On The Harmonious Colouring of Trees

A. Aflaki^a, S. Akbari^{a,b}, D.S. Eskandani^a, M. Jamaali^a, H. Ravanbod^a,

Abstract

Let G be a simple graph. A harmonious colouring of G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring. In this paper it is shown that if T is a tree of order n and $\Delta(T) \geq \frac{n}{2}$, then $h(T) = \Delta(T) + 1$, where $\Delta(T)$ denotes the maximum degree of T. Let T_1 and T_2 be two trees of order n_1 and n_2 , respectively and $F = T_1 \cup T_2$. In this paper it is shown that if $\Delta(T_i) = \Delta_i$ and $\Delta_i \geq \frac{n_i}{2}$, for i = 1, 2, then $h(F) \leq \Delta(F) + 2$. Moreover, if $\Delta_1 = \Delta_2 = \Delta \geq \frac{n_i}{2}$, for i = 1, 2, then $h(F) = \Delta + 2$.

Keywords: Harmonious colouring, Tree

2010 Mathematics Subject Classification: 05C05, 05C15

1. Introduction

Let G be a simple graph. We denote the edge set and the vertex set of G by E(G) and V(G), respectively. A vertex of degree 1 in G is called a *pendant vertex*. A star is tree with a vertex adjacent to all other vertices and with no extra edge. In this article d(u, v) denotes a distance between u and v. Also, $\Delta(G)$, $N_G(v)$ and $d_G(v)$ denote the maximum degree of G, the neighbor set of v and the degree of v in G, respectively. A harmonious colouring of G is a proper vertex colouring of G in which every pair of colours appears on at most one pair of adjacent vertices. The harmonious chromatic number of G, h(G), is the

^aDepartment of Mathematical Sciences, Sharif University of Technology, Tehran, Iran ^bSchool of Mathematics, Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-5746, Tehran, Iran *

 $[\]label{lem:com} ^*E\text{-}mail \quad addresses: \qquad \text{arian.aflaki@gmail.com}, \quad \text{s_akbari@sharif.edu}, \quad \text{denizeskandani@gmail.com}, \\ \text{mohsen_djamali@yahoo.com}, \\ \text{hajar_ravanbod@yahoo.com}.$

minimum number of colours needed for any harmonious colouring of G. The first paper on harmonious colouring was written in 1982 by Frank et al. [4]. However, the proper definition of this notion is due to Hopcroft and Krishnamoorthy [5]. If G has m edges and can be harmoniously coloured with k colours, then clearly, $\binom{k}{2} \geq m$. Paths and cycles are among the first graphs whose harmonious chromatic numbers have been established [4]. It was shown by Hopcroft and Krishnamoorthy that the problem of determining the harmonious chromatic number of a graph is NP-hard. Also it was shown that the problem remains hard even when we restricted to trees, see [3]. The following result was proved in [2]:

Let d be a fixed positive integer. There is a positive integer N such that if T is any tree with $m \geq N$ edges and maximum degree at most d, then the harmonious chromatic number h(T) is either k or k+1, where k is the least positive integer such that $\binom{k}{2} \geq m$. Harmonious colouring have been studied extensively by several authors. For more information interested reader is referred to [1].

In this paper we obtain the exact value of the harmonious chromatic number of a tree when its maximum degree is at least the half of its order.

Theorem 1. Let T be a tree of order n. If
$$\Delta(T) \geq \frac{n}{2}$$
, then $h(T) = \Delta(T) + 1$.

Proof. We prove the theorem by induction on n. For n=2, the assertion is trivial. Let u be a pendant vertex of T and $uv \in E(T)$. If T is a star, then the assertion is clear. Thus we can assume that there exists a pendant vertex u such $T \setminus u$ is a tree and $\Delta(T \setminus u) = \Delta(T)$. We have $\Delta(T \setminus u) \geq \frac{n-1}{2}$, so by induction hypothesis, $h(T \setminus u) = \Delta(T) + 1$. Consider a harmonious colouring for $T \setminus u$ using $\Delta(T) + 1$ colours. Suppose that the colour of v in this colouring is i. We claim that if $x \in V(T \setminus u)$ and $d(x) = \Delta(T \setminus u) = \Delta(T)$, then the colour of x is not i. To see this we note that if the colour of x is i, then all $\Delta(T)$ pairs of colours containing i have appeared on the edges incident with x. Thus there exists a pair containing i which appears twice, a contradiction and the claim is proved. Now, the number of edges with one end point with colour i in $T \setminus u$ is at most

$$|E(T \setminus u)| - (\Delta(T) - 1) \le (n - 2) - \frac{n}{2} - 1 = \frac{n}{2} - 1.$$

Since $h(T \setminus u) \ge \frac{n}{2} + 1$, so there are at least $\frac{n}{2}$ pairs of colours of the set $\{1, \ldots, h(T \setminus u)\}$, containing i. Thus there exists a pair, say i and j, appears in no edge of $T \setminus u$. Now, colour the vertex u by j to obtain a harmonious colouring for T. Thus $h(T) \le \Delta(T) + 1$. Since $h(T) \ge \Delta(T) + 1$, the proof is complete.

Remark 1. We note that the lower bound for the maximum degree in the previous theorem is sharp. For instance consider the following tree:

Figure 1. A tree with maximum degree $\frac{n-1}{2}$ and $h(T) > \Delta + 1$.

Theorem 2. Let T_1 and T_2 be two trees of order n_1 and n_2 , respectively and $F = T_1 \cup T_2$. Assume that $\Delta(T_i) = \Delta_i$. If $\Delta_i \geq \frac{n_i}{2}$, for i = 1, 2, then $h(F) \leq \Delta(F) + 2$. Moreover, if $\Delta_1 = \Delta_2 = \Delta \geq \frac{n_i}{2}$, for i = 1, 2, then $h(F) = \Delta + 2$.

Proof. First we prove the second part of the theorem. Clearly, every graph with at least two non-adjacent vertices of maximum degree has harmonious chromatic number at least $\Delta + 2$. First suppose that F is the following graph in which $T_1 = T_2$ are following trees:

Figure 2

One can easily check that the above colouring is a harmonious colouring for F with the desired property then clearly we have the desired colouring.

Let $v_i \in V(T_i)$ and $d(v_i) = \Delta$, for i = 1, 2. By induction on |V(F)|, we prove that there exists a harmonious colouring c of F with $\Delta + 2$ colours in which $c(v_1)$ appears as colour of a pendant vertex adjacent to v_2 .

Suppose that at least one of the trees T_1 and T_2 is star. If T_1 is a star, then there exists a harmonious colouring of T_1 with colours $\{1, \ldots, \Delta + 1\}$ such that $c(v_1) = 1$. By Theorem 1, there exists a harmonious colouring of T_2 , say c', with colours $\{2, \ldots, \Delta + 2\}$. By permutation of colours one can assume that $c'(v_2) = \Delta + 2$. Since $d(v_2) = \Delta$, there

exists a pendant vertex z adjacent to v_2 . Recolour z by colour 1 to obtain the desired colouring for F.

Now, assume that T_2 is a star. By Theorem 1, there exists a harmonious colouring of T_1 with colours $\{1, \ldots, \Delta + 1\}$ such that the colour of v_1 is 1. Also, we colour T_2 with the colours $\{2, \ldots, \Delta + 2\}$ such that the colour of v_2 is $\Delta + 2$. Now, we change the colour of one of the pendant vertices adjacent to v_2 to 1 to obtain the desired colouring for F. Thus suppose that none of the T_1 and T_2 is star.

Now, assume that at least one of the trees T_1 and T_2 is not isomorphic to the tree shown in Figure 2. With no loss of generality assume that T_2 is that tree. Obviously, for i = 1, 2, there exist a pendant vertex, v'_i adjacent to v_i and another pendant vertex u''_i not adjacent to v_i . Also, T_2 has at least one pendant vertex $w \neq v'_2$ adjacent to v_2 . Let $F' = F \setminus \{v'_1, v'_2, u''_1, u''_2\}$. By induction hypothesis there exists a harmonious colouring c' of F' by the colours $\{1, \ldots, \Delta + 1\}$, such that $c'(w_1) = c'(v_1)$, where w_1 is a pendant vertex adjacent to v_2 in F'. Now, switch the colours of w_1 and w in the forest F'. Next, using the harmonious colouring of F', we like to find a desired harmonious colouring for F.

Let $u_i' \in V(T_i)$ and $u_i''u_i' \in E(T_i)$, for i = 1, 2. Four cases can be considered:

Case 1. $d(u_1'', v_1) = d(u_2'', v_2) = 2$. Consider three following subcases:

(i) $c'(u'_1) \neq c'(u'_2)$. Define the harmonious colouring c for F as follows:

$$c(u_1'') = c(u_2'') = c(v_2') = c(v_1') = a,$$

where a is a new colour and for any other vertex x, let c(x) = c'(x).

(ii) $c'(u_1') = c'(u_2')$ and there exists $i, 1 \le i \le 2$ such that $d_F(u_i') \ge 3$. With no loss of generality assume that $d_F(u_1') \ge 3$. Now, define $c(u_1'') = c(v_1') = c'(u_1')$ and $c(u_1') = c(v_2') = a$, where a is a new colour. Let $y \in N_F(u_1') \setminus \{v_1, u_1''\}$. Now, define $c(u_2'') = c'(y)$.

(iii) $c'(u'_1) = c'(u'_2)$ and $d_F(u'_1) = d_F(u'_2) = 2$. Define the harmonious colouring c as follows:

$$c(v_1') = c'(u_1'), c(u_1') = c(v_2') = c(u_2'') = a, \\$$

where a is a new colour and keep the colour of other vertices. In the colouring c, a appeared 3 times. Since $\Delta \geq 3$, there exists a colour t such that pair $\{a,t\}$ does not appear in the end points of the edges of F. Now, define $c(u_1'') = t$.

Case 2. $d(u_1'', v_1) = 2$ and $d(u_2'', v_2) \ge 3$. Let $u_2 \in V(T_2)$, $u_2'u_2 \in E(T_2)$ and $d(u_2', v_2) = d(u_2, v_2) + 1$. Consider four following subcases:

(i) $c'(u_2') = c'(v_2)$ and $c'(u_1') \neq c'(u_2)$. Define the harmonious colouring c as follows: $c(u_2'') = c'(v_2), c(v_2') = c'(u_2)$ and $c(u_1'') = c(v_1') = c(u_2') = a$, where a is a new colour and keep the colour of other vertices.

(ii) $c'(u_2') = c'(v_2)$ and $c'(u_1') = c'(u_2)$. Define the harmonious colouring c as follows: $c(v_2') = c(v_1') = c'(u_1'), c(u_2'') = c'(v_2)$ and $c(u_2') = c(u_1') = a$, where a is a new colour and keep the colour of other vertices. In this case clearly, $d(u_2'', v_2) \ge 4$. Let $y \in N_{T_2}(u_2)$ and $y \ne u_2'$. Then define $c(u_1'') = c'(y)$.

(iii) $c'(u_1') = c'(u_2')$. Define $c(u_1'') = c'(u_2)$, $c(u_2'') = c'(u_2')$ and $c(u_2') = c(v_1') = c(v_2') = a$, where a is a new colour and keep the colour of other vertices.

(iv) $c'(u'_1)$, $c'(u'_2)$ and $c'(v_2)$ are distinct. Define c as follows:

$$c(u_1'') = c(u_2'') = c(v_1') = c(v_2') = a,$$

where a is a new colour and keep the colour of other vertices.

Case 3. $d(u_1'', v_1) \ge 3$ and $d(u_2'', v_2) = 2$. Let $u_1 \in V(T_1)$, $u_1'u_1 \in E(T_1)$ and $d(u_1', v_1) = d(u_1, v_1) + 1$. Now, consider three following subcases:

(i) $c'(u'_1) = c'(v_2)$. Define the harmonious colouring c as follows:

$$c(u_1'') = c'(v_2), c(v_2') = c'(u_1), c(u_2'') = c(u_1') = c(v_1') = a,$$

where a is a new colour and keep the colour of other vertices.

(ii) $c'(u_1') = c'(u_2')$. Define the harmonious colouring c as follows: $c(u_1'') = c'(u_1')$, $c(u_2'') = c'(u_1)$, $c(u_1') = c(v_2') = c(v_1') = a$, where a is a new colour and keep the colour of other vertices.

(iii) $c'(v_2), c'(u'_1)$ and $c'(u'_2)$ are distinct. Define the harmonious colouring c as follows:

$$c(u_1'') = c(u_2'') = c(v_1') = c(v_2') = a,$$

where a is a new colour and keep the colour of other vertices.

Case 4. $d(u_i'', v_i) \ge 3$, for i = 1, 2.

Let $u_i \in V(T_i)$, $u'_i u_i \in E(T_i)$ and $d(u'_i, v_i) = d(u_i, v_i) + 1$, for i = 1, 2. Now, consider five following subcases:

(i) $c'(u'_1) = c'(u'_2)$. In this case define the following colouring:

$$c(u_1'') = c'(u_2), c(u_1') = c(u_2'') = c(v_1') = c(v_2') = a,$$

where a is a new colour and for any other vertex x, let c(x) = c'(x).

(ii) $c'(u'_1), c'(u'_2)$ and $c'(v_2)$ are distinct. Now, define

$$c(u_1'') = c(u_2'') = c(v_1') = c(v_2') = a,$$

where a is a new colour and keep the colour of other vertices.

(iii) $c'(v_2) = c'(u'_1)$ and $c'(u'_2) \neq c'(u_1)$. Clearly, $c'(u'_2) \neq c'(v_2)$. Define $c(u''_1) = c'(v_2)$, $c(v'_2) = c'(u_1)$ and $c(u'_1) = c(u''_2) = c(v'_1) = a$, where a is a new colour and keep the colour of other vertices.

(iv) $c'(v_2) = c'(u'_1)$ and $c'(u'_2) = c'(u_1)$. Define $c(u''_1) = c'(u_2)$, $c(u''_2) = c'(v_2)$ and $c(u'_1) = c(v'_1) = c(v'_2) = a$, where a is new colour and keep the colour of other vertices.

(v) $c'(v_2) = c'(u'_2)$, then similar to the subcases (iii) and (iv) we can obtain a harmonious colouring of F.

For the first part of theorem, suppose that $\Delta(T_1) \geq \Delta(T_2)$, $d(v_1) = \Delta(T_1)$ and $d(v_2) = \Delta(T_2)$. Add $d(v_1) - d(v_2)$ pendant vertices to v_1 . Now, by the previous part, the assertion is obvious and the proof is complete.

Remark 2. The tree given in Remark 1 shows that the lower bound of Theorem 2 is sharp. To show this, note that one can not colour one of the trees, say T_1 , by $\Delta + 1$ colours harmoniously. Hence every colour $\{1, \ldots, \Delta + 2\}$ should be used at least once in colouring of T_1 . To colour the other tree, we begin from the vertices with the maximum degree. One colour can be used in these vertices if and only if in the colouring of T_1 , it appears in at most one pair; Since we need Δ colours to colour the neighbors of the vertex with maximum degree and if we use a colour which appeared in two pairs we only have $\Delta - 1$ colours which are not appeared with this colour. Note that we have at most one colour in the colouring of T_1 which appeared in one pair while we have two vertices with the degree of Δ . So we can not colour the second tree with these $\Delta + 2$ colours.

Acknowledgments. The second author is indebted to the School of Mathematics, Institute for Research in Fundamental Sciences (IPM) for support. The research of the second author was in part supported by a grant from IPM (No. 90050212).

References

- [1] K.J. Edwards, A bibliography of harmonious colouring and Achromatic Number, http://www.computing.dundee.ac.uk/sta/kedwards/biblio, 2010.
- [2] K. Edwards, The harmonious chromatic number of bounded degree trees, Combin. Probab. Comput. 5 (1996), 15-28.
- [3] K. Edwards, C. McDiarmid, The complexity of harmonious colouring for trees, Disc. Appl. Math. 57 (1995), 133-144.
- [4] O. Frank, F. Harary, M. Plantholt, The line-distinguishing chromatic number of a graph, Ars Combin. 14 (1982) 241–252.
- [5] J.E. Hopcroft, M.S. Krishnamoorthy, On the harmonious coloring of graphs, SIAM J. Alg. Disc. Math. 4 (1983) 306–311.