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Abstract

Let G be a simple graph. A harmonious colouring of G is a proper vertex colouring
such that each pair of colours appears together on at most one edge. The harmonious
chromatic number h(G) is the least number of colours in such a colouring. In this
paper it is shown that if T is a tree of order n and ∆(T ) ≥ n

2 , then h(T ) = ∆(T ) + 1,
where ∆(T ) denotes the maximum degree of T . Let T1 and T2 be two trees of order
n1 and n2, respectively and F = T1 ∪ T2. In this paper it is shown that if ∆(Ti) = ∆i

and ∆i ≥ ni

2 , for i = 1, 2, then h(F ) ≤ ∆(F ) + 2. Moreover, if ∆1 = ∆2 = ∆ ≥ ni

2 ,
for i = 1, 2, then h(F ) = ∆ + 2.
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1. Introduction

Let G be a simple graph. We denote the edge set and the vertex set of G by E(G) and
V (G), respectively. A vertex of degree 1 in G is called a pendant vertex. A star is tree
with a vertex adjacent to all other vertices and with no extra edge. In this article d(u, v)
denotes a distance between u and v. Also, ∆(G), NG(v) and dG(v) denote the maximum
degree of G, the neighbor set of v and the degree of v in G, respectively. A harmonious
colouring of G is a proper vertex colouring of G in which every pair of colours appears on
at most one pair of adjacent vertices. The harmonious chromatic number of G, h(G), is the
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minimum number of colours needed for any harmonious colouring of G. The first paper
on harmonious colouring was written in 1982 by Frank et al. [4]. However, the proper
definition of this notion is due to Hopcroft and Krishnamoorthy [5]. If G has m edges
and can be harmoniously coloured with k colours, then clearly,

(
k
2

)
≥ m. Paths and cycles

are among the first graphs whose harmonious chromatic numbers have been established
[4]. It was shown by Hopcroft and Krishnamoorthy that the problem of determining the
harmonious chromatic number of a graph is NP-hard. Also it was shown that the problem
remains hard even when we restricted to trees, see [3]. The following result was proved in
[2]:

Let d be a fixed positive integer. There is a positive integer N such that if T is any
tree with m ≥ N edges and maximum degree at most d, then the harmonious chromatic
number h(T ) is either k or k + 1, where k is the least positive integer such that

(
k
2

)
≥

m. Harmonious colouring have been studied extensively by several authors. For more
information interested reader is referred to [1].

In this paper we obtain the exact value of the harmonious chromatic number of a tree
when its maximum degree is at least the half of its order.

Theorem 1. Let T be a tree of order n. If ∆(T ) ≥ n
2 , then h(T ) = ∆(T ) + 1.

Proof. We prove the theorem by induction on n. For n = 2, the assertion is trivial. Let
u be a pendant vertex of T and uv ∈ E(T ). If T is a star, then the assertion is clear. Thus
we can assume that there exists a pendant vertex u such T \u is a tree and ∆(T \u)=∆(T ).
We have ∆(T \ u) ≥ n−1

2 , so by induction hypothesis, h(T \ u) = ∆(T ) + 1. Consider a
harmonious colouring for T \ u using ∆(T ) + 1 colours. Suppose that the colour of v in
this colouring is i. We claim that if x ∈ V (T \ u) and d(x) = ∆(T \ u) = ∆(T ), then the
colour of x is not i. To see this we note that if the colour of x is i, then all ∆(T ) pairs
of colours containing i have appeared on the edges incident with x. Thus there exists a
pair containing i which appears twice, a contradiction and the claim is proved. Now, the
number of edges with one end point with colour i in T \ u is at most

|E(T \ u)| − (∆(T )− 1) ≤ (n− 2)− n

2
− 1 =

n

2
− 1.

Since h(T \ u) ≥ n
2 + 1, so there are at least n

2 pairs of colours of the set {1, . . . , h(T \ u)},
containing i. Thus there exists a pair, say i and j, appears in no edge of T \ u. Now,
colour the vertex u by j to obtain a harmonious colouring for T . Thus h(T ) ≤ ∆(T ) + 1.
Since h(T ) ≥ ∆(T ) + 1, the proof is complete. �

Remark 1. We note that the lower bound for the maximum degree in the previous
theorem is sharp. For instance consider the following tree:
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Figure 1. A tree with maximum degree n−1
2 and h(T ) > ∆ + 1.

Theorem 2. Let T1 and T2 be two trees of order n1 and n2, respectively and F = T1∪T2.
Assume that ∆(Ti) = ∆i. If ∆i ≥ ni

2 , for i = 1, 2, then h(F ) ≤ ∆(F ) + 2. Moreover, if
∆1 = ∆2 = ∆ ≥ ni

2 , for i = 1, 2, then h(F ) = ∆ + 2.

Proof. First we prove the second part of the theorem. Clearly, every graph with at least
two non-adjacent vertices of maximum degree has harmonious chromatic number at least
∆ + 2. First suppose that F is the following graph in which T1 = T2 are following trees:

Figure 2

One can easily check that the above colouring is a harmonious colouring for F with
the desired property then clearly we have the desired colouring.

Let vi ∈ V (Ti) and d(vi) = ∆, for i = 1, 2. By induction on |V (F )|, we prove that
there exists a harmonious colouring c of F with ∆ + 2 colours in which c(v1) appears as
colour of a pendant vertex adjacent to v2.

Suppose that at least one of the trees T1 and T2 is star. If T1 is a star, then there
exists a harmonious colouring of T1 with colours {1, . . . ,∆ + 1} such that c(v1) = 1. By
Theorem 1, there exists a harmonious colouring of T2, say c′, with colours {2, . . . ,∆ + 2}.
By permutation of colours one can assume that c′(v2) = ∆ + 2. Since d(v2) = ∆, there
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exists a pendant vertex z adjacent to v2. Recolour z by colour 1 to obtain the desired
colouring for F .
Now, assume that T2 is a star. By Theorem 1, there exists a harmonious colouring of T1

with colours {1, . . . ,∆ + 1} such that the colour of v1 is 1. Also, we colour T2 with the
colours {2, . . . ,∆ + 2} such that the colour of v2 is ∆ + 2. Now, we change the colour of
one of the pendant vertices adjacent to v2 to 1 to obtain the desired colouring for F .Thus
suppose that none of the T1 and T2 is star.

Now, assume that at least one of the trees T1 and T2 is not isomorphic to the tree
shown in Figure 2. With no loss of generality assume that T2 is that tree. Obviously,
for i = 1, 2, there exist a pendant vertex, v′i adjacent to vi and another pendant vertex
u′′i not adjacent to vi. Also, T2 has at least one pendant vertex w 6= v′2 adjacent to v2.
Let F ′ = F \ {v′1, v′2, u′′1, u′′2}. By induction hypothesis there exists a harmonious colouring
c′ of F ′ by the colours {1, . . . ,∆ + 1}, such that c′(w1) = c′(v1), where w1 is a pendant
vertex adjacent to v2 in F ′. Now, switch the colours of w1 and w in the forest F ′. Next,
using the harmonious colouring of F ′, we like to find a desired harmonious colouring for F .

Let u′i ∈ V (Ti) and u′′i u
′
i ∈ E(Ti), for i = 1, 2. Four cases can be considered:

Case 1. d(u′′1, v1) = d(u′′2, v2) = 2. Consider three following subcases:

(i) c′(u′1) 6= c′(u′2). Define the harmonious colouring c for F as follows:

c(u′′1) = c(u′′2) = c(v′2) = c(v′1) = a,

where a is a new colour and for any other vertex x, let c(x) = c′(x).

(ii) c′(u′1) = c′(u′2) and there exists i, 1 ≤ i ≤ 2 such that dF (u′i) ≥ 3. With no loss of gen-
erality assume that dF (u′1) ≥ 3. Now, define c(u′′1) = c(v′1) = c′(u′1) and c(u′1) = c(v′2) = a,
where a is a new colour. Let y ∈ NF (u′1) \ {v1, u

′′
1}. Now, define c(u′′2) = c′(y).

(iii) c′(u′1) = c′(u′2) and dF (u′1) = dF (u′2) = 2. Define the harmonious colouring c as
follows:

c(v′1) = c′(u′1), c(u
′
1) = c(v′2) = c(u′′2) = a,

where a is a new colour and keep the colour of other vertices. In the colouring c, a ap-
peared 3 times. Since ∆ ≥ 3, there exists a colour t such that pair {a, t} does not appear
in the end points of the edges of F . Now, define c(u′′1) = t.
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Case 2. d(u′′1, v1) = 2 and d(u′′2, v2) ≥ 3. Let u2 ∈ V (T2), u′2u2 ∈ E(T2) and d(u′2, v2) =
d(u2, v2) + 1. Consider four following subcases:

(i) c′(u′2) = c′(v2) and c′(u′1) 6= c′(u2). Define the harmonious colouring c as follows:
c(u′′2) = c′(v2), c(v′2) = c′(u2) and c(u′′1) = c(v′1) = c(u′2) = a, where a is a new colour and
keep the colour of other vertices.

(ii) c′(u′2) = c′(v2) and c′(u′1) = c′(u2). Define the harmonious colouring c as follows:
c(v′2) = c(v′1) = c′(u′1), c(u

′′
2) = c′(v2) and c(u′2) = c(u′1) = a, where a is a new colour and

keep the colour of other vertices. In this case clearly, d(u′′2, v2) ≥ 4. Let y ∈ NT2(u2) and
y 6= u′2 . Then define c(u′′1) = c′(y).

(iii) c′(u′1) = c′(u′2). Define c(u′′1) = c′(u2), c(u′′2) = c′(u′2) and c(u′2) = c(v′1) = c(v′2) = a,
where a is a new colour and keep the colour of other vertices.

(iv) c′(u′1), c′(u′2) and c′(v2) are distinct. Define c as follows:

c(u′′1) = c(u′′2) = c(v′1) = c(v′2) = a,

where a is a new colour and keep the colour of other vertices.

Case 3. d(u′′1, v1) ≥ 3 and d(u′′2, v2) = 2. Let u1 ∈ V (T1), u′1u1 ∈ E(T1) and d(u′1, v1) =
d(u1, v1) + 1. Now, consider three following subcases:

(i) c′(u′1) = c′(v2). Define the harmonious colouring c as follows:

c(u′′1) = c′(v2), c(v′2) = c′(u1), c(u′′2) = c(u′1) = c(v′1) = a,

where a is a new colour and keep the colour of other vertices.

(ii) c′(u′1) = c′(u′2). Define the harmonious colouring c as follows:
c(u′′1) = c′(u′1), c(u′′2) = c′(u1), c(u′1) = c(v′2) = c(v′1) = a, where a is a new colour and
keep the colour of other vertices.

(iii) c′(v2), c′(u′1) and c′(u′2) are distinct. Define the harmonious colouring c as follows:

c(u′′1) = c(u′′2) = c(v′1) = c(v′2) = a,

where a is a new colour and keep the colour of other vertices.
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Case 4. d(u′′i , vi) ≥ 3, for i = 1, 2.
Let ui ∈ V (Ti), u′iui ∈ E(Ti) and d(u′i, vi) = d(ui, vi) + 1, for i = 1, 2. Now, consider five
following subcases:

(i) c′(u′1) = c′(u′2). In this case define the following colouring:

c(u′′1) = c′(u2), c(u′1) = c(u′′2) = c(v′1) = c(v′2) = a,

where a is a new colour and for any other vertex x, let c(x) = c′(x).

(ii) c′(u′1), c
′(u′2) and c′(v2) are distinct. Now, define

c(u′′1) = c(u′′2) = c(v′1) = c(v′2) = a,

where a is a new colour and keep the colour of other vertices.

(iii) c′(v2) = c′(u′1) and c′(u′2) 6= c′(u1) . Clearly, c′(u′2) 6= c′(v2). Define c(u′′1) = c′(v2),
c(v′2) = c′(u1) and c(u′1) = c(u′′2) = c(v′1) = a, where a is a new colour and keep the colour
of other vertices.

(iv) c′(v2) = c′(u′1) and c′(u′2) = c′(u1). Define c(u′′1) = c′(u2), c(u′′2) = c′(v2) and c(u′1) =
c(v′1) = c(v′2) = a, where a is new colour and keep the colour of other vertices.

(v) c′(v2) = c′(u′2), then similar to the subcases (iii) and (iv) we can obtain a harmonious
colouring of F .

For the first part of theorem, suppose that ∆(T1) ≥ ∆(T2), d(v1) = ∆(T1) and d(v2) =
∆(T2). Add d(v1)−d(v2) pendant vertices to v1. Now, by the previous part, the assertion
is obvious and the proof is complete. �

Remark 2. The tree given in Remark 1 shows that the lower bound of Theorem 2 is
sharp. To show this, note that one can not colour one of the trees, say T1, by ∆+1 colours
harmoniously. Hence every colour {1, . . . ,∆+2} should be used at least once in colouring
of T1. To colour the other tree, we begin from the vertices with the maximum degree.
One colour can be used in these vertices if and only if in the colouring of T1, it appears
in at most one pair; Since we need ∆ colours to colour the neighbors of the vertex with
maximum degree and if we use a colour which appeared in two pairs we only have ∆− 1
colours which are not appeared with this colour. Note that we have at most one colour in
the colouring of T1 which appeared in one pair while we have two vertices with the degree
of ∆. So we can not colour the second tree with these ∆ + 2 colours.
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