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1 Introduction

Class field theory is one of the most important achievements of Algebraic Number Theory
in the 20th century. It deals with the classification of abelian extensions of local and global
fields purely in terms of the arithmetic of the base field. The Kronecker-Weber theorem
accomplishes this over the rational numbers. It states that an abelian extension of the
rational numbers is always contained in a cyclotomic extension (field obtained by adjoining
a root of unity to the rationals).
Another important question that class field theory deals with is the decomposition of prime
ideals in abelian extensions. The quadratic reciprocity law of Gauss essentially describes
this in the case of quadratic extensions of the rationals. One of the central theorems of
global class field theory is the Artin reciprocity law, which generalizes many of the known
reciprocity laws including quadratic reciprocity.
In this note, we discuss the main results of class field theory without proofs and discuss
some examples leading up to it. We also briefly review pre-requisites such as basic algebraic
number theory. Our main reference is [3]. We have also used [1] and [2] for some concepts.

2 Review of ANT

For a number field K (i.e. a finite extension of Q), we denote by OK , the ring of algebraic
integers in K. It is known that OK forms a Dedekind domain, so that any ideal of OK

factors uniquely into a product of prime ideals. A fractional ideal of K is an OK submodule
I of K such that there exists a non-zero r ∈ OK with rI ⊂ OK . The set of all fractional
ideals of K forms a group IK under multiplication and the set of principal fractional ideals
PK forms a normal subgroup of IK . We can therefore form the quotient group CK called
the ideal class group of K. An important fact about the ideal class group is the following
theorem:

Theorem 2.1. The class group CK is finite for any number field K.

Even though the ideals of OK have unique factorization into prime ideals, the elements
of OK might not have unique factorization into prime elements. The ideal class group CK
being trivial amounts to say that OK is a Principal Ideal Domain (PID). A theorem about
Dedekind domains says that a Dedekind domain (DD) is a PID if and only if it is a Unique
Factorization Domain (UFD). The number ring OK is a DD and so, in some sense, CK mea-
sures the deviation of OK from being a UFD.

We say that an extension L/K is abelian if it is Galois and the galois group Gal(L/K) is
abelian. One of the earliest theorems in class field theory is the Kronecker-Weber theorem,
which describes all abelian extensions of Q. It can be stated as the following:

Theorem 2.2. Every abelian extension of the rational numbers is contained in a cyclotomic
extension.

A cyclotomic extension is an extension of the form Q(ζn) where ζn is an nth root of unity.
It is natural to seek generalizations of the theorem of Kronecker-Weber to an arbitrary
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number field K, instead of just Q. This is the main goal of class field theory and it says that
finite abelain extensions L of a number field K correspond to certain subgroups of something
known as the idele class group, whose factor groups are isomorphic to Gal(L/K).

3 Valuation Theory

3.1 Valuations

Let K be a field and x → |x| be a function from K to R.

Definition 3.1. The function |x| is called a valuation if

1. |x| > 0 except that |0| = 0,

2. |xy| = |x||y|,

3. |x+ y| ≤ |x|+ |y|

If a valuation also satisfies |x + y| ≤ max{|x|, |y|}, then it is called nonarchimedian.
Otherwise it is called an archimedian valuation. An important example is the following:

Example 1. Let R be a Dedekind ring with quotient field K and let P be a non-zero prime
ideal in R. For a non-zero element x ∈ R, let vP(x) denote the power to which P appears in
the factorization of (x). Let P also denote the maximal ideal in the discrete valuation ring
RP . We define vP on RP by defining vP(y) = −vP(y

−1) if y ∈ K \RP .
Let P = (π) in RP so that every non-zero element y in K can be expressed as y = uπn for
a unit u ∈ RP and some integer n. One can see that vP satisfies the following properties:

1. vP(y) is an integer for each non-zero y ∈ K,

2. vP(xy) = vP(x) + vP(y),

3. vP(x+ y) ≥ min{vP(x), vP(y)}.

A valuation satisfying the above three properties is called an exponential valuation on K.
Note that, for any real number c ∈ (0, 1),

|x| = cvP (x)

defines a valuation on K. This valuation is called the P-adic valuation on K.

Two valuations |x|, |x|1 are said to be equivalent if whenever |x| < 1 then also |x|1 < 1
for x ∈ K.

Definition 3.2. An equivalence class of valuations on a field K is called a place (or a prime)
of K.

A theorem due to Ostrowski states the following
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Theorem 3.3. Every non-trivial absolute value on the rational numbers Q is equivalent to
either the usual real absolute value or a p-adic absolute value for a prime p.

Thus, for the rational numbers, the places are in one-to-one correspondence with the
prime integers (if we call the eq. class of archimedian valuations the infinite prime of Q).
For a non-archimedian valuation v on K, the ring O = {x ∈ K | v(x) ≥ 0} is called its
valuation ring. We mention Hensel’s lemma below, and the valuations whose valuation ring
satisfies this lemma will play a crucial role in the theory later on.
Let K be a field which is complete with respect to a nonarchimedian valuation ||. Let O be
the corresponding valuation ring with maximal ideal π and residue class field κ = O/(π).

3.2 Hensel’s Lemma

An important result in valuation theory that talks about finding roots of polynomials is
Hensel’s lemma. Rings that satisfy this result will play a crucial role in class field theory.

Lemma 3.4. If a primitive polynomial f(x) ∈ O[x] admits modulo p a factorization

f(x) ≡ ḡ(x)h̄(x) mod p

into relatively prime polynomials ḡ, h̄ ∈ κ[x], then f(x) admits a factorization

f(x) = g(x)h(x)

into polynomials g, h ∈ O[x] such that deg(g) = deg(ḡ) and g(x) ≡ ḡ(x) mod p and h(x) ≡
h̄(x) mod p.

Example 2. Consider the polynomial xp−1 − 1 ∈ Zp[x], which splits over the residue field
Fp into distinct linear factors. By Hensel’s lemma we get that xp−1 − 1 actually splits into
linear factors over Zp. Therefore Qp, the field of p-adic numbers, contains all the p− 1 roots
of unity!

Definition 3.5. A henselian field is a field with a nonarchimedian valuation v whose val-
uation ring O satisfies Hensel’s lemma. The valuation v and the valuation ring O are also
called henselian.

4 Moduli and Ray Class Groups

4.1 Moduli

Definition 4.1. A modulus for K is a formal product

m =
∏
p

pn(p)

taken over all primes p of K in which n(p) is a non-negative integer and n(p) > 0 for only a
finite number of p. Furthermore, n(p) = 0 or 1 when p is a real infinite prime and n(p) = 0
when p is a complex infinite prime.
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We want to generalize the notion of congruence. Let p be a real prime of K, so that Kp

is isomorphic to the real field. Let x → xp be the imbedding of K into Kp. If α and β are
elements of K∗, we write

α ≡ β mod p

to mean αp and βp have the same sign.
If p is a finite prime and α and β are elements in K∗ with α = a

c
and β = b

d
. Then we write,

α ≡ β mod pn

if α
β
= ad

bc
∈ Rp and this element is congruent to 1 modulo pn.

We extend this to congruences modulo a modulus m naturally.

α ≡ β mod m

if
α ≡ β mod pn(p)

for all p appearing in m =
∏
p

pn(p).

We write m = m∞m0 to separate the finite and infinite primes appearing in m.

4.2 Ray Class Groups

The notion of ray class groups generalizes the idea of arithmetic progression in the rational
integers to algebraic integers. Let R be the ring of integers of the number field K.

Definition 4.2.

Km = {a
b
| a, b ∈ R, aR, bR relatively prime to m0}

Km,1 = {α ∈ Km | α ≡ 1 mod m}

The group Km,1 is called the ”ray mod m”. For a set of primes S, IS denotes the part of
the ideal class group CK generated by primes outside S. We denote by Im to mean IS where
S is the set of primes dividing m0. In particular, Im does not depend on the exponents
of primes dividing m. Let P∗

K,m denote the subgroup of PK (the group of principal ideals)
consisting of ideals ⟨α⟩ where α ≡ 1 mod m and σ(α) > 0 for every real embedding σ of K

(notation, α >> 0). The quotient CK,m =
IK,m

PK,m
is called the ray class group of K for m and

the quotient C∗
K,m =

IK,m

P∗
K,m

is called the strict (narrow) class group of K for m. If we take

K = Q and m = mZ, we get the strict class group to be the familiar Z/mZ.
A natural question is whether these class groups are finite just like the ordinary ideal class
groups of number fields. We answer this in the following proposition.

Proposition 4.3. C∗
K,m is a finite group. In fact,

#C∗
K,m =

hK2
r1φ(m)

[O∗
K : O∗

K,m]

where hK is the class number and φ(m) = #
(
OK/m

)∗
and r1 is the number of real embed-

dings of K.
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Proof. We just give the main ingredients of the proof. Let PK(m) be the set of principal
fractional ideals in IK(m). We have IK(m)/PK(m) ∼= IK/PK

∼= CK
Next thing to note is that PK(m)/P∗

K(m) ∼= K(m)/O∗
KK

∗
m where

K(m) = {α ∈ K∗ | ⟨α⟩ ∈ IK(m)}

and
K∗

m = {α ∈ K∗ | α >> 0, α ≡ 1 mod m}

Note that the map K(m) → {±1}r1
(
OK/m

)∗
given by,

α 7→ (sign(σ1(α), sign(σ2(α)), . . . , sign(σr1(α)))) ∗ (α +m)

is an epimorphism with kernel K∗
m

We then have,

#C∗
K,m = [IK(m) : P∗

K,m] = [IK(m) : PK,m][PK(m) : P∗
K,m]

= [IK(m) : PK,m][K(m) : K∗
m]/[O∗

KK
∗
m : K∗

m] =
hK2

r1φ(m)

[O∗
K : O∗

K,m]

Example 3. Consider the quadratic field K = Q(
√
3) and let m = OK. Let us compute

the size of the strict (narrow) class group C∗
K,m using the above proposition. In this case, we

have r1 = 2, hK = 1, and φ(m) = 1.
We only need to compute [O∗

K : O∗
K,m]. By Dirichlet’s unit theorem, we have,

O∗
K
∼= {±1} × Z

with a fundamental unit being 2 +
√
3. Since 2 +

√
3 >> 0 we get,

O∗
K,m = ⟨2 +

√
3⟩

Thus, we have [O∗
K : O∗

K,m] = 2 and

#C∗
K,m =

1 · 22 · 1
2

= 2

Example 4. Consider the imaginary quadratic field K = Q(i) and m = (3)n. In this case,
we have r1 = 0 and hK = 1. Let us compute φ(m) = #

(
Z[i]/3n

)∗
.

An element a+ ib of Z[i]/3n is invertible if and only if there is a solution to

(a+ ib)(c+ id) = 3n(e+ if) + 1

where c, d, e, f ∈ Z. Comparing real and imaginary parts and writing in matrix form gives[
a −b
a a

] [
c
d

]
=

[
3e + 1
3nf

]
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This has a solution if and only if the determinant a2 + b2 is invertible in Z/3n. Checking
for remainders of squares modulo 3, we get that the condition is satisfied if and only if a
or b is not divisible by 3. So we get 9n − (3n−1)2 many elements in

(
Z[i]/3n

)∗
. Therefore,

φ(m) = 8 · 9n−1

Again by Dirichlet’s unit theorem (or just by direct computation), the units of Z[i] are just
±1,±i and the only element >> 0 among them is 1. Therefore by the previous proposition,
the size of the ray class group is

#C∗
K,m =

1 · 20 · (8 · 9n−1)

4
= 2 · 9n−1
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5 Abstract CFT

5.1 Tate cohomology groups

Let G be a finite group and A be a G-module. We have the following natural map:

N : H0(G,A) −→ H0(G,A)

defined as N(a) =
∑
g∈G

ga.

The Tate-cohomology groups H̃n(G,A) are defined as follows:

• H̃n(G,A) = Hn(G,A) for n ≥ 1

• H̃0(G,A) = coker(N)

• H̃−1(G,A) = ker(N)

• H̃n(G,A) = H−n−1(G,A) for n ≤ −2

From now on, we use Tate-cohomology groups with notation H i instead of H̃ i. Let A
be a continuous multiplicative G-module, where G is the Galois group G(k̄/k). By this we
mean a multiplicative abelian group A on which the elements σ ∈ G act as automorphisms
on the right, σ : A → A, a 7→ aσ. It must satisfy the following properties:

• a1 = a

• (ab)σ = aσbσ

• aστ = (aσ)τ

• A =
⋃

[K:k]<∞
AK

where AK := {a ∈ A | aσ = a, ∀σ ∈ GK}. An important condition on the continuous
G-module A is the following:
For every cyclic extension L/K, the conditions #H0(G(L/K), AL) = [L : K] and #H−1(G(L/K), AL) =
1 are satisfied. This condition on A is called the class field axiom.
We mention Hilbert theorem 90 since it will be used later in the note.

Theorem 5.1. For a cyclic field extension L | K, one has

H−1(G(L/K), L∗) = 1

In words, this means an element α ∈ L∗ of norm 1 is of the form α = βσ−1 where β ∈ L∗ is
some element and σ is a generator of G(L/K)

Definition 5.2. A class field theory is a pair of homomorphisms (d : G → Z̃, v : A →
Z̃), where A is a G-module satisfying the class field axiom, d is a continuous, surjective
homomorphism, and v is a henselian valuation.
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5.2 The Reciprocity Map

Consider the profinite group G = G(k̄/k), a continuous G-module A, and a pair of homo-
morphisms

d : G → Ẑ, v : Ak → Ẑ

such that d is continuous and surjective and v is henselian with respect to d.
We want to define a cannonical homomorphism

rL/K : G(L/K) −→ AK/NL/KAL

for every finite Galois extension L/K. To this end, we define

Frob(L̃/K) := {σ ∈ G(L̃/K) | dK(σ) ∈ N}

Definition 5.3. The reciprocity map rL̃/K : Frob(L̃/K) → AK/NL̃/KAL̃ is defined by

r(σ) = NΣ/K(πΣ) mod NL̃/KAL̃

where Σ is the fixed field of σ and πΣ is a prime element of AΣ.

It is a result that the map Frob(L̃/K) → G(L/K) is a surjection and hence we get

Proposition 5.4. For every finite Galois extension L/K, there is a cannoical homomor-
phism

rL/K : G(L/K) −→ AK/NL/KAL

given by
rL/K(σ) = NΣ/K(πΣ) mod NL/KAL

This homomorphism is called the reciprocity homomorphism of L/K.

The main theorem of abstract CFT then is that this map is an isomorphism if we restrict
it to the abelianization G(L/K)ab.

Theorem 5.5. For every finite galois extension L/K, the reciprocity homomorphism

rL/K : G(L/K)ab −→ AK/NL/KAL

is an isomorphism.

5.3 The Herbrand Quotient

One has to verify the class field axiom for the G-module A in order to apply the theorems of
abstract class field theory. An excellent tool for this is what is called the Herbrand Quotient.
Let G be a finite cyclic group of order n, let σ be a generator, and A a G-module. We can
form the two groups H0(G,A) and H−1(G,A). The Herbrand Quotient of A is defined to be

h(G,A) =
#H0(G,A)

#H−1(G,A)

An important property of the Herbrand quotient is the multiplicativity.
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Proposition 5.6. If 1 −→ A −→ B −→ C −→ 1 is an exact sequence of G-modules, then
one has

h(G,B) = h(G,A)h(G,C)

Proof. Consider the exact hexagon

H0(G,A) H0(G,B)

H−1(G,C) H0(G,C)

H−1(G,B) H−1(G,A)

f1

f2f6

f3f5

f4

(1)

Let ni be the size of the image of fi. By exactness, we get the following:

#H0(G,A) = n6n1, #H0(G,B) = n1n2 #H0(G,C) = n2n3

#H−1(G,A) = n3n4, #H−1(G,B) = n4n5 #H−1(G,C) = n5n6

Therefore, h(G,A)h(G,C) = n6n1

n3n4
× n2n3

n5n6
= n1n2

n4n5
= h(G,B)

This fact is used to show that the class field axiom holds in concrete situations such as
the following theorem.

6 Local CFT

We are now going to apply the abstract theory to the concrete situation of a local field k.
In this setting, we have G = Gal(k̄/k), A = k̄∗ and for a finite extension K/k, we have
AK = K∗. We describe the Tate-cohomology groups in this situation:

Theorem 6.1. For a cyclic extension of local fields L/K, we have

#H0(G(L/K), L∗) = [L : K]

and
#H−1(G(L/K), L∗) = 1

Proof. The Hilbert’s Theorem 90 gives the result for H−1. Let G = G(L | K). See [3] for
the proof that #H0(G(L/K), L∗) = [L : K]

Consider the maximal unramified extension k̃/k. We have the following isomorphisms:
Gal(k̃/k) ∼= Gal(κ̃/κ) ∼= Z̃. Therefore, we obtain a continuous surjective homomorphism
d : Gal(k̄/k) → Z̃. We take v : a → Z̃ to be the usual normalized exponential valuation,
which is henselian with respect to d. Therefore the pair (d, v) is a class field theory. The
main theorem of abstract CFT (thm 3.4) applied to this gives the following:
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Theorem 6.2. For every finite Galois extension of local fields, we have a cannonical iso-
morphism

rL/K : G(L/K)ab −→ K∗/NL/KL
∗

The above theorem is called the local reciprocity law. Inverting rL/K gives the ”local
notm residue symbol”

(., L/K) → Gal(L/K)ab

which is surjective with kernel NL/KL
∗.

The local reciprocity law gives a classification of the abelian extensions of a local field K.

Theorem 6.3. The rule L 7→ NL/KL
∗ gives a 1-1 correspondence between the finite abelian

extensions of a local field K and the open subgroups N = NL/KL
∗ of finite index in K∗.

Moreover, the following hold:
L1 ⊂ L2 ⇐⇒ NL2 ⊂ NL1

NL1L2 = NL1 ∩NL2

NL1∩L2 = NL1NL2

7 Global CFT

7.1 Ideles and Idele classes

The role played by the multiplicative group of the base field in the local theory is played by
the idele class group in the global theory.
Let K be a number field. An adele of K is a family α = (αp) of elements αp ∈ Kp where p
runs through all primes of K, and αp is integral for all but finitely many p. The set of all
adeles form a ring, denoted by AK . The idele group of K is defined as the unit group of AK .
Therefore an idele is a family

α = (αp)

where αp ∈ K∗
p where αp is a unit in the ring Op of integers of Kp, for all but finitely many

p. The set of all ideles of K is denoted by IK

Definition 7.1. The elements of the subgroup K∗ of IK are called principal ideles and the
quotient group

CK = IK/K
∗

is called the idele class group of K.

7.2 Artin Reciprocity

We had the class field axiom in the local case satisfied by L∗. In the global case, it is satisfied
by the idele class group CK .

Theorem 7.2. If L | K is a cyclic extension of algebraic number fields, then

#H0(G(L/K), CL) = [L : k], #H−1(G(L/K), CL) = 1
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We now state the central theorem of global class field theory, known as the Artin reci-
procity law:

Theorem 7.3. For every Galois extension L/K of finite algebraic number fields, we have a
canonical isomorphism

rL|K : G(L/K)ab → CK/NL/KCL

As in the local theory, the reciprocity law provides a classification of all abelian extensions
of a number field K. In order to do this, it is important to view CK as a topological group.
The topology on CK is the natural one induced by valuations of all the completions Kp. The
“existence theorem” of global theory is the following:

Theorem 7.4. The map
L 7→ NL = NL/KCL

is a 1-1 correspondence between the finite abelian extensions L/K and the closed subgroups
of finite index in CK. Moreover, we have
L1 ⊂ L2 ⇐⇒ NL2 ⊂ NL1

NL1L2 = NL1 ∩NL2

NL1∩L2 = NL1NL2.
The field L/K corresponding to the subgroup N of CK is called the class field of N . It
satisfies

G(L/K) ∼= CK/N
Note that the above theorem classifies abelian extensions of a number field K purely in

terms of the arithmetic of K, namely the idele class group CK .

Definition 7.5. The class field Km/K for the congruence subgroup Cm
K is called the ray

class field mod m

The Galois group of the ray class field is canonically isomorphic to the ray class group
mod m,

G(Km | K) ∼= CK/C
m
K .

The closed subgroups of finite index in CK are precisely those subgroups containing a con-
gruence subgroup Cm

K and therefore we get the following result:

Proposition 7.6. Every finite abelian extension L/K is contained in a ray class field Km |
K.

We saw earlier in the note that the Kronecker-Weber theorem classified all abelian number
fields as subfields of cyclotomic fields. The above proposition is then a generalization of this
fact because ray class fields of Q are precisely the cyclotomic fields.
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