INCOMPLETENESS OF
QUANTUM MECHANICS

Recall that Einstein described his point of departure as ‘realistic’ rather
than ‘deterministic’. It is precisely realism rather than determinism
which, in the first instance, is called into question. Realism (with a
capital ‘R’) for Einstein consisted of at least three elements. (R1) In his
own words, “the concepts of physics relate to a real outside world, that
is, ideas are established relating to such things as bodies, fields, etc.,
which claim a ‘real existence’ that is independent of the perceiving
subject ...” (Born (1971), p. 170). (R2) These ‘real existents’ are
characterized by physical magnitudes which have simultaneously deter-
minate values (e.g., a particle “really has a definite position and a
definite momentum, even if they cannot both be ascertained by mea-
surement in the same individual case” (Born (1971), p. 169)). Whether
or not these definite or determinate values evolve deterministically is a
separable issue. (R3) Statements about probabilities at a given time
must be interpretable as statements about unknown but determinate
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values at the given time. I know of no place where Einstein explicitly
states (R3), but his remarks indicate that he took it as a corollary of
(R1) and (R2). In any case, it is by assuming (R3) that we can under-
stand what he meant by the ‘incompleteness’ of quantum mechanics;
namely, the probability statements of the theory provide partial but
incomplete information about the exact but unknown values guaranteed
to exist by (R1) and (R2).

The results discussed above in Sec. 5 are a direct challenge to (R2)
while those reported in Secs. 4 and 6 challenge (R3) directly and, thus,
(R2) indirectly. It is a pity that these results were not in hand while
Einstein was alive, for his reactions to them would surely have been
valuable. But rather than speculate about what his reactions might have
been, 1 will mention some of the options that have actually been
proposed.

Option 1. Maintain Einstein’s Realism for the magnitudes corre-
sponding to quantum self-adjoint operators. To maintain (R2) in the
face of the Gleason—Kochen—Specker results, reject (V) as a con-
straint on valuation functions. We have seen that practicising quantum
mechanicians do in fact reject von Neumann’s condition of preservation
of functional relations in moving from classical observables to quantum
operators, so it should not be surprising that there are proposals to
reject it going in the other direction (see Fine (1973) and Kuryshkin
(1977)). We know from Sec. S that the price to be paid for this move is
an abandonment of either the spectrum rule or else the sum and
product rules. For the case of quantum operators with continuous
spectra there is obviously strong reason for the Realist to abandon
(Spec). In the case of operators with discrete spectra it must be
explained why a measurement yields results in conformity to (Spec)
although the corresponding magnitudes (allegedly) have values other
than their quantum eigenvalues. As for (Sum) and (Prod) there is
disagreement about the extent to which actual experimental results
confirm these rules (see Cartwright (1977), Fine (1977), Glymour
(1977), and Redhead (1980)).

To maintain (R2) and (R3) in the face of Bell’s theorem one could
reject (Spec) or else hypothesize that the statistical predictions of
quantum mechanics are not quite correct. The weight of the evidence is
against the latter alternative, both in the specific experiments to test the
Bell inequalities (Clauser and Shimony (1978) and Aspect ez al. (1982))
and in the vast range of successful applications of the theory. In any

QUANTUM PHYSICS 217

case, in order to keep the discussion manageable 1 will continue to
assume that quantum mechanics is statistically correct.

Other strategies for keeping classical Realism intact include the
suggestion that we abandon classical logic in favor or some funny logic
(see Putnam (1970), (1976)). The more intrepid readers are invited to
explore the literature on quantum logics on their own. I would suggest
that these explorers keep in mind the following questions: Using
quantum logic can it be proved that the valuation functions which
provably don’t exist by classical logic do exist after all? Either way,
what has been accomplished by switching to a funny logic?

Option 2. Maintain a modified version of (R2) by relinquishing the
assumption that the valuation function must be point valued (see Fine
(1971), Teller (1979)). If we allow set and interval values, we could
take quantum mechanics at face value and for any state y define a
valuation function val¥ in the following way. If 0 has discrete spectrum,
let val¥(0) be the set of all eigenvalues 4; such that Prg({4;}) # 0.If 0
has a continuous spectrum, discard intervals [a, b] C R, a < b, such
that Prg([a, b]) = 0 and take val¥(0) to be the closure of the remainder.
Then (V) is satisfied; and sans Projection Postulate quantum worlds are
fully deterministic, for all the magnitudes corresponding to self-adjoint
operators have determinate, albeit set or interval, values and these
values evolve deterministically.

One seemingly awkward consequence is that if val¥(P) is a compact
interval, then val¥(Q) is the entire real line, so that if the interval value
for momentum of your car is finite then the interval value for position
of your car is inclusive of all of space. Part of the sting can be drawn by
calculating that by the rules of quantum mechanics the probability that
a hunt for your two-ton car will find it on Mars rather than in your
garage is relatively small. But drawing the sting in this way brings us
back to the measurement problem. When you look for your car and
find it (let us suppose) safely in your garage, a change of state occurs
from y to y’ with the corresponding change in the value of Q from
val¥(Q) = R to val¥(Q) = garage. If your conscious perception plays an
essential role in this process the first tenet (R1) of Realism is
threatened. If, on the other hand, consciousness does not play an
essential role and the measurement process is a purely physical
interaction between object system and measurement apparatus, then the
changes that occur during measurement should be explained by the
quantum theory by plugging the appropriate interaction Hamiltonian
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into the Schrodinger equation. But as we will see in the next sections it
is doubtful that such an explanation is forthcoming,

Option 3. Contextualist interpretations posit that it is not a quantum
operator but the operator plus the ‘context’ that corresponds to an
observable having a determinate value in each total state of the world.
Shimony (1984) distinguishes two kinds of contextualism, environ-
mental and algebraic. Environmental contextualism, which makes the
value assignment relative to the physical environment (e.g., the experi-
mental arrangement) adds no new possibilities since the environmental
variables can be included in the total state description.’ Algebraic
contextualism, which makes the value assignment to an operator
depend on other operators, arose in a self-serving manner. There is a
valuation function satisfying (V) for maximal self-adjoint operators (see
Gudder (1970)). Contextualism was supposed to explain why the valua-
tion does not extend to non-maximal operators. The explanation would
have some attraction if the measurement of a non-maximal operator
could be achieved only via the measurement of a maximal one, but that
is not the typical case in actual experiments. Contextualism would make
good sense for a self-adjoint operator corresponding to a relational
property, with the specification of the ‘context’ needed to fill in the
extra argument place of the relation so as to make a genuine non-
relational property. But it is implausible to view the typical operator
associated with a particle as having a hidden argument place, especially
if that argument place is to be filled in with another particle.

These points are illustrated by the Bell experiments, where we may
take A (A,) to be the spin of particle # 1 along axis 4, (4,) and B, (B,)
to be the spin of particle # 2 along axis b, (b,). A; ® I'and I ® B, are
non-maximal on %, ® J,; but, supposing that J#, and %, are each of
dim 2, A; and B; are maximal on their respective spaces so that the only
available ‘contextual’ material for either particle comes from the other
particle. But we surely do not want to treat talk of the spin of a particle
as elliptical for talk of a relational attribute of two or more particles.

Option 4. Maintain that there must be a level at which Einstein’s
Realism holds, but admit that Realism does not apply directly to all
quantum magnitudes because some are non-occurrent dispositional
properties and as such may not have determinate values in all total
states.

If we think of observables on the model of classical phase functions
f(p, @) then, as already noted, each total state yields a valuation
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function with all observables in its domain. But this may be the wrong
model for observables, classical as well as quantum. Consider the coin
now in my pocket and the associated observable with values +1 and —1
corresponding to landing heads up or heads down on my desk. In the
current total Newtonian state of the world this observable has no value,
but obviously neither Realism nor determinism is thereby contradicted.

Contextualism is sometimes confused with the dispositional view of
properties, but the two should be kept separate.'® While it is implau-
sible to take spin along a specified axis to be a relational property with
a hidden argument place, it is not unreasonable to take it to be a
non-relational property which is dispositional like the heads-up, heads-
down property of the coin in my pocket and which may or may not
have a determinate value in some total states.

Option 5. In line with Option 4 agree that quantum magnitudes do
not have simultaneously determinate values, but relinquish the classical
faith that there must be a base level at which Realism holds. A quantum
world is then a world of irreducible propensities to display determinate
values when the appropriate measurement is made. How these poten-
tialities are actualized is a form of the problem of measurement.

8. THE PROBLEM OF MEASUREMENT

Part of the attractiveness of Einstein’s Realism derives from the fact
that if all three tenets (R1)—(R3) held there would be no special
problem about quantum measurement; quantum measurement, like
classical measurement, would be seen as the discovery of pre-existing
values, and the dualistic change in the quantum state postulated by von
Neumann would be the natural analogue of the dualistic change of state
in classical statistical mechanics. But if we turn away from Realism, we
run head-on into a problem that, I will argue, admits of no plausible
solution within standard quantum mechanics.

Consider how a non-Realist would interpret the measurement of a
quantum magnitude corresponding to a self-adjoint operator A,
assumed to have discrete spectrum with eigenvalues 4, If before
measurement the state 3 of the system was not an eigenstate @; of A
then for the non-Realist the system did not have a sharp value of the
magnitude in question because it had a set or interval value or because
it had no value at all and only a propensity to display a value upon
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measurement. If now the measurement is actually performed returning
the value 4,4, the state changes from ¥ to @, in which the magnitude
has a sharp value. This ontological change calls for an explanation
which, presumably, should be obtained from the quantum theory itself
by treating the measurement as an interaction between the object
system and the measurement apparatus.

We first attempt to obtain such an explanation by imagining an ideal
measurement interaction. We suppose that the measuring apparatus can
be prepared in an initial state &, , (k a degeneracy parameter) such that
if the object system is in an eigenstate ¢; of A before the interaction is
switched on, the subsequent temporal evolution of the combined object
+ apparatus system is

At
(XL16) @ ® £\, = ¢, ® & 4

where the arrow indicates Schrodinger evolution and At is a finite time
interval. This is the first respect in which the measurement is ideal;
namely, the eigenvalue 4; in the object system is not disturbed by
the measurement interaction. Further, to assure that the measuring
apparatus gives unequivocal information about the object system,
assume that §,; and & . are orthogonal whenever i # i’ and are
macroscopically distinguishable. If you like, think of the &;; for
different values of i as pointer positions on a macroscopic dial. (For
future reference, let D be the operator corresponding to pointer
position.) (XL.16) then says that At seconds after the initiation of the
measurement interaction the pointer position i is correlated with 100%
certainty with the object state ¢,.

Now suppose that the object system initially has no sharp value of
the magnitude corresponding to A because the initial state is a non-
trivial superposition X, c; @; over eigenstates of A with different eigen-
values. Then by the linearity of the Schrodinger equation it follows
from (X1.16) that

A
(X1.17) Lo ® ok ~ Z P B & iy

the end product being a superposition of correlated A eigenstates and
pointer position states. If we attempt to describe this upshot consis-
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tently in the same terms used to describe the object system we are
forced to say that since the final state is not an eigenstate of D (or more
properly of I ® D), there is no sharp pointer position. But, of course,
when we look at the dial we always see that pointer pointing in a
definite direction. If that direction is n the Projection Postulate implies
that the state of the composite system undergoes the non-Schrodinger
transformation ~~~—s

(XL18) Z e ® 5:‘, I ky ~~ @, ® En. I(n, ky-

Bringing in an observer qua physical system to ‘read’ the dialgives
only a more elaborate version of what we already have. Using v to
denote the states of the retina of the observer, with v, , corresponding
to retinal registration of the pointer in position i, equation (XI.17) is
replaced by

Ar
(XI1.19) Z P ®E By, = Z e ® & 1, ke ® v, w(i, u)

The subsequent collapse to @, ® &, ., 4y ® ¥, (. . IS just as unex-
plained as the original one. Nor does pushing the analysis deeper into
the physiology of the observer, moving from retinal to brain events,
serve to do anything more than to produce a more elaborate version of
the same problem.

Before going further it is well to check to make sure that the
problem is not an artifact of the idealizations imposed upon the
measurement process. We assumed that the measurement interaction is
non-disturbing. We must be prepared to relax this assumption if there
are additive conserved quantities whose operators do not commute
with A (see Wigner (1952), Yanase (1961), and Ghirardi and Rimini
(1982)). We also assumed that the interaction produced a perfect
correlation between object states and pointer positions, but in practice
we must be content with something less than 100% correlations. And
finally we assumed that the initial state of object + apparatus was pure,
corresponding to a ray of Hilbert space. But because of epistemological
uncertainties the actual initial state may be a statistical mixture of pure
states. With all of this in mind we can ask: When the idealizations
are removed but the interaction remains a recognizably measurement
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interaction, is it possible that Schrodinger evolution produces a final
object + apparatus state that is a mixture of pure states, in each of
which the apparatus has a sharp pointer position? Since the question is
vague it can never be given a definitive answer, but a series of precise
negative results provides strong grounds for the conclusion that the
measurement problem is not an art¥act of our formulation (see Earman
and Shimony (1968), Fine (1970), and Shimony (1974)).

9. THE INSOLURILITY OF THE MEASUREMENT PROBLEM

There are almost as many reactions to the measurement problem as
there are workers in the foundations of quantum mechanics. I will
confine myself to a discussion of four reactions which illustrate the
range of possibilites and the desperate ends to which the problem
drives us.

(1) The quantum theory is false. If one is willing to fault the prin-
ciples of the theory there are various places at which to point the
finger of blame. One obvious target is the application of the super-
position principle to macroscopic observables. Einstein proposed to
Pauli that only a proper subclass of Hilbert space states are physically
realizable; in particular, he held that a realizable 1 must give macro-
objects sharply defined positions, e.g., Ag for the pointer position on
the dial must be less than the dimensions of the macroscopically
distinguishable divisions on the dial. This quickly leads to a super-
selection rule since ¥, and y, may both meet the constraint while ¢y,
+ ¢, ¥, (¢}, ¢; # 0)does not.

Here is Pauli’s response, as reported to Born:

I believe it to be untrue that a ‘macro-body’ always has a quasi-sharply-defined
position, as I cannot see any fundamental difference between micro- and macro-bodies,
and as one always has to assume a portion which is indeterminate to a considerable
extent whenever the wave-aspect of the physical object concerned manifests itself. The
appearance of a definite position x, during the subsequent observation ... is then
regarded as being a ‘creation’ existing outside the laws of nature ... The natural laws
only say something about the statistics of these facts of observation. (Born (1971),
p.223)

I agree with the first part of Pauli’s response: there are no grounds for
thinking that the laws of nature respect or even recognize a sharp-
micro/macro cut, and so reasons for thinking that the laws of quantum
mechanics are valid for the scale of atoms are also reasons for thinking
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they are valid for the scale of middle sized macro-objects. But the
second part of Pauli’s response is a beautiful, though unintended,
restatement of what is so disturbing about quantum measurement: the
appearance of the definite value is a “‘creation’ existing outside the laws
of nature” not because these laws are statistical but because the
‘creation’ apparently violates the laws.

Another place at which to direct the blame is at the dynamics of the
theory; more specifically, it is the linearity of the Schrodinger equation
that leads to (XI.16) and (XI.19). There are proposals for a non-linear
replacement for the Schrodinger equation designed so that a super-
position is ground into an appropriate eigenstate (see Pearle (1976)).
While this may prove to be the correct response I will not pursue it
here. For although the discussion of these matters is necessarily
speculative, it seems wisest to tie the speculations as closely as possible
to the orthodoxies of the theory; otherwise we open a Pandora’s Box of
uncontrolled possibilites.

(il) Mentalism. The second category of reaction could be classified as
a subcategory of the first, but because of its startling consequences it
deserves a separate treatment. We saw that tracing the process of
observation ever deeper into the physiology of the observer serves only
to compound the mystery of measurement. What we did not reckon
with is the possibility that it is the act of registration on the conscious-
ness of the observer that is responsible for the reduction of the
superposition and the creation of the sharp value. This possibility, first
enunciated by von Neumann, was explored by London and Bauer
(1939) and more recently by Wigner (1961). I am not enough of a
materialist to be convinced that a Cartesian mental-physical dualism is
beyond the pale, but like Einstein I balk at the notion of inventing a
causal mechanism according to which the conscious looking at the dial
creates a definite pointer position where none existed before (see Born
(1971), p. 222). However, I want to register my admiration for
Wigner’s courageous statement of the fact that if (i) is rejected then (ii)
must be taken seriously. There are other proposals for trying to wiggle
out of the problem, but as we will see, they come to no more than
sleight of hand.

(iii) Wash owr. There are attempts to show that as a result of
interaction with a macroscopic apparatus the phase relations in the
pure-state superposition in the micro-system “wash out” (see Daneri,
Loinger, and Prosperi (1962)). What is actually shown is that the final
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object + apparatus state approximates in some sense the sought-after
mixture. But here a miss by an inch is as good as a miss by a mile.
In theory, the phase relations of the superposition persist until the
ultimate, and still unexplained, reduction; and it is only by taking the
theory seriously in the first place that we get a problem of measure-
ment. We can modify the theory by stipulating that various self-adjoint
operators do not correspond to magnitudes that are observable even in
principle and, consequently, that the theoretical difference between the
sought after mixture and the state entailed by Schrodinger evolution
disappears; but such a move represents a retreat to category (i).

(iv) Deoccamization. Everett (1957) and Wheeler (1957) proposed
an interpretation of quantum mechanics which promised to provide a
purely quantum theoretical explanation of measurement because the
Projection Postulate is not invoked and the Schrodinger equation is
never violated. A number of variations of the proposal have appeared
under the label of the ‘many world interpretation’ (see DeWitt and
Graham (1973)). What is common to all of these proposals is the idea
that a measurement culminates not in a collapse in which all of the
elements of the superposition save one are destroyed; rather the
universe ‘branches’ into separate and non-interacting parts, each of
which corresponds to a term in the superposition. Thus, in the situation
described conventionally by (XI.19), branch # 1 will correspond to the
observer seeing the pointer in position 1, indicating that A has a value
A;; branch # 2 will consist of the observer seeing the pointer in position
# 2, indicating that A has a value 4; etc.

It is important to realize that this talk of ‘branching’ must be taken
literally; the different branches must represent simultaneously real
situations and not merely unactualized possibilities, else the talk of
‘many worlds’ is just a metaphorical way of redescribing the original
problem. What is rarely explored is the implication for space-time
structure of taking this deoccamization seriously. To make sure that
the different branches cannot interact even in principle they must
be made to lie on sheets of space-time that are topologically dis-
connected after measurement, implying a splitting of space-time some-
thing like that illustrated in Fig. XI.3. I do not balk at giving up the
notion, held sacred until now, that space-time is a Haudorff manifold.
But I do balk at trying to invent a causal mechanism by which a
measurement of the spin of an electron causes a global bifurcation of
space-time.
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Further, there is no principled answer to the question of when the
splitting occurs. It cannot be taken to occur at the moment at which the
correlation is established between object and apparatus, for there are
experimentally verifiable cases where correlations are established
between two systems and yet the interference terms between the
different ‘branches’ of the superposition for the composite system
remain. Nor is it fair to say that the branching takes place when the
correlation is irreversibly recorded by a macroscopic memory device;
for we have rejected the notion of a sharp micro/macro cut, and in
most cases of quantum measurement the relevant micro-laws are time
reversal invariant. This leads to the related criticism of the many worlds
approach for a lack of a principled explanation of why the time reverse
of Fig. X1.3 never occurs to yield an anti-measurement process where
the different branches coalesce to form a superposition.

Finally, we should remind ourselves that a vector is a vector is a
vector. Any vector can be represented in many different ways as a
linear sum of basis vectors; in particular, there may be many alternative
choices of bases for the Hilbert space of the composite object +
apparatus system relative to which the final state vector can be written
as linear sum of correlated object-apparatus states. The objection is not
that we have a further multiplication of worlds for each choice of basis
— after all, once we have started to play the multiplication game we
may as well play it consistently — but that in some expansions of the
state vector the sum is over terms @; ® & where the &; are super-
positions of pointer positions. What is needed is an explanation of why
nature apparently obeys a selection principle that forbids the realization
of such branches, but the many worlds interpretation is no better at
providing this explanation than the more orthodox approaches are at
providing an explanation of the collapse of the superposition.''

While T have not done justice to the nuances and subtleties of
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various treatments of the measurement problem, I hope to have said
enough to indicate that no matter how we twist and turn, choosing one
‘solution’ over another is just a matter of trading one form of deus ex
machina for another.

10. DETERMINISM AND QUANTUM MECHANICS

What is the bearing of the various no hidden variable theorems on the
issue of determinism in the quantum domain? The answer, I believe, is
far from evident. In what follows I will review some of the attempts to
make the connection.

(i) Determinism and determinateness. We could argue that deter-
minism fails in quantum worlds because: the no hidden variable
theorems show that quantum magnitudes do not have simultaneously
determinate and sharp values, but determinism presupposes that they
do (see Glymour (1971)). Accepting, arguendo, the first premise, I wish
to fault the second. Determinism does not presuppose sharpness of
values, for we can understand determinism as a doctrine about the
evolution of set or interval valued magnitudes as well as about
point valued magnitudes. Determinism does seem to presuppose some
minimal amount of determinateness; if the world were entirely a froth
of potentialities with no magnitudes having determinate values, point or
interval, one would be at a loss to say whether determinism held or
failed. But quantum determinism surely does not require that all
quantum magnitudes always have determinate values, for a similar
requirement would falsify classical determinism.

(ii) Tolling Bell’s theorem. To toll Bell's theorem for determinism we
can argue as follows. If determinism reigns, then based on the total state
@ there must be a unique outcome for the measurement of any
observable. So in state @ assign as the value of O the uniquely
determined outcome that would emerge if O were measured. Then
assuming that the probabilities for outcomes replicate the quantum
probabilities leads to a contradiction, for we can repeat the derivation
from Sec. 6 above of the BCH inequalities. Hence, determinism is
defeated by Bell’s theorem and the confirmation of the violation of the
Bell inequalities in correlation experiments.

The argument is fallacious. It is true that in any instance where O is
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measured, determinism must supply a unique outcome. It does not
follow that determinism always supplies an answer to what value of O
would emerge if a measurement of O were made; that is, if the actual
state w of the world is incompatible with an O measurement, the
subjunctive conditional “If O were measured, the obtained value would
be A” may have no truth value for any 4. What I am proposing is not a
peculiarity of quantum mechanics. In any situation in which the coin
now in my pocket is flipped so that it lands on my desk, the total
Newtonian state of the world determines whether it lands head up or
heads down on my desk. But relative to the current actual state, which
is physically incompatible with the coin’s now being flipped, there may
be no determinate truth value to “If the coin were flipped, it would land
heads up.” In terms of a phase space representation the point is that the
valuation function for O will be a partial function. In computing the
phase space probability that O takes a given value we need to
normalize by dividing by the measure of the set of phase points where
the valuation function for O is defined, and since the normalization
factors will generally be different for different observables, the BCH
inequalities need not emerge. Fine (1982c) constructs models of this
type for the Bell correlation experiments.

(iii) Dynamics. Determinism is a doctrine about the temporal
evolution of the world. It is therefore peculiar (and suspicious) that
most of the putative refutations of determinism in quantum worlds
ignore dynamics. An argument due to von Neumann is an exception.
According to Wigner (1970), von Neumann’s real but unpublished
objection to hidden variable interpretations of quantum mechanics
derived from a consideration of what happens in a sequence of
measurements of, say, spin in various directions for a spin # particle.
Von Neumann felt that the successive measurement of different
spin components, corresponding to non-commuting operators, would
progressively restrict the compatible range of the hidden parameters
until eventually there would be a high probability that the spin
components would have a definite sign in all directions, contradicting
the quantum statistical predictions.

This argument is especially curious in view of von Neumann’s
seminal contributions to modern ergodic theory. From Ch. IX we know
that it is possible in principle to reach into the ergodic hierarchy to
design a measure preserving flow ¢, on the hidden variable space so
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that @, loses information rapidly enough on a coarse grained level of
description that successive measurement results do not have the
restricting effect envisioned in von Neumann’s argument.

Nevertheless, I believe that von Neumann is correct in that the fate
of determinism in the quantum domain will be settled by reference to
dynamics, a matter that is virtually untouched by past and present work
on hidden variables. The defender of determinism has a particularly
difficult task in this regard, especially if von Neumann’s projection
postulate is to be accommodated. To preserve the valid features of
quantum dynamics, the deterministic flow ¢, must mirror Schrodinger
evolution; but to accommodate the projection postulate, ¢, must depart
from Schrodinger evolution when a measurement is made. From the
preceding section we know that the quantum theory itself offers no
consistent guidelines on how to characterize the latter set of cases.

While we await general results, positive and negative, on the com-
patibility of a deterministic dynamics with quantum mechanics, we can
try to settle special cases. The next argument attempts to rule out a
form of local determinism by tolling Bell’s theorem.

(iv) More Bell. Although it is false that determinism per se implies
the Bell inequalities, it is open that the implication holds for special
forms of determinism and hence that some forms of determinism are
refuted by the experimental confirmation of the violation of the
inequalities by quantum statistics. An argument to this effect has been
provided by Hellman (1982).

The first step in the argument is to repeat the derivation of the
Clauser, Horne, Shimony, Holt (1969) version of the inequalities from
the demand of ‘counterfactual definiteness’. To explain this demand we
suppose that on each wing of the Bell correlation experiment there is a
measuring device that admits of two knob settings. The settings corre-
spond to internal states of the measuring devices appropriate to
measuring A; or A, on the left and B, or B, on the right. Now suppose
that in fact A,, B, were measured, returning the results +1, —1.
Counterfactual definiteness demands, for instance, that had the knob
setting on the left been such that A, instead of A, was measured, the
outcome of measuring B, on the right would still have been —1. A
construction due to Stapp (1971) and Eberhard (1977) then shows
that the CHSH inequalities follow on the assumption that the frequency
counts in a large number of measurements converge to their true
values.
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Letting al'-‘ and ﬂ," stand for the response of the A and B-measure-

ments on the jth trial when the knob setting is in position k, the
observed correlation coefficients in N trials will be
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It is the assumption of counterfactual definiteness that allows, for
example, the outcome on the right to be denoted by ﬂ,’f rather than by
ﬂ,’-‘” where the extra parameter / refers to the knob setting on the left. It
is easy to see that

X1.21) a}B}+a;Bi+ a}p} —alpi= 12
with the result that
X1.22) |CD 4+ CA+ CED — C(2’2)| < 2.

If for large N the observed correlation coefficients are equal to their
theoretical values, then quantum mechanics is provably in violation of
(X1.22).

The second step in the argument is an attempt to show that local
relativistic determinism entails counterfactual definiteness. Recall from
Ch. IV that in the context of a relativistic space-time setting, local
Laplacian determinism means that the state in a region R is determined
by the state on any spacelike S such that S C C~(R) and R C D*(S).
Such a determinism is presumably inconsistent with direct action at a
distance; certainly, as Hellman notes, local determinism implies that the
outcome on one wing cannot be changed merely by changing the knob
setting on the other wing. But more is needed to secure counterfactual
definiteness. If complete determinism reigns and the settings on the
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measuring instruments are determined along with everything else, then
in the counterfactual scenario where the setting on the A-measuring
device is different from the actual setting, the state on any slice (e.g., S,
in Fig. XI.4) through the past cone of the A-measuring event must be
different from the actual state, and this latter difference can in principle
eventuate in a different outcome for the B-measurement.

S B-measuremen
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Los £ ! AN \\
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A device

L

Particle source

Fig. X1.4

Such an eventuality can perhaps be made implausible by specializing
the hardware of the experiment. Thus, suppose that the A-measuring
device is rigged so that the setting at the measurement event in question
turns on causal chains that never enter the past cone of the B-
measurement event; for example, the setting could be made to vary with
the frequency of a source-free light ray L (see Fig. XI14) from a
direction in space chosen so that the ray is disjoint from the past cone
of the B-measuring event. Then, plausibly, even if the setting on the
A-measuring device had been different (because the frequency of L was
different) the state on any slice in the past cone of the B-measurement
would still have been the same and hence by local determinism the
outcome of the B-measurement would still have been —1.

It should be emphasized that this argument does not tell against
determinism per se but only against local determinism; for as we saw in
Ch. 1V, relativity theory does not require that determinism be of the
local variety — at least, there are non-trivial Lorentz invariant theories
which are Laplacian deterministic but not locally so. To constitute a
general argument against determinism, additional evidence would have
to be marshalled to show that Nature operates by contiguous action.

My main qualm about the entire line of argumentation is that it is
more than slightly obscene to make ultimate judgments about the truth
of such a noble doctrine as determinism turn on something as slippery
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as counterfactuals. If in the end the debate about whether or not the
world is deterministic comes down to trading conflicting intuitions
about nearness of possible worlds, then leave me out of it. A

1i. INDETERMINISM, RANDOMNESS, AND STOCHASTICITY

We could, if we so desired, define ‘determinism’ and ‘chance’ so that the
negation of the first is equivalent to the second. But such a definition
should not be allowed to obscure the fact that a failure of determinism
need not be due to an irreducible stochastic element in nature. Indeed,
not one of the threats to Laplacian determinism in Newtonian, special
relativistic or general relativistic physics studied respectively in Chs. III,
IV, and X involved probability considerations. This may, perhaps, lead
some to see those threats as less interesting than the ones posed by
quantum physics. But if so, it makes the former threats less easy to
blunt; for it seems very unlikely that the introduction of ‘hidden
variables’ in Newtonian gravitational theory or the general relativistic
theory of gravitational collapse would serve to restore determinism
without also radically altering the predictions of these theories. But as
we have seen in this chapter the goal of establishing the parallel
conclusion for QM has proven to be elusive.

The implication in the other direction is more appealing, for,
presumably, an irreducible randomness or stochasticity would entail
indeterminism. The reason for the weasel word is that there are two
ways to read ‘irreducible’, one of which is not wanted, the other of
which is difficult to understand. Empiricists cannot tolerate irreducible
probabilities construed as non-Humean powers that float free of
occurrent actualities. In Ch. IX we saw how the probabilities of classical
statistical mechanics receive an Empiricist grounding; but that ground-
ing, which relies on deterministic laws, undercuts the possibility we are
now seeking to understand. The quantum theory holds a glimmer of a
promise of a grounding for probabilities which satisfies Empiricist
strictures but which does not rely on determinism. The axioms of QM
combine probabilistic and non-probabilistic assumptions in an insepa-
rable cluster, making it possible to have our cake and eat it too: the
axioms of QM may count as the best overall deductive system for the
non-probabilistic, occurrent actualities of the quantum world (e.g., the
energy levels of the hydrogen atom) and thus qualify as Empiricist laws
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in accord with the account of Ch. V, and at the same time the axioms
can have probabilistic consequences.

Even if this is correct, it still remains to ask whether quantum
probabilities are ‘irreducible’ on a second reading of that term. In trying
to understand this second reading it is useful to use classical statistical
mechanics as a foil. The probabilities in classical statistical mechanics
are not irreducible in that they have an ignorance interpretation in both
an atemporal and a temporal sense. First, for any property that can be
represented as a function f(p, q) of phase (p, q), any probability
assertion of the form ‘The probability that at ¢ the system has the
property Pis r (r # 0, 1) is, in part, an expression of ignorance of the
micro-state s(f) = (p(t), q(t)) at ¢; for conditionalizing on the informa-
tion s(¢f) reduces r to 0 or 1. Second, any conditional probability
assertion of the form ‘The probability that the system will have property
Q at ¢ given that it has property P at t < ¢'is r (r # 0, 1)’ is also, in
part, an expression of ignorance; for since the evolution of the micro-
state is deterministic, the conditional probability of s(¢’) given s(¢) is
either 0 or 1, and combining this with the first point, the probability of
Q at ¢’ given s(¢) is either O or 1.

Irreducible stochasticity would, presumably, involve a failure of one
or both of these features. On Born’s interpretation of QM, quantum
probabilities do not admit an ignorance interpretation of the first kind;
if the quantum state at time ¢ is such that Pr{({A}) # 1 for any A, then
according to Born the system does not have at ¢ a definite value of A
but only a collection of propensities of strengths Prf({A}) to display
values A upon measurement of A. On one hand, various “no hidden
variable” results tend to support Born’s interpretation; but on the other
hand, we found no coherent account of how these potentialities are
actualized in the measurement process. Nor does QM provide unprob-
lematic examples of stochasticity of the second kind. Taking QM at
face value we could assume that y(¢) provides the most complete
description possible of the state at ¢. But in general the quantum
transition probabilities from the state () to later alternative states are
not representable as conditional probabilities. Rather these probabilities
have to be seen as propensities for the system to undergo a transition
from potentialities to actualities, and again we have no coherent
account of this transition. In sum, while irreducible stochasticity may be
an idea whose time may come, it is far from clear that QM marks its
debut.
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12, CONCLUSION

Previous chapters have detailed a number of ways in which Laplacian
determinism and its close relatives can fail, but not one of those cases
conformed to the standard philosophical picture of indeterminism
rooted in an irreducible chance or stochastic element. Quantum physics
promised to bring that picture into focus, but today, over three quarters
of a century since the advent of the quantum theory, we have only a
blurred image. An astounding — and frustrating — feature of the theory
lies in the contrast between the exquisite accuracy of its empirical
predictions on one hand and the zaniness of its metaphysical ‘con-
sequences’ on the other. The theory has been used to ‘prove’ not only
that determinism is false but that realism fails, that logic is non-classical,
that there is a Cartesian mental-physical dualism, that the world has the
structure of Borges’ garden of forking paths, etc. One is tempted to say
that any theory which proves all of this proves nothing. But the
temptation must be resisted. Although it is not clear what the quantum
theory implies about determinism, it is clear that the implications are
potentially profound. Bringing the implications into sharper focus
requires a simultaneous focusing of a host of other foundations issues,
most especially concerning the nature of quantum magnitudes and the
nature of the quantum measurement process. By now it is no surprise
that pressing the question of determinism has helped to unearth the
deepest and most difficult problems that challenge our understanding of
the theory.

NOTES

' (+, v)is a mapping from ¥ X ¥ to C. That it is strictly positive means that for any
non-null y € %, || y| = [(y, ¥)}* > 0.For the LYR), realization,

W 9)= L ¥*(q)p(9)dq

The separability of # means that it has a countable basis. It is also assumed that # is

complete with respect to | |.

2 Unbounded operators, like P and Q, are not defined on all of ¢ ; thus, equations like

(C) require a specification of a domain of definition. For the technical details, see Jauch
1968).

g In c)oordinate language, an object field F on a manifold M is a rule which assigns to

each point p € M and each local coordinate chart x’ about p an N-tuple of numbers
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(F, B, - . ., Fy) called the components of F at p with respect to the coordinate system
x'. The class of invariant or geometric objects is singled out by the requirement that if
x' = ﬁ-(x" ) is another coordinate chart about p, then the new components F/, of F at p
with respect to the new coordinates are a well defined function of the old components
F,,, the old coordinates, and the functions f relating the new and old charts. See
Schouten (1954) for details. Familiar examples of linear geometric objects, such as
vectors and tensors, can be given intrinsic, coordinate-free characterizations in terms of
multilinear mappings. For one approach to a coordinate-free characterization of
geometric objects in general, see Salvioli (1972).

* For a derivation, see Kaempffer (1965). The @ field of the Klein-Gordon equation in
relativistic wave mechanics is a genuine scalar field (its transformation from one
Lorentz chart to another does not involve the mass of the particle). The Dirac spinor
function plus a ‘spin frame’ together constitute a geometric object.

* For an overview of these matters and references to the literature, see Streater (1975).

% See my (1985) for a discussion of forms of locality and non-locality in classical and
quantum theories. On the view Einstein is criticizing, quantum measurement involves a
literal miracle — a contravention of laws (see Secs. 8 and 9 below). This is criticism
enough, and it tends to moot questions of non-locality in quantum measurement. If we
allow a local miracle in an otherwise local non-quantum theory, e.g., local creation of
charge in Maxwell’s theory of electromagnetism, dramatic non-local effects can result,
e.g., the electric and magnetic fields must instantaneously adjust over all space.

7 This reverses the actual history since it was partly by reflecting on Cohen’s results
that Fine was led to impose condition (b) (private communication from A. Fine). Also,
the point made here does not succeed in locating the entire source of the impossibility;
for the impossibility holds for Hilbert spaces of dim 2 where the functional relations
can be preserved (see Sec. 5).

* Fine (1982b) takes the non-existence of joint probabilities for non-commuting
observables to be the core of most of the no hidden variable results; but see Shimony
(1984).

® See Shimony (1984) for a discussion of the bearing of the Bell theorems on
contextualist hidden variable theories.

1 The dispositional view may be appropriate even for the case of dim 2 where
algebraic contextualist theories collapse since then all operators are maximal.

""" For recent reappraisals of the Everett-Wheeler view see Healey (1984), Geroch
(1984) and Stein (1984).
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CHAPTER XII

DETERMINISM AND FREE WILL

Over the years I have spent more time thinking about
the problem of free will — it felt like banging my head
against a wall — than any other philosophical topic
except perhaps the foundations of ethics. Fresh ideas
would come frequently, soon afterwards to curdle.
(Robert Nozick, Philosophical Explanations)

. it is really one of the greatest scandals of
philosophy . . .
(Moritz Schlick, “When Is a Man Responsible?”)

The determinism-free will controversy has all of the earmarks of a dead
problem. The positions are well staked out and the opponents manning
them stare at one another in mutual incomprehension. No advances
in philosophy of science or cognitive psychology seem to move the
problem forward. (When I began writing this book I entertained the
hope that getting a more precise fix on determinism would help. I now
see how naive and vain my hope was.) Genuinely new ideas are scarce.
Some of the most intriguing ones to emerge in recent years are to found
in Robert Nozick’s account of “contra-causal [read: contra-deterministic]
freedom”; but, I am sorry to report, the account is ultimately inscrut-
able. Finally, and, worst of all, for those of us who are not attached to
one of the standard positions, it has become hard to sort new proposals
into the serious and the nutty.

If the problem keeps leading us up blind alleys, why can’t we walk
away from it? Because the issues it joins are essential to an under-
standing of human action and of man’s place in nature. Here we have a
major clue as to why the problem has proved so divisive and why it
resists any neat resolution. And we also have an early indication that
‘the determinism-free will problem’ is a misnomer: though the apparent
conflict between determinism and free will helps to focus our attention
on puzzles about human action, the puzzles go for beyond anything to
do with determinism and free will per se.

I have no new solutions to offer. Nor do I have a magic Ariadne
thread that will guide us painlessly through the maze of claims and
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counterclaims. But I do hope to be able to illuminate the role deter-
minism plays in generating the controversies, and secondarily I hope to
show why thinking about these controversies is like banging your head
against the wall.

1. MORAL AND LEGAL RESPONSIBILITY AND THE
COMPATIBILIST POSITION

The philosophical discussion of the determinism-free will problem has
been badly skewed by the tendency to locate it within the context of
questions about moral and legal responsibility. This context produces
an almost irresistible pressure for a compatibilist solution, a pressure
exploited by Moritz Schlick and his followers. My complaint is not that
Schlick’s solution is incorrect; indeed, I think that Schlick is roughly
right about the sense of free will relevant to ordinary ascriptions of
responsibility. Rather, my objection is that Schlick’s solution is shallow
and comes to grips with only a small piece of the larger problem.

Let us begin by trying to approach questions of responsibility, praise,
and blame with a vision unclouded by philosophical argumentation. If
we can locate informants innocent of philosophy, we will have little
trouble in securing commonsensical agreement on two points:

(C1)  People should be held responsible for their action unless
there are exculpating circumstances.

(C2) Circumstances which make it impossible for a person to act
freely are exculpating.

If we succeed in introducing the subject of determinism in a non-
corrupting manner (one may have doubts after the preceding eleven
chapters!), we will probably also elicit:

(C3) Discoveries in physics and the life sciences indicating that
determinism applies to people as well as inanimate particles
would not undermine ascriptions of responsibility.

Finding innocents ready to volunteer (C3) may not be easy, as wit-
nessed by the recent New Yorker cartoon (see facing page). But the fact
that we are supposed to see the humor is evidence that (C3) is the
correct commonsensical response. (Of course, there are philosophers
for whom this is no laughing matter, but remember we are trying to
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proceed pre-analytically.) Now that we have elicited the responses we
want, we can whip out our philosophical logic and derive the con-
clusion that acting freely, in so far as it' is a necessary condition for
responsibility, is compatible with determinism. What then is this sense
of freedom? A little further prompting will produce:

(C4)  Freedom is the absence of compulsion, coercion, constraint.

For it is just these factors — compulsion, coercion, and constraint —
which would be regarded by the real-life counterpart of the New
Yorker judge as being exculpating,

The title of the chapter in which Schlick discusses the free will
problem — “When Is a Man Responsible?” — is a giveaway as to his

)

“Not guilty by reason of genetic determinism, Your Honor.

Drawing by Mankoff; © 1982.
The New Yorker Magazine, Inc.
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analysis of freedom. A man is free for Schlick just in case he does not
act under compulsion, coercion, or constraint. These factors apply just
when a man is prevented from realizing his natural desires. Freedom as
the absence of these factors is quite compatible with determinism since
natural laws do not entail them — laws of nature do not prescribe what
happens but only describe it. Punishment is justified as an “educative
measure,” serving to “prevent the wrongdoer from repeating the act
(reformation) and in part to prevent others from committing a similar
act (intimidation).” This fits nicely with the analysis of freedom since it
is just in those cases where freedom is lacking because of compulsion,
coercion, or constraint that punishment is ineffective either as a re-
formative or intimidative measure.

Schlick took all of this to be so obvious that he felt that he had to
apologize for writing the chapter:

With hesitation and reluctance I prepare to add this chapter . . . it is really one of the
greatest scandals of philosophy that again and again so much paper and printer’s ink is
devoted to this matter, to say nothing of the expenditure of thought, which could have
been applied to more important problems . . . (1966, p. 54)

But despite Schlick’s attempts at intimidation there are concerns that
even our philosophical innocents will want to raise with not much more
prompting than was used to get (C1)—(C4). For example, there are
many different kinds of cases where the laws of nature and the relevant
physical circumstances combine to make it physically impossible for an
agent to perform an action A. Schlick directs our attention to cases
where the agent has formed the intention or desire to do A but
something, so to speak, comes between the agent’s natural desire and its
realization. But consider cases where it is physically impossible for the
agent to, say, raise his right arm not because his arm is strapped down
or because the tug of gravity is too strong but because the laws and the
antecedent circumstances make it physically impossible for him to
desire, intend, or will to raise his arm — his arm can go up in a
convulsive twitch or jerk, but he cannot raise his arm. I take it that what
Schlick would say about this case would depend on the further details.
If, for instance, what has made it impossible for the agent to desire or
will to raise his arm was torture, brainwashing, or the injection of mind-
altering chemicals, then by a natural extension of Schlick’s doctrine we
have a case of coercion or compulsion and, hence a case where the
agent is not free. If, on the other hand, what induces the impossibility is
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no such warping of the agents ‘natural’ desires but the unfolding of his
‘normal’ genetic heritage, then Schlick would presumably say that the
agent is free to raise his arm. The odd ring to this result is in no way
dispelled by repeating the incantation that natural laws do not compel,
they describe not prescribe. Natural laws do not compel or prescribe in
the cases where it is physically impossible for the agent to raise his arm
because of the strength of the gravitational field or the strength of the
straps that bind his wrists, but the impossibility is no less for that.
Libertarians are incensed, and rightly so, at Schlick’s accusation that
their bellyache is to be diagnosed as the result of swallowing the
mistaken equation ‘determinism by natural laws is compulsion’; rather,
their bellyache is that if determinism, whatever its ontological strength,
negates freedom and undermines responsibility in one type of case,
then it seems to do so in others as well. That the man-in-the-street
initially agrees to sort cases along Schlick’s lines when it comes to
answering “When is a man responsible?” hardly settles the matter. My
experience is that when the man-in-the-street comes to believe that
determinism applies not just to eye color and general personality traits
(as the phrase ‘genetic determinism’ suggests) but also to the most
intimate details of our outer actions and inner mental lives, then the
laughter at the New Yorker cartoon turns nervous. And the nervous-
ness, once induced, affects much more than questions about guilt and
punishment. What is threatened is nothing less than the basis of the
moral perspective and our sense of worth as human beings.

2. TROPISMS

Let us attempt to understand more fully from the Libertarian’s point of
view the threat that determinism poses. The Compatibilist should be
interested in this goal, if only to better refute the Libertarian. To state
the issues in as neutral a way as possible, let us drop for the moment
questions about responsibility, guilt, and punishment and begin instead
by asking questions like: How are the actions of man different from
those of a sunflower as it turns to face the sun? If determinism is true,
aren’t all of our actions merely complicated cases of tropisms, forced
motions produced by circumstances beyond our control?

The Libertarian may pose such questions in a rhetorical mode, but I
propose to take them literally. The immediate and obvious difficulty
then is that human actions are mediated by mental states — beliefs,
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desires, etc., — and mental acts — willings, choosings, etc. — so that any
serious answers to the question must come to grips with the mind-body
problem, a problem second only to the determinism-free will problem
in its divisiveness and intractability. 1 claim, however, that it is possible
to appreciate the church of determinism without first having to solve
the mind-body problem.

We have two cases to consider; either the mental is parasitic on the
physical or not. By parasitism I mean:

19} For any physically possible worlds W, and W,, if W, and W,
agree on all physical attributes then they agree on all mental
attributes as well.

Parasitism might be explained by trying to identify mental events with
physical events, but whether such an identity relation is implied by
parasitism and, if so, what form the identity takes (e.g., type-type or
token-token) need not be settled here. Likewise, the failure of parasit-
ism might be explained by Cartesian dualism, but again the exact form
of the explanation is irrelevant for our purposes. Now suppose that
futuristic physical determinism holds and that if we go back far enough
in time (say, to ¢ = —10'" years) we reach a state of the world which
can be characterized in purely physicalistic terms (say, positions and
velocities of particles). If (P) fails then the physical state at t = —10'°
years may not uniquely determine your current beliefs, desires, and
willings. But from the assumption of futuristic physical determinism it
follows that in so far as your inner mental life is autonomous it is
inefficacious in producing physical actions. Imagine, if you will, that you
are agonizing over the decision of whether or not to pull the trigger of a
S & W .357 magnum you have trained on a mass murderer. You know
that if you don’t pull the trigger he is sure to escape to kill again and
again; but at the same time you are revolted at the thought of taking a
human life and more than a little perturbed at the thought of splattering
gore over your favorite Shirvan prayer rug. Some or all of these internal
debates may be underdetermined by the physical state at ¢ = —10'?
years, but whatever differences are allowed make for no difference in
the upshot since the state at + = —10'° already determines that you do
not pull the trigger (you wimp!). Alternatively, if (P) holds then not only
the upshot but all of your internal debate as well is uniquely determined
by the state at = —10'? years. Your inner deliberations combine with
your outer actions to form one elaborate tropism.

FREE WILL 241

Various forms of this tracing-back-the-state construction are found
over and over again in Libertarian tracts. The commonly cited motiva-
tion is to show, by tracing back the state to a time before the agent was
born, that the agent’s actions are produced by factors that are clearly
not under his control. I would prefer to put the point slightly differently.
In my form of the construction we see that all human actions, in so far
as they are physically characterizable, are deterministically explained by
exactly the same factors — those that go to make up the state at
t = —10'" years — that explain the actions of sunflowers and every-
thing else in the physical realm; and as for human mental life, either it is
parasitic on the physical or else it makes no difference in producing the
physical actions.

Libertarians are so-called because they want to go on to join to this
construction further premises: if human actions are deterministically
explained by exactly the same factors that explain the actions of
sunflowers, then humans no more act freely than do sunflowers; or,
alternatively, if human mental life is inefficacious in producing physical
actions, or else is parasitic on the physical and the physical unfolds
deterministically, then true ‘choice’ and ‘decision’ are illusions. While I
feel a certain sympathy for these extra premises, I am not sure that I
want to endorse either and align myself with the Libertarians, and I
most certainly do not want to join the Woolite wing of the Libertarians
who want to do a modus tollens on physical determinism, arguing that
since determinism implies unfreedom and since we are free, deter-
minism must be false. But to state what should now be obvious, it is not
just the Libertarians who feel the crunch of determinism but anyone
who wants to accord man a special place in nature on the grounds that,
in contrast to inanimate objects and the lower life forms, we enjoy an
autonomy in that what we do is up to us. This is why Schlick’s tactic of
trying to saddle his opponents with the indefensible ‘determinism
implies compulsion’, already a questionable tactic when applied to
Libertarians, is completely off and mark when applied to Autonomists.

There is an aspect of the tracing-back-the-state construction that has
gone unremarked in the literature. Many of the fundamental physical
laws we have studied are historically as well as futuristically deter-
minstic. But we never see the construction presented in reverse form,
tracing the state forward in time and then noting that by historical
determinism the later state uniquely determines the present one. One
obvious reason is the widespread acceptance of the notion that earlier



242 CHAPTER XII

states produce, cause, or bring about later states but not conversely.
This notion was present in Laplace’s original definition of Laplacian
determinism and it crept into my presentation of the tracing-back
construction. However, I now assert that despite all of the efforts of
philosophers, the cause-effect relation in general and the notion of the
direction of causation in particular remain so obscure that basing any
conclusion on them makes the conclusion suspect. Suppose then that
we reconsider the tracing-back construction, now taking care to under-
stand futuristic determinism in a manner that does not entail any causal
oomph. And suppose further that we agree with the claim of Ch. V that
‘it is nomologically necessary that L’ comes to no more than that L is
part of the simplest and strongest system of occurrent regularities in the
actual world. Then isn’t much of the sting of determinism as it applies
to human actions drawn? Perhaps, but drawing the sting in this way
does nothing to soothe the Autonomist since even under the more
scrupulous reading of determinism men and sunflowers are still in the
same garden.

There is a related but perhaps more promising way to challenge the
contention that men and sunflowers are in the same garden. Granted
that if Laplacian determinism holds, the actions of men and sunflowers
alike are deterministically explained by reference to the state at
t = —10'° years. But the actions of men are also explained by later
states involving beliefs, preferences, motives, intentions, etc., and this
constitutes a significant difference from sunflowers. The Libertarians
and their allies the Autonomists seem to be tacitly appealing to the
further principle that explanations using temporally prior states take
precedence over or preempt explanations starting from later states,
which principle may derive from the suspect notion that the earlier
states causally produce the later ones. While I think that there is some
justice to this charge, again I don’t see that enough of the sting of
determinism has been drawn to satisfy the Autonomist. To be con-
cerned about autonomy one doesn’t have to subscribe to the principle
that the explanation starting from ¢ = —10'° years cancels or preempts
explanations starting from later states; it is enough that the former
exists.

It should be obvious by now that Popper’s sense of ‘indeterminism’
does nothing to diminish the tension between determinism and free-
dom-autonomy, for Popper’s ‘indeterminism’ is fully compatible with
the deterministic scenario we have been imagining and it requires only
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that no embodied super-scientist can parallel the deterministic unfold-
ing of events with precisely accurate forecasts (recall Ch. II).' It is only
slightly less obvious that the real failures of ontological determinism I
described for classical physics (Ch. III) and general relativistic physics
(Ch. X) likewise provide cold comfort for the Libertarian. Whether
any form of indeterminism will foster freedom and autonomy is the
topic to which I now turn.

3. INDETERMINISTIC ACTIONS AND THE POSSIBILITY OF
A SCIENCE OF HUMAN BEHAVIOR

Following the moves in the determinism-free will controversy is an
exercise in frustration: whichever way we turn we are checked. We have
been operating on the assumption of determinism. If we now turn away
from this assumption then even worse results follow, or so we are told.
B. F. Skinner argues that turning away from determinism is tantamount
to abandoning the possibility of a science of human behavior:

If we are to use the methods of science in the field of human affairs, we must assume
that behavior is lawful and determined. We must expect to discover that what a man
does is the result of specifiable conditions and that once these conditions have been
discovered, we can anticipate and to some extent determine his actions. (1953, p. 6)

An allied sentiment often found in Compatibilist tracts goes: if a man’s
actions are not determined but are merely spontaneous or random
occurrences, then they cannot be said to be his actions as opposed to
something that just happens to him.

The reader will immediately recognize that we are being presented
with a false dichotomy: determinism vs. non-lawful behavior or deter-
minism vs. spontaneity and randomness. In the preceding chapters
I have tried to show just how important determinism, both as an
empirical claim and as a guiding methodological principle, has been in
the development of modern physics. But we have seen not the slightest
reason to think that the science of physics would be impossible without
determinism, and from the many examples studied we know that
denying determinism does not push us over the edge of the lawful and
into the abyss of the utterly chaotic and non-lawful.

Nevertheless there are valid points to the worry expressed in the
passage from Skinner and in the little gloss following it. One of these
points was made in a vivid, if somewhat overblown way, in R. E.
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Hobart’s (1966) famous article “Free Will as Involving Determination
and Inconceivable Without It.” If the rising of Alonzo’s arm is to be
counted as an action performed by Alonzo rather than a twitch or a
jerk, then Alonzo’s desire to raise his arm (or perhaps his willing his
arm to go up) must in part determine the rising motion. To inject
indeterminism here is not to inject freedom but to break the link that
allows us to see Alonzo as the author of his action.

I want to suggest that one of the few valuable kernels in all of the
chaff of the ‘if and cans’ literature is a reiteration of the same point in
the language of causation. As an analysis of

1 Alonzo did A freely

we are offered

? Alonzo could have done otherwise
And (2)in turn is analyzed as
3 Alonzo would have done otherwise if he had desired

(willed) to do otherwise.

I suggest that (3) be viewed as a counterfactual test for the causal
efficacy of Alonzo’s desires (willings) in producing the action. Just such
a test is used in the law of torts to establish causal responsibility, the
formula being that but for the negligent action of the defendant the
harm would not have resulted. Some philosophers want to promote the
counterfactual test to the status of a full-blown analysis of causation
(see Lewis (1973b)). The analysis founders, just as does every other
attempt to explicate this murky notion, but this does not undermine the
explanation of the role of (3) in discussions of free will. (Cause-effect
terminology will keep popping up in the discussion of free will — the
topic calls for it the way greasy food calls for catchup.)

As a test for freedom, however, (3) fails miserably, whether by the
lights of the Compatibilist or the Libertarian. A Compatibilist of
Schlick’s persuasion would hold that Alonzo freely raised his arm if he
was not acting under compulsion or coercion but simply following his
natural desires. But this may be so while (3) is false. Suppose, for
instance, that we can read Alonzo’s desires from his brain waves and
that if he shows the symptoms of not desiring to raise his arm we are
prepared to step in and raise it for him with the help of an irresistibly
strong mechanical arm.> We might try to save (3) as a necessary con-
dition for freedom by claiming that if Alonzo had desired to reach
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down rather than up, then he would at least have put forth an effort to
lower his arm and this is enough to satisfy the spirit of (3). But if you
are willing to tolerate an even more science-fictiony scenario (and you
must if you are going to talk free-will with philosophers), we can
imagine that Alonzo’s brain has been so wired by the Evil Scientist that
upon receipt of the appropriate electrical impulse from the Evil One,
Alonzo is unable to exert any muscular effort to move his arm. This
may be overcome by substituting a mental effort for a muscular one,
but that move runs the danger of turning (3) into a tautology. And it
also brings us to the Libertarian’s objection of (3) as a sufficient
condition for freedom. If the hand of the Evil Scientist, or the invisible
hand of determinism, controls Alonzo’s desires and willings so that it
was physically impossible in the circumstances for him to will or desire
otherwise, then Alonzo was not free by the Libertarian’s lights even
though (3) may have been true. Relating this to Hobart, the Libertarian
may agree that Alonzo’s actions should be conditionally deterministic
on his desires and willings but deny that, if free, his actions, desires, and
willings are deterministic simpliciter. As so often happens with the
determinism-free will problem, we have come full circle and are
repeating ourselves.

After this excursion through one of the many byways of the free will
problem, let us ask how indeterminism might help to resolve the
concerns raised by the application of determinism to human actions.
There are so many concerns and so many conflicting desiderata that
this is a vague question, so for sake of definiteness I will impose
three boundary conditions on a resolution of the determinism-free will
problem.

(B1)  (Skinner) The resolution makes a science of human behavior
possible.

(B2) (Hobart) The resolution implies that the agent determines
his behavior.

(B3)  (Autonomist) The resolution allows the agent to be auto-
nomous in that his behavior is not a form of tropism.

We no sooner write down such conditions than we smell an impos-
sibility. Indeterminism per se will not by itself secure the required
autonomy. If, because of quantum mechanical considerations, the state
at t = —10'0 years does not determine whether Alonzo will raise his
arm in the next second but gives a probability of .734, then we have
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merely traded strict deterministic tropisms for probabilistic tropisms;
men, sunflowers, radioactive decay, and photons impinging on half-
silvered mirrors are all planted in the same probabilistic garden. A way
to secure the desired autonomy is to somehow take the agent out of the
flow of events, be it deterministic or indeterministic. Consistent with
this interpretation of (B3) we may still be able to satisfy (B2), but not if
we understand ‘Alonzo determined his arm to go up’ to mean that
Alonzo was in such-and-such a physical-mental state and this state
determined (in the sense we have been studying) via psycho-physical
laws his subsequent action. What is required is a new kind of deter-
minism in which the determiners are not states or events by agents or
selfs. As C. D. Broad characterized the position,

the putting forth of a certain amount of effort in a certain direction at a certain time is
completely determined, but is determined in a unique and peculiar ways; it is literally
determined by the agent or self, considered as a substance or continuant, and not by a
total cause which contains as factors events in and dispositions of the agent. If this
could be maintained, our puttings-forth of effort would be completely determined, but
their causes would neither be events nor contain events as cause-factors. (1966, p. 157)

Broad goes on to try to show that agent determinism is a conceptual
impossibility, but his ‘proof’ consists of no more than saying it just can’t
be (“...in so far as an even is determined, an essential factor in its total
cause must be other events”).

What we can say with more confidence is that such a view is
incompatible with Skinner’s demand (B1). A recent proponent of agent
causation, Roderick Chisholm, is almost forthright in drawing this
moral:

This means that, in one very strict sense of the terms, there can be no science of man. If
we think of science as a matter of finding out what laws happen to hold, and if the
statement of a law tells us what kinds of events are caused by what other kinds of
events, then there will be human actions which we cannot explain by subsuming them
under any laws. We cannot say, ‘It is causally necessary that, given such and such
desires and beliefs, and being subject to such and such stimuli, the agent will do so and
so’. For at times the agent, if he chooses, may rise above his desires and do something
else instead. (1982, p. 33)

My only quarrel here is with Chisholm’s qualifier “in one very strict
sense of the terms.” In any reasonable sense of the terms the conception
of the self being offered is incompatible with a science of man. First, by
construction there can be no natural laws at the level of agents or selfs.

— T
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Second, at the level of physical events natural laws become problematic
as applied to human actions. Agent determinism is otiose if there is a
perfect pre-established harmony between what the agent determines
and the natural order of events, for then there would be no distinction
between an event being determined by the agent vs. the event occurring
naturally and undetermined by the agent. On the other hand, if the
harmony is broken, one is at a loss to describe scientifically the
difference the agent makes. One is at first tempted to say that the effect
of the agent is a miracle — e.g., the agent determines atoms to swerve in
contravention to the trajectories implied by natural laws. But in speak-
ing thus we immediately contradict ourselves since what a law asserts
must be true. Truth can be restored by building the exceptions into the
law statement, but the modification removes the difference the agent
was supposed to make and it saps both strength and simplicity,
undermining the lawlikeness of the statement while supporting its
truth.®> Nor do I see that it helps to posit indeterministic probabilistic
laws. Either the agent affects the relative frequencies of events or not,
and either way we get a rerun of the same difficulties.* Agent deter-
minism, so-called, pushes us toward the worst form of indeterminism —
the absence of natural laws, deterministic or indeterministic, for human
behavior. The self as something that is separable from and can rise
above all momentary beliefs and desires and all longer term disposi-
tions has been condemned in positivistic philosophy as a piece of
metaphysical nonsense. I do not say that it is nonsense, but I do say that
it cannot be the object of scientific scrutiny.

We have not ruled out the possibility that there is some other way to
simultaneously satisfy the demands (B1)—(B3), and given the vagueness
of the conditions no final proof will ever be forthcoming. But we gain
strong evidence for the impossibility by watching two of the ablest
philosophers of recent decades struggle valiantly but unsuccessfully to
find a workable alternative. I do not want to spoil the pleasure the
reader will find at perusing the attempts of Robert Nozick (1981) and
Paul Meehl (1984) to provide a positive account of free will in a setting
of physical indeterminism, but it may be useful to say a few words
about how these attempts fit into the framework set out above.

Nozick, as I read him, is attempting to rehabilitate agent determinism
or causation by bringing it down to the level of events. An agent’s
actions, on Nozick’s account, are caused by his desires; so the spirit of
Hobart’s (B2) is satisfied without the need of a transcendent self as the
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cause of actions. Free will and autonomy are to be secured by maintain-
ing that although the agent’s actions are caused they are not causally
determined since in exactly the same circumstances another action
could have been performed. I think I detect in Nozick’s description of
this non-deterministic causation a ghost of the old agent determinism.
The agent is supposed to somehow bestow weights on desires and so
(indeterministically?) determine which desire prevails as the cause of
the action; the old transcendent self which rises above the desires seems
to have been replaced by a self which annoints desires. Meehl is
concerned, as is Nozick, to rebut the charge that undetermined choices
and actions are merely random or spontaneous occurrences. I agree
with the rebuttal, but I get from neither Meehl nor Nozick any clear
sense of how indeterminism makes the choice ‘up to us’ and secures for
us an autonomy not enjoyed by indeterministic sunflowers while leaving
us as objects of scientific enquiry. My suspicion that there is no such
Sense grows.

Some aspects of transcendent selfs which rise above desires and
annointing selfs which bestow weights on desires can be made respect-
able by modeling them in terms of second and higher order desires (see
Frankfurt (1982)). A second order desire may be a desire that our first
order desires be such-and-so or that they have such-and-such strengths;
or it may be a desire to act on one first order desire rather than another
(called a volition in Harry Frankfurt’s terminology). While the recogni-
tion of the hierarchical structure of desires has contributed valuable
insights, I doubt that it holds a key to free will, for no matter how high
up the hierarchy we climb the same concerns about autonomy follow us
(see Slote (1980)). Moreover, when I reflect on decisions I have made
under conditions of moral conflict — just the sort of circumstances
where higher order desires come vividly into play — I do not get any
special sense of having acted freely. On the contrary, upon looking
back, there is a sense of inevitability, whether or not I gave into my first
order appetite or overcame it by reflecting on how I ought to align my
preferences to accord with the good or the just. By contrast, it seems on
looking back that I was most free in those cases where no moral
conflict was present and no higher order desire came into play (at least
not consciously); e.g., I just chose’ vanilla over chocolate ice cream.
This inverts the usual doctrine that paradigm cases of free action are to
be found in cases of conflict and angst. Thinking that ‘rising above’ first
order desires by going to 2nd or nth level desires is the kind of rising
above that confers freedom and autonomy is a mistake if my introspec-
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tive evidence is any guide. Of course, introspected differences in
degrees of freedom may not correspond to deep or interesting dif-
ferences in psychology or physiology; still, it would be nice to have a
more detailed and precise phenomenology of ‘free choice’ than is
currently available.

4. CONCLUSION

Determinism leaves an indelible mark on every subject it brushes
against. The mind-body problem is no exception. My characterization
of physical determinism employs a conception of the physical that is so
broad that it seems to swallow up the mental. In the terminology of
events, causes, and effects that the mind-body theorists favor, a physical
event in my sense is any event that fits into the spatio-temporal net and
is thus a candidate for a cause or effect. Only the most farout dualists
would deny that mental events are physical in this minimal sense. Of
course, we still have a mind-body problem since it remains to be seen
how those physical events we call mental are related to physical events
in the narrower sense (e.g., those studied in standard physics). We
have seen that physical determinism in the narrower sense strongly
constrains any possible answer: mental events must be parasitic on
physical events in the narrower sense, else differences in the former are
not matched by any differences in the latter and are therefore in-
efficacious in bringing about physiological acts. Further pressure for an
identity relation comes from the notion that parasitism without identity
condemns mental events to the limbo of the epiphenominal, denying
them a real causal role in producing the physiological act. I will leave it
to those who think they know what a ‘real causal role’ is to adjudicate
these issues. All I have to add is that both identity theorists and their
opponents tend to operate with a false sense of how easy it is to
establish identities in physics. All right thinking physicists believe that
macro-thermodynamical quantities, states, and events are parasitic on
the microscopic. But it turns out to be hard to characterize the
parasitism in terms of identities (e.g., ‘temperature is mean kinetic
energy’ is a glib over-simplification of a very complicated relation which
may not in the end turn out to be a relation of identity). I am not
suggesting that there are no special difficulties about the mental but
only that a more careful look at problems of reduction in physics may
point the way for more fruitful attacks on the mind-body question.

The more precisely science locates man in nature the more difficult
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it becomes to sustain a sense of autonomy for human actions.” As
autonomy shrinks so does our sense of uniqueness and worth as well as
the basis for a moral perspective on human action. As I have tried to
indicate, this difficulty would arise even if the ultimate laws of nature
proved to be non-deterministic, but since determinism poses the dif-
ficulty in its sharpest form it is appropriate to continue to speak of the
determinism-free will problem. As a practical ‘solution’ I recommend
the ostrich tactic: don’t think too closely or too long on the issues raised
here, and in daily life continue with the presumption that the ‘I’ that
chooses and the self to which we attach value judgments are auto-
nomous. Let those who want to call themselves philosophers bear the
risk to their mental health that comes from thinking too much about
free will.

NOTES

I' Clerk Maxwell thought that instability made an opening for free will: “All of the great
results produced by human endeavour depend on taking advantage of these singular
[ie., unstable] states when they occur” (Maxwell (1873), p. 443). But how do we take
advantage? The miracle needed to contravene natural laws at an unstable point may be
‘smaller’ than that needed to contravene them at a stable point but it is nonetheless a
miracle.

% See Frankfurt (1969) for criticisms of the ‘could have done otherwise’ formula as a
necessary condition for freedom and responsibility.

3 Recall the Mill-Ramsey-Lewis account of laws endorsed in Ch. V.

4 But might not the agent help to produce the actually observed relative frequencies by
‘reducing the superposition’ as the Projection Postulate of quantum mechanics (recall
Ch. X1) seems to require?

3 Nozick (1981) and T. Nagel (1982) make this point in especially forceful ways. What
is the explanation of the recent and growing trend among hard-headed analytic
philosophers to reject the compatibilist solution?

SELECTED READINGS FOR CHAPTER XII

Clifford Williams’ (1980) Free Will and Determinism: A Dialogue gives a quick 58 page
introduction to some of the basic moves in the determinism-free will controversy.
Bernard Berofsky’s (1966) collection Free Will and Determinism contains many of the
classic papers. Gary Watson’s (1982) Free Will collects some of the more recent
articles. The more intrepid readers will want to consult the chapter on “Free Will” from
Robert Nozick’s (1981) Philosophical Explanations and Paul Meehl's (1984) “Psycho-
logical Determinism or Chance: Configural Cerebral Autoselection as a Tertium Quid.”

FINAL EXAM

(Self-Administered)

Instructions: Close the book and take a few deep breaths. Answer all
questions as best you can. Give yourself extra credit for
identifying the sources of the unattributed quotations, all of
whom are Famous Figures.

1. Why have some philosophers thought that the doctrine of deter-
minism is necessarily true? Begin by citing some popular defini-
tions of determinism.

2. Determinism means “ideally complete and precise predictability, given the momen-
tary conditions, the pertinent laws, and the required mathematical techniques.”

Comment on this definition of determinism, bringing out its merits
and its demerits.

3. Evaluate the following:

... the law of causality is neither right nor wrong, it can be neither proved nor
generally disproved. It is rather a heuristic principle, a sign-post (and to my mind
the most valuable sign-post we possess) to guide us in the motley confusion of
events and to show us the direction in which scientific research must advance in
order to attain fruitful results.

4. Karl Popper has claimed that “most systems of physics, including
classical physics and quantum physics, are indeterministic in per-
haps an even more fundamental sense than the one usually
ascribed to the indeterminism of quantum physics . . .” Explain the
basis of this claim, and explain why Popper’s sense of ‘indeter-
minism’ is but cold comfort to the Libertarian.

5. A leading philosopher of science has said that “few people would
wish to dispute the contention that classical mechanics is a deter-
ministic theory whereas modern quantum mechanics is indeter-
ministic.” Without getting too deeply enmeshed in technical details,
explain why one ought to dispute the first part of this contention,
even if one rejects Popper’s definition of determinism.
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. Show that in the case of N = 3, the Newtonian equations of motion

for N gravitating point mass particles are deterministic, barring
collisions.

. Why is the Godel incompleteness theorem not discussed in this

book?

. ...the fatalist asserts a causal discontinuity between present actions and the future

world, where the non-fatalistic determinist asserts causal continuity here as every-
where else. . . . For the fatalist, no human causes can modify the future in any way,
and resignation is the only rational course to follow. For the determinist, human
efforts count as effectual causes along with all the other kinds of causes.

Write an essay on the relation between determinism and fatalism.
Evaluate the above quotation in the light of the relation you have
discerned.

There will be a sea battle tomorrow. True [J; False O;
Determined [J; Undetermined [J; Fated O; Not fated O0; Why?

Answer one of the following:

(a) The Idealists have criticized the regularity account of laws on the
grounds that

if the regularity view be right, all generalizations are nothing but sheer coinei-
dences. If there is a connection between cause C and effect E so that one really
explains or entails and does not just in fact precede the other, then the
coincidence is indeed removed because there is now available a reason why E
should always follow C, but not otherwise. On the regularity view there still just
remains the brute fact that E always follows C, and that by itself is just as
improbable as if an unweighted penny showed heads every time it was tossed . . .
The extraordinary unlikeliness of the generalization cannot be removed unlcss wc
suppose a logical connection between C and E. If a ‘law’ stands for nothing but
the mere fact that E follows C, to posit such a general law because it is fulfilled in
many cases is only to increase the improbability ... If C and E be logically
connected so that the one entails the other the coincidence disappears, but
otherwise how can it?

What is the ‘logical connection’ the Idealists are after? How can we
come to know when and where it obtains? How might the regularity
theorist reply to the above criticism?

(b) Evaluate the following analysis of laws of nature:

... for someone to treat a statement of the form ‘if anything has ® it has ¥’ as
expressing a law of nature, it is sufficient (i) that subject to a willingness to explain
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away exceptions he believes that in a non-trivial sense everything which in fact has
® has W (ii) that his belief that something which has ® has W is not liable to
be weakened by the discovery that the object in question also has some other
property X, provided that (a) that X does not logically entail not-W (b) that X is
not a manifestation of not-W (c) that the discovery that something has X would
not in itself seriously weaken his belief that it had W (d) that he does not regard
the statement ‘if anything has ® and not-X it has ¥’ as a more exact statement of
the generalization he was intending to express.

©

Generally speaking . .. a true scientific hypothesis will be regarded as a law of
nature if it has an explanatory function with regard to lower-level hypotheses or its
instances; vice versa, to the extent that a scientific hypothesis provides an explana-
tion, to that extent will there be an inclination to endow it with the honourable
status of natural law.

In this claim true? If true, does it provide a means to a satisfying
analysis of ‘law of nature’, or does the notion of explanation itself
stand in need of an analysis which in turn will appeal to the concept
of law?

There is a maxim which is often quoted, that, ‘The same cause will always produce
the same effects.’. . . What is really meant is that if the causes differ only as regards
the absolute time or the absolute place at which the event occurs, so ltikewise will
the effects.

Is this maxim essential to the physical sciences in general and to
determinism in particular? Explain. Why is it important to dis-
tinguish the above maxim from a second maxim asserting that ‘Like
causes produce like effects’?

Answer one of the following:
(2) It has been said that Alan Turing set himself the task of

trying to specify exactly the most general possible notion of what a ‘machine’ is. In
fact, the definition he arrived at, now called a ‘Turing machine,” was a central part
of his contribution to the theory of computing. Although fundamentally all a
Turing machine can do is jump from one discrete state to another by means of
very simple transition rules, Turing was able to show that such machines could do
anything one could reasonably expect of any machine or any human following
well-defined rules.

In what sense is this claim right? In what sense is it wrong?
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(b) Alan Turing proposed that the digital computer could be used
as a model for the human brain, and that a sufficiently powerful
digital computer could so closely mimic the behavior of the brain
that an interrogator could not tell from answers to questions put to
X whether X is a digital machine or a man. Turing conceded that
“the nervous system is certainly not a discrete machine . .. It may
be argued that, this being so, one cannot expect to be able to
mimic the behavior of the nervous system with a discrete state
system.” Here is his reply:

It is true that a discrete state machine must be different from a continuous
machine. But if we adhere to the conditions of the imitation game, the inter-
rogator will not be able to take advantage of this difference. The situation can be
made clearer if we consider some other simpler continuous machine. A dif-
ferential analyzer will do very well ... It would not be possible for a digital
computer to predict exactly what answers the differential analyzer would give to a
problem, but it would be capable of giving the right sort of answer. For instance,
if asked to give the value of & (actually about 3.1416) it would be reasonable to
choose at random between the values 3.12, 3.13, 3.14, 3.15, 3.16 with the
probabilities of 0.05, 0.15, 0.55, 0.19, 0.06 (say). Under these circumstances it
would be very difficult for the interrogator to distinguish the differential analyzer
from the digital computer.

Does Turing’s reply really show that the digital computer is an
adequate model for simple deterministic continuous state machines,
much less for brains?

To what extent can a deterministic device generate ‘random num-
bers’? Distinguish the cases of finite vs. infinite random sequences,
and discuss separately discrete vs. continuous state systems.

Define some of the ergodic properties of classical dynamical
systems and discuss how they are relevant to explaining how
‘chance’ can emerge from a deterministic evolution. Give some
examples of classical systems and sketch reasons for thinking that
these systems do (or do not) exhibit the ergodic properties.

... the replacement of Newtonian mechanics by Einstein’s special (1905) and
general (1916) theories of relativity did nothing to upset the deterministic
character of physics. Newton’s laws of mechanics turned out to be not quite
correct, so they had to be replaced by some revised laws of mechanics, but ones
that were no less deterministic.

This claim is: True O;
False but informative 0. Why?

False (J; True but misleading [J;
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Provide an interesting but not obviously false formulation of the
‘cosmic censorship hypothesis’ for general relativistic cosmological
models. Either demonstrate that the hypothesis is true, or else give
an explicit counterexample. Detail the implications of your answer
for determinism.

The essentially non-deterministic character of quantum mechanics rests on the
principle of indeterminacy, sometimes called the uncertainly relation, first stated
in 1927 by Werner Heisenberg. It says, roughly, that, for certain pairs of
magnitudes called ‘conjugate’ magnitudes, it is impossible in principle to measure
both at the same instant with high precision ... [So with momentum p and
position q it] asserts that, if we try to measure p precisely, that is, make Ap very
small, we cannot at the same instant measure g precisely, that is, make Aq very
small.

Is this interpretation of the uncertainty principle correct? Suppos-
ing for sake of argument that it is, what does it imply about
indeterminism?

Derive some form of the Bell inequalities and exhibit a quantum
state in which the quantum probabilities are in violation of the
inequality. For what views in the foundations of quantum me-
chanics does this violation toll? Is a deterministic interpretation of
the theory among them?

In the epilogue to ___ the famous Russian novelist ____ wrote:

Every man, savage and sage alike, however incontestably reason and experience
may prove to him that it is impossible to imagine two different courses of action
under precisely the same circumstances, yet feels that without this meaningless
conception (which constitutes the essence of freedom) he cannot conceive of life.
He feels that, however impossible it may be, it is so; seeing that without that
conception of freedom, he would not only be unable to understand life, but could
not live for a single instant. . .. To history the recognition of freewills of men as
forces able to influence historical events, that is, not subject to laws, is the same as
would be to astronomy the recognition of freewill in the movements of heavenly
bodies . . . If there is a single human action due to freewill, no historical law exists,
and no conception of historical events can be formed.

Does the laboring of this theme detract from the artistic merit of
the novel? Would the author have been so confident of the theme
if the novel had been set in the US rather than Russia?

The principle of free will says: ‘/ produce my volitions.” Determinism says: ‘My
volitions are produced by me.’ Determinism is free will expressed in the passive
voice.
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The freedom of the will consists in the impossibility of knowing actions ‘that still
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