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1 Introduction

Class field theory is one of the most important achievements of Algebraic Number Theory
in the 20th century. It deals with the classification of abelian extensions of local and global
fields purely in terms of the arithmetic of the base field. The Kronecker-Weber theorem
accomplishes this over the rational numbers. It states that an abelian extension of the
rational numbers is always contained in a cyclotomic extension (field obtained by adjoining
a root of unity to the rationals).

Another important question that class field theory deals with is the decomposition of prime
ideals in abelian extensions. The quadratic reciprocity law of Gauss essentially describes
this in the case of quadratic extensions of the rationals. One of the central theorems of
global class field theory is the Artin reciprocity law, which generalizes many of the known
reciprocity laws including quadratic reciprocity.

In this note, we discuss the main results of class field theory without proofs and discuss
some examples leading up to it. We also briefly review pre-requisites such as basic algebraic
number theory. Our main reference is [3]. We have also used [1] and [2] for some concepts.

2 Review of ANT

For a number field K (i.e. a finite extension of Q), we denote by Ok, the ring of algebraic
integers in K. It is known that Ok forms a Dedekind domain, so that any ideal of O
factors uniquely into a product of prime ideals. A fractional ideal of K is an O submodule
I of K such that there exists a non-zero r € Og with rI C Og. The set of all fractional
ideals of K forms a group Zx under multiplication and the set of principal fractional ideals
Pr forms a normal subgroup of Zx. We can therefore form the quotient group Cx called
the ideal class group of K. An important fact about the ideal class group is the following
theorem:

Theorem 2.1. The class group Cx is finite for any number field K.

Even though the ideals of Ok have unique factorization into prime ideals, the elements
of Ok might not have unique factorization into prime elements. The ideal class group Cg
being trivial amounts to say that O is a Principal Ideal Domain (PID). A theorem about
Dedekind domains says that a Dedekind domain (DD) is a PID if and only if it is a Unique
Factorization Domain (UFD). The number ring O is a DD and so, in some sense, Cx mea-
sures the deviation of Ok from being a UFD.

We say that an extension L/K is abelian if it is Galois and the galois group Gal(L/K) is
abelian. One of the earliest theorems in class field theory is the Kronecker-Weber theorem,
which describes all abelian extensions of Q. It can be stated as the following:

Theorem 2.2. Fvery abelian extension of the rational numbers is contained in a cyclotomic
extension.

A cyclotomic extension is an extension of the form Q((,) where ¢, is an n'* root of unity.

It is natural to seek generalizations of the theorem of Kronecker-Weber to an arbitrary



number field K, instead of just Q. This is the main goal of class field theory and it says that
finite abelain extensions L of a number field K correspond to certain subgroups of something
known as the idele class group, whose factor groups are isomorphic to Gal(L/K).

3 Valuation Theory

3.1 Valuations

Let K be a field and x — |z| be a function from K to R.
Definition 3.1. The function |z| is called a valuation if
1. |xz| > 0 except that |0] = 0,
2. |zyl = l=[lyl,
3. |z +yl < fa| +y|

If a valuation also satisfies |z + y| < max{|z|, |y|}, then it is called nonarchimedian.
Otherwise it is called an archimedian valuation. An important example is the following:

Example 1. Let R be a Dedekind ring with quotient field K and let P be a non-zero prime
ideal in R. For a non-zero element x € R, let vp(x) denote the power to which P appears in
the factorization of (x). Let P also denote the mazimal ideal in the discrete valuation ring
Rp. We define vp on Rp by defining vp(y) = —vp(y™') if y € K \ Rp.

Let P = (m) in Rp so that every non-zero element y in K can be expressed as y = un™ for
a unit uw € Rp and some integer n. One can see that vp satisfies the following properties:

1. vp(y) is an integer for each non-zeroy € K,
2. vp(zy) = vp(x) + vp(y),
3. vp(z +y) = min{vp(z), vp(y)}.

A waluation satisfying the above three properties is called an exponential valuation on K.
Note that, for any real number ¢ € (0, 1),

2| = cvr (@)
defines a valuation on K. This valuation is called the P-adic valuation on K.

Two valuations |z, |z|; are said to be equivalent if whenever |x| < 1 then also |z]; < 1
forz € K.

Definition 3.2. An equivalence class of valuations on a field K is called a place (or a prime)
of K.

A theorem due to Ostrowski states the following



Theorem 3.3. Fvery non-trivial absolute value on the rational numbers Q is equivalent to
either the usual real absolute value or a p-adic absolute value for a prime p.

Thus, for the rational numbers, the places are in one-to-one correspondence with the
prime integers (if we call the eq. class of archimedian valuations the infinite prime of Q).
For a non-archimedian valuation v on K, the ring O = {z € K | v(z) > 0} is called its
valuation ring. We mention Hensel’s lemma below, and the valuations whose valuation ring
satisfies this lemma will play a crucial role in the theory later on.

Let K be a field which is complete with respect to a nonarchimedian valuation ||. Let O be
the corresponding valuation ring with maximal ideal 7 and residue class field kK = O/ (7).

3.2 Hensel’s Lemma

An important result in valuation theory that talks about finding roots of polynomials is
Hensel’s lemma. Rings that satisfy this result will play a crucial role in class field theory.

Lemma 3.4. If a primitive polynomial f(z) € Olx] admits modulo p a factorization
f(z) = g(x)h(z) mod p
into relatively prime polynomials g, h € k[x], then f(z) admits a factorization
f(z) = g(x)h(z)

into polynomials g, h € Olx]| such that deg(g) = deg(g) and g(x) = g(x) mod p and h(x) =
h(z) mod p.

Example 2. Consider the polynomial 2P~' — 1 € Z,[x|, which splits over the residue field
F, into distinct linear factors. By Hensel’s lemma we get that xP~' — 1 actually splits into
linear factors over Z,. Therefore Q,, the field of p-adic numbers, contains all the p—1 roots
of unity!

Definition 3.5. A henselian field is a field with a nonarchimedian valuation v whose val-
uation ring O satisfies Hensel’s lemma. The valuation v and the valuation ring O are also
called henselian.

4 Moduli and Ray Class Groups

4.1 Moduli
Definition 4.1. A modulus for K is a formal product

m = Hpn(p)
P

taken over all primes p of K in which n(p) is a non-negative integer and n(p) > 0 for only a
finite number of p. Furthermore, n(p) = 0 or 1 when p is a real infinite prime and n(p) = 0
when p is a complex infinite prime.



We want to generalize the notion of congruence. Let p be a real prime of K, so that K,
is isomorphic to the real field. Let + — x, be the imbedding of K into K,. If o and 8 are
elements of K*, we write

a=pf modp

to mean «a,, and 3, have the same sign.
If p is a finite prime and « and 3 are elements in K* with o = % and = g. Then we write,

a=pF modp"

if § = 4d € R, and this element is congruent to 1 modulo p".
We extend this to congruences modulo a modulus m naturally.

a=Lf modm
if
a=03 mod p"®
for all p appearing in m = Hp"(p).
J2

We write m = m,myg to separate the finite and infinite primes appearing in m.

4.2 Ray Class Groups

The notion of ray class groups generalizes the idea of arithmetic progression in the rational
integers to algebraic integers. Let R be the ring of integers of the number field K.

Definition 4.2.
K,, = {% | a,b € R,aR,bR relatively prime to mg}

Kpi={a€eK,|a=1 modm}

The group K,,; is called the "ray mod m”. For a set of primes S, I® denotes the part of
the ideal class group Cx generated by primes outside S. We denote by I"™ to mean I° where
S is the set of primes dividing my. In particular, I does not depend on the exponents
of primes dividing m. Let P, denote the subgroup of Pk (the group of principal ideals)
consisting of ideals () where « =1 mod m and o(a) > 0 for every real embedding o of K

(notation, & >> 0). The quotient Cx ,, = 7?;—’" is called the ray class group of K for m and
the quotient Cx,, = Ziim s called the strict (narrow) class group of K for m. If we take

Pk.m
K = Q and m = mZ, we get the strict class group to be the familiar Z/mZ.
A natural question is whether these class groups are finite just like the ordinary ideal class

groups of number fields. We answer this in the following proposition.
Proposition 4.3. Cj,, is a finite group. In fact,
\ hi 2™ p(m)
#Ckm = Te - 0r. 1
[ K - K,m]

where hy is the class number and p(m) = #((’)K/m)* and 1y s the number of real embed-
dings of K.



Proof. We just give the main ingredients of the proof. Let Px(m) be the set of principal
fractional ideals in Zx (m). We have Zx(m)/Px(m) = Ix /Prx = Ck
Next thing to note is that Px(m)/Pj(m) = K(m)/Ox K}, where

K(m) ={a e K | (@) € Ix(m)}

and
K ={aeK'|a>>0,a=1 mod m}

Note that the map K (m) — {£1}" (Ox/m)" given by,
a > (sign(oy(a), sign(oa(a)), . . ., sign(o, (@)))) * (o +m)

is an epimorphism with kernel K,
We then have,

#Chkm = [Ix(m) : Pr | = [Zr(m) : Prm][Pr(m) : Pr,,]

hx2™p(m)

= [Zlm) : Pl (m) + K31/ [03c K, < K] = -5

m

]

Example 3. Consider the quadratic field K = Q(v/3) and let m = Og. Let us compute
the size of the strict (narrow) class group Cic.m using the above proposition. In this case, we
have r1 = 2,hg =1, and p(m) = 1.

We only need to compute (O : O ,.|. By Dirichlet’s unit theorem, we have,

O = {£1} x Z

with a fundamental unit being 2 + /3. Since 2+ /3 >> 0 we get,
O = (2+V3)

Thus, we have [O}; : O}{m] =2 and

1-22.1
=

#Chom = 2

Example 4. Consider the imaginary quadratic field K = Q(i) and m = (3)™. In this case,

we have 1y = 0 and hy = 1. Let us compute p(m) = #(Z[i]/3")".
An element a + b of Z[i]/3"™ is invertible if and only if there is a solution to

(a+ib)(c+id) =3"(e+if)+1
where ¢, d, e, f € Z. Comparing real and tmaginary parts and writing in matriz form gives
a —b| |c| [3°+1
a a||d| | 3"f
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This has a solution if and only if the determinant a® + b? is invertible in Z/3™. Checking
for remainders of squares modulo 3, we get that the condition is satisfied if and only if a
or b is not divisible by 3. So we get 9" — (3""1)? many elements in (Z[z]/B”)* Therefore,
p(m) =8 9"

Again by Dirichlet’s unit theorem (or just by direct computation), the units of Z[i| are just

+1, 4+ and the only element >> 0 among them is 1. Therefore by the previous proposition,
the size of the ray class group is

1.20. (8.9

#CK,m = 4

=2.9771




5 Abstract CFT

5.1 Tate cohomology groups

Let G be a finite group and A be a G-module. We have the following natural map:
N : Hy(G, A) — H°(G, A)

defined as N(a) = > ga.

geG
The Tate-cohomology groups H"(G, A) are defined as follows:

o H*(G,A) = H"(G,A) forn >1
H°(G, A) = coker(N)

H™Y(G, A) = ker(N)
HY(G,A) = H_, (G, A) for n < —2

From now on, we use Tate-cohomology groups with notation H’ instead of H’. Let A
be a continuous multiplicative G-module, where G is the Galois group G(k/k). By this we
mean a multiplicative abelian group A on which the elements o € G act as automorphisms
on the right, 0 : A — A, a — a®. It must satisfy the following properties:

e A= |J Ag

[K:k]<oo

where A := {a € A | a° = a, Yo € Gk}. An important condition on the continuous

G-module A is the following:

For every cyclic extension L/ K, the conditions #H°(G(L/K),Ar) = [L : K] and #H (G(L/K), AL) =
1 are satisfied. This condition on A is called the class field axiom.

We mention Hilbert theorem 90 since it will be used later in the note.

Theorem 5.1. For a cyclic field extension L | K, one has
H YG(L/K),L*) =1

In words, this means an element o € L* of norm 1 is of the form o = 7% where B € L* is
some element and o is a generator of G(L/K)

Definition 5.2. A class field theory is a pair of homomorphisms (d : G — Zv: A—
Z), where A is a G-module satisfying the class field axiom, d is a continuous, surjective
homomorphism, and v is a henselian valuation.

8



5.2 The Reciprocity Map

Consider the profinite group G = G(k/k), a continuous G-module A, and a pair of homo-

morphisms ) )
d:G—7Z,v: A, —7Z

such that d is continuous and surjective and v is henselian with respect to d.
We want to define a cannonical homomorphism

rik t G(L/K) — Ax/Np/kAr
for every finite Galois extension L/K. To this end, we define
Frob(L/K) := {0 € G(L/K) | dg(o) € N}
Definition 5.3. The reciprocity map 1 : Frob(L/K) — A /Ni, Az is defined by
r(0) = Ns/r(ms) mod N Af
where ¥ is the fized field of o and s, is a prime element of As,.

It is a result that the map Frob(L/K) — G(L/K) is a surjection and hence we get

Proposition 5.4. For every finite Galois extension L/K, there is a cannoical homomor-
phism
rrk P G(L/K) — A /N Ar

given by
TL/K(O') = NE/K(WE) mod NL/KAL

This homomorphism is called the reciprocity homomorphism of L/ K.

The main theorem of abstract CFT then is that this map is an isomorphism if we restrict
it to the abelianization G(L/K)®.

Theorem 5.5. For every finite galois extension L/K, the reciprocity homomorphism
TL/K : G(L/K)ab — AK/NL/KAL

18 an isomorphism.

5.3 The Herbrand Quotient

One has to verify the class field axiom for the G-module A in order to apply the theorems of
abstract class field theory. An excellent tool for this is what is called the Herbrand Quotient.
Let G be a finite cyclic group of order n, let o be a generator, and A a G-module. We can
form the two groups H°(G, A) and H~ (G, A). The Herbrand Quotient of A is defined to be

_ #HY(G,A)
R

An important property of the Herbrand quotient is the multiplicativity.
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Proposition 5.6. If 1 — A — B — C' — 1 is an ezact sequence of G-modules, then
one has

h(G, B) = h(G, A)h(G, C)

Proof. Consider the exact hexagon

HY(G,A) — " HG, B)

Hﬁl(G, B) <f—4 Hﬁl(G,A)

Let n; be the size of the image of f;. By exactness, we get the following:

#HO(Ga A) = NgNy, #HO(G> B) = NN #HO(Ga O) = Nan3
#H’l(G,A) = N3Ny, #H (G, B) = nyns #H’l(G, C) = nsng
Therefore, h(G, A)h(G,C) = 1901 x 120 — W2 — j(G, B) O

This fact is used to show that the class field axiom holds in concrete situations such as
the following theorem.

6 Local CFT

We are now going to apply the abstract theory to the concrete situation of a local field k.
In this setting, we have G = Gal(k/k),A = k* and for a finite extension K/k, we have
Ag = K*. We describe the Tate-cohomology groups in this situation:

Theorem 6.1. For a cyclic extension of local fields L/ K, we have
#H(G(L/K),L*) =[L : K]

and
#Hil(G(L/K), L")=1

Proof. The Hilbert’s Theorem 90 gives the result for H~!. Let G = G(L | K). See [3] for
the proof that #H°(G(L/K),L*) = [L: K] O

Consider the maximal unramified extension k/k. We have the following isomorphisms:
Gal(k/k) = Gal(k/k) = Z. Therefore, we obtain a continuous surjective homomorphism
d : Gal(k/k) — Z. We take v : a — Z to be the usual normalized exponential valuation,
which is henselian with respect to d. Therefore the pair (d,v) is a class field theory. The
main theorem of abstract CFT (thm 3.4) applied to this gives the following:
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Theorem 6.2. For every finite Galois extension of local fields, we have a cannonical iso-
morphism
rri: G(L/K)™ — K*/Np i L*

The above theorem is called the local reciprocity law. Inverting rp x gives the "local

notm residue symbol”
(,L/K) = Gal(L/K)*

which is surjective with kernel Ny g L*.
The local reciprocity law gives a classification of the abelian extensions of a local field K.

Theorem 6.3. The rule L — Nk L* gives a 1-1 correspondence between the finite abelian
extensions of a local field K and the open subgroups N'= N,k L* of finite index in K*.
Moreover, the following hold:

Ly C Ly, <— NL2 CNL1

NL1L2 :NL1 ﬂNLQ

NleLQ - NLlNLZ

7 Global CFT

7.1 1Ideles and Idele classes

The role played by the multiplicative group of the base field in the local theory is played by
the idele class group in the global theory.

Let K be a number field. An adele of K is a family o = (o) of elements «,, € K, where p
runs through all primes of K, and «, is integral for all but finitely many p. The set of all
adeles form a ring, denoted by Ag. The idele group of K is defined as the unit group of A.
Therefore an idele is a family

o= (ap)
where a;, € K, where «,, is a unit in the ring O, of integers of K, for all but finitely many
p. The set of all ideles of K is denoted by Ik

Definition 7.1. The elements of the subgroup K* of I are called principal ideles and the
quotient group

Cx =1 /K"
15 called the idele class group of K.

7.2 Artin Reciprocity

We had the class field axiom in the local case satisfied by L*. In the global case, it is satisfied
by the idele class group Ck.

Theorem 7.2. If L | K is a cyclic extension of algebraic number fields, then

#H(G(L/K),C1) = [L : K], #H(G(L/K),Cp) =1
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We now state the central theorem of global class field theory, known as the Artin reci-
procity law:

Theorem 7.3. For every Galois extension L/ K of finite algebraic number fields, we have a
canonical isomorphism

TL|K : G(L/K)ab — OK/NL/KOL

As in the local theory, the reciprocity law provides a classification of all abelian extensions
of a number field K. In order to do this, it is important to view Cx as a topological group.
The topology on Ck is the natural one induced by valuations of all the completions K. The
“existence theorem” of global theory is the following:

Theorem 7.4. The map
L — NL = NL/KCL
is a 1-1 correspondence between the finite abelian extensions L/K and the closed subgroups
of finite index in Cx. Moreover, we have
Ly C Ly <— NL2 CNL1
Nr,p, =N, NN,
Niinz, = N, Ni,.
The field L/K corresponding to the subgroup N of Ck is called the class field of N'. It
satisfies
G(L/K) = Ck /N
Note that the above theorem classifies abelian extensions of a number field K purely in
terms of the arithmetic of K, namely the idele class group Ck.

Definition 7.5. The class field K™ /K for the congruence subgroup C7* is called the ray
class field mod m

The Galois group of the ray class field is canonically isomorphic to the ray class group
mod m,
GK™| K)=Cg/CR.
The closed subgroups of finite index in C are precisely those subgroups containing a con-
gruence subgroup C? and therefore we get the following result:

Proposition 7.6. Every finite abelian extension LK is contained in a ray class field K™ |
K.

We saw earlier in the note that the Kronecker-Weber theorem classified all abelian number
fields as subfields of cyclotomic fields. The above proposition is then a generalization of this
fact because ray class fields of Q are precisely the cyclotomic fields.
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