
The étale fundamental group
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The goal of these notes is to motivate and formulate the notion of the étale fundamental
group, which is the algebraic analogue of the usual fundamental group of a topologiacal
space. We will see some examples of the étale fundamental group and develop the necessary
background to state the Grothendieck-Riemann existence theorem [1], which relates the étale
fundamental group to the usual fundamental group for varieties over the complex numbers.
We have mainly referred to [3] for these notes. We have also used [2] and [4] for some
concepts. Special thanks to Eugene Eyeson for useful conversations and his personal notes
on the topic.
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1 Motivation

Let k be a field. In algebraic geometry, the space kn is given the Zariski topology, where
the algebraic sets are declared to be the closed sets. It makes sense, then, to talk about the
fundamental group, among other algebraic invariants, of an algebraic variety with respect
to this topology. But the following theorem says that this does not produce interesting
invariants in general.

Theorem 1.1. Let X be an uncountable set with the cofinite topology. Then X is con-
tractible.

If X is an algebraic curve over an uncountable field like C, then the Zariski topology on
X matches with the cofinite topology (a polynomial in one variable has only finitely many
roots). The above theorem then implies that the fundamental group of X at any base point
is 0. Therefore, the fundamental group cannot distinguish between algebraic curves over C.
The problem with the Zariski topology is that it is too coarse to have good algebraic invari-
ants. We want to think about a purely algebraic analogue of the fundamental group. In
order to do this, we first reinterpret the usual notion of the fundamental group in terms of
covering spaces.

2 Fundamental groups and covering spaces

Let (X, x) be a path-connected, locally path-connected and locally simply-connected pointed
topological space. Under these assumptions, the universal cover X̃ exists. Let CX denote
the category of covering spaces π : (Y, y) → (X, x), where Y has finitely many connected
components and let Cfin

X denote the category of covering spaces whose fibers are finite.
The universal cover of (X, x) need not exist in Cfin

X . For example, look at X = C \ {0} with

any base point. For each n ≥ 1, we have the nth-power map X
n−→ X, which is an n-cover of

X. Hence, the universal cover of X does not exist in Cfin
X in this case.

Given a cover π : (Y, y) → (X, x), a deck transformation is a homeomorphism ρ : Y → Y
such that the following diagram commutes

Y

Y X

πρ

π

Also, we have the fiber functor

Fx : CX → Sets

which maps a cover π : (Y, y) → (X, x) to π−1(x).

We have the following theorem (see [3])

Theorem 2.1. The following groups are isomorphic
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• The group of homotopy classes of loops in X based at x.

• The group of deck transformations of the universal cover X̃.

• The automorphism group of the fiber functor Fx.

To recall, the automorphism group of a functor F is the set of all natural isomorphisms
F → F , with the group operation of composition. The (topological) fundamental group
π1(X, x) is defined to be any one (hence all) of the above three groups.

2.1 The profinite fundamental group

We can restrict our attention to Cfin
X and consider the restriction of the fiber functor F to

Cfin
X to get the functor F̃ : Cfin

X → Sets. Again, the universal cover need not exist in Cfin
X and

so if we take the automorphism group of F̃ , we get what is called the profinite fundamental
group π̃1(X, x).

Remark 2.1. The profinite fundamental group gets its name for a good reason: if G is a
subgroup of π1(X, x) of finite index, then the Galois correspondence associates to G a finite
pointed covering space Y → X. If G is a normal subgroup, then the group of pointed automor-
phisms of Y over X is just π1(X, x)/G, and there is a canonical map π1(X, x) → π1(X, x)/G.
Taking the inverse limit over all normal subgroups G of finite index defines the profinite
completion of π1(X, x). The resulting group is isomorphic to the profinite fundamental group
π̃1(X, x).

In order to define the fundamental group in the algebraic setting, we want to mimic one
of the three definitions in theorem 2.1. As we know, loops do not make much sense in the
Zariski topology and so we would like to have an algebraic analogue of covers. To this end,
we define étale morphisms and étale covers, and define the étale fundamental group in terms
of these objects. The étale fundamental group will then classify all the étale covers similar
to how the fundamental group classifies all the covers.

3 Étale morphisms and étale covers

We define étale maps between schemes, but one could assume them to be just varieties for
simplicity. First, we define a morphism of schemes f : X → Y to be flat if the induced map
on each stalk is flat (as a ring map). That is,

fx : OY,f(x) → OX,x

is flat. An important property of a flat morphism is that it is always open.
The next ingredient to define an étale map is the notion of an unramified morphism. Recall
that a map of local rings ϕ : R → S is called unramified if

ϕ(mR)S = mS,

and k(S) is a separable extension of k(R). We upgrade this definition to schemes as
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Definition 3.1. A morphism ϕ : X → Y of schemes is called unramified if it is locally of
finite type and for all x ∈ X the induced map on local rings

ϕ#
X : OY,f(x) → OX,x

is unramified.

We say that f : X → Y is locally of finite type if for all x ∈ X there exists an affine open
neighbourhood Spec(A) = U ⊂ X of x and an affine open Spec(R) = V ⊂ S with f(U) ⊂ V
such that the induced ring map R → A is of finite type.

There are other equivalent ways to define an unramified morphism, one of which is

Definition 3.2. A morphism f : X → Y is unramified at x ∈ X if and only if the module
of Kälher differentials ΩX/Y,x = 0.

Example 3.1. Let L/K be an extension of number fields with ring of integers OL and OK.
We have the inclusion map i : OK → OL. Let p be a prime ideal of OK and q be a prime ideal
of OL. We have the residue field extension OK/p → OL/q, which is finite and separable.
Therefore, the inclusion map i is unramified if and only if

pOL,q = q

This is equivalent to the condition that the ramification index of p in L is 1. Therefore, the
definition of an unramified morphism between schemes generalizes the notion coming from
algebraic number theory.

We are now ready to define an étale morphism of schemes.

Definition 3.3. A morphism of schemes f : X → Y is said to be étale if it is flat and
unramified.

A finite étale cover is an étale morphism that is finite. The category of finite étale covers
of X is denoted by FEtX . Let X be a scheme with a choice of a geometric point x ∈ X,
i.e., a choice of a morphism x : Spec(k̄) → X. An important fact about an étale cover Y of
X is that the pullback x∗Y is finite and the cardinality does not depend on the choice of x.
Therefore, the notion of a finite étale cover is a good generalization of the notion of a finite
covering.
In particular, if Fx : FEtX → Sets is the fiber functor sending (p : Y → X) to p−1(x), then

as a set, p−1(x) =
n∐

i=1

Spec(k̄) for some n ∈ N.

4 The étale fundamental group

Let X be a connected, locally noetherian scheme with a choice of a geometric point x ∈ X.
Consider the fiber functor Fx : FEtX → Sets.

Definition 4.1. The étale fundamental group πet
1 (X, x) of X is the automorphism group of

the fiber functor Fx.
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For a connected scheme X with a geometric point x, as (Y, y) varies over pointed con-
nected finite Galois étale covers of (X, x), the Galois groups Gal(Y/X) form an inverse
system whose inverse limit is πet

1 (X, x), and so we get that πet
1 (X, x) is a profinite group.

Example 4.1. Let X = Spec(k), and let x ∈ X be a geometric point (represents an algebraic
closure of k). Every finite étale cover X is a disjoint union of the spectra of finite separa-
ble extensions of k. Every separable Galois extension corresponds to a normal subgroup of
Gal(ksep/k) and hence πet

1 (X, x) will be the inverse limit of these Galois groups and hence
πet
1 (X, x) ≃ Gal(ksep/k).

For example, the étale fundamental group of Q is the absolute Galois group of Q.

4.1 Varieties over the complex numbers

Let X be a C-variety. The C points X(C) is a topological space. Let Cfin
X(C) denote the

category of finite covers of X(C). The Grothendieck-Riemann existence theorem says the
following (see [3])

Theorem 4.2. For each C-variety X, the natural functor (the C-points functor)

FEtX → Cfin
X(C)

is an equivalence of categories.

From the earlier discussion of the profinite fundamental group, we get the following
corollary,

Corollary 4.1. For a variety X over C, we have the following isomorphism of profinite
groups

πet
1 (X, x) ≃ π̃1(X(C), x)

Let us see some consequences of this corollary as examples

Example 4.2. Let X = A1 over C. We have

πet
1 (X, x) ≃ π̃1(X(C), x) = π̃1(C, x) = 0

since C has no non-trivial finite covers.

Example 4.3. Let X = P1 over C with a choice of a basepoint x ∈ P1. We have P1(C) ≃ S2

and therefore
πet
1 (X, x) ≃ π̃1(X(C), x) = π̃1(S

2, x) = 0

Remark 4.1. We end with the remark that the étale fundamental group of P1 over any
algebraically closed field is still 0. This can be proved by using the Riemann-Hurwitz formula,
which relates the Euler characteristic of a cover of X with the Euler charactersitic of X. In
our case, suppose f : C → P1 is a connected finite étale cover of P1 of degree n, where C is
a genus g curve. Since f is unramified, the ramification divisor is 0. The Riemann-Hurwitz
formula then gives

2g − 2 = n(2g(P1)− 2) = −2n

This happens if only if g = 0 and n = 1, which means C = P1. Therefore, we get

πet
1 (P1, x) = 0
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