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Fermat’s Last Theorem

Fermat’s last theorem states that there are no integers a, b and c
satisfying an + bn = cn with abc ̸= 0 and n > 2.

In order to prove this theorem, it is enough to the case when the
exponent n is a prime.

Theorem (FLT)
If p ≥ 5 is prime, and a, b, c ∈ Z, then

ap + bp + cp = 0 =⇒ abc = 0
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Fermat’s Last Theorem

Suppose (ap, bp, cp) is a hypothetical solution to Fermat’s
equation with abc ̸= 0.
Not all of a, b, c can be odd, so we suppose b is even. The
integers a and c have to be odd and hence ±1 (mod 4). Both
cannot be −1 (mod 4) since that would mean bp ≡ 2 (mod 4),
contradicting p ≥ 5.
Therefore, we may assume without losing generality that
a ≡ −1 (mod 4) and 2 | b.
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Fermat’s Last Theorem

To derive a contradiction, the idea is to transform the
remarkable triple (ap, bp, cp) into a remarkable elliptic curve E,
so remarkable that it doesn’t exist.

The way we show this is by associating to E, a modular form f
whose associated Galois representation has strange properties.
This would prove that such an f cannot exist.
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A Remarkable Elliptic Curve

Let p ≥ 5 be prime and let a, b, c be coprime integers satisfying
abc ̸= 0, a ≡ −1 (mod 4), 2 | b, and ap + bp + cp = 0. Gerhard
Frey considered the following elliptic curve:

Eap,bp,cp : y2 = x(x− ap)(x+ bp)

Proposition
The elliptic curve Eap,bp,cp is semistable whose minimal
discriminant and conductor are given by the formulas

∆ap,bp,cp = 2−8 · (abc)2p, and
Nap,bp,cp =

∏
l|abc

l
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Galois Representations

The absolute Galois group of Q defined as GQ := Gal(Q̄/Q) can
be endowed with a topology in which a basis of neighborhoods
of the origin is given by the collection of subgroups H ⊂ GQ of
finite index. This makes GQ a compact topological group.

A two dimensional Galois representation over a topological
(local) ring A is defined as a continuous group homomorphism

ρ : GQ −→ GL2(A)

The residual representation ρ̄ : GQ −→ GL2(k) is obtained
by composing ρ with the restriction map GL2(A) −→ GL2(k)
where k is the residue field of A.
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Galois Representations

The local Galois group GQl
at a prime l is a subgroup of GQ if

we fix an embedding of Q̄ into Q̄l.
The kernel of the natural map GQl

−→ Gal(F̄l/Fl) is called the
inertia group Il at l
We say that a Galois representation ρ is unramified at l if
Il ⊂ kerρ|GQl
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Tate Module

For an elliptic curve E over Q, we have the Tate module defined
as

Tp(E) := lim
←−

E[pn] ∼= Z2
p

The group GQ acts on Tp(E) and we obtain the p-adic Galois
representation

ρE,p : GQ −→ GL2(Zp)

associated to E.

The residual representation ρ̄E,p : GQ −→ GL2(Fp) describes the
action of GQ on E[p] ∼= F2

p.
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A Remarkable Galois Representation

Gerhard Frey and Jean-Pierre Serre noted that the residual
representation ρ̄E,p coming from the Tate module of the Frey
curve E has some remarkable local properties.

Theorem
The following is true for the Frey curve E:

ρ̄E,p is absolutely irreducible
ρ̄E,p is odd
ρ̄E,p is unramified outside 2p, flat at p, and semistable at 2.
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Modularity of Elliptic Curves
A modular form is a holomorphic function on the upper-half
plane satisfying certain symmetry relations and growth
conditions.

The theory of Eichler and Shimura associates to a modular form
an odd two dimensional Galois representation.
A crucial step in the proof of FLT is the following theorem due
to Ribet

Theorem (Ribet)

Let f be a weight two newform of level Nl where l ∤ N is a
prime. Suppose ρ̄f is absolutely irreducible and that one of the
following is true:

ρ̄f is unramified at l; or
l = p and ρ̄f is flat at p.

Then there is a weight two newform g of level N such that
ρ̄f ∼= ρ̄g.

Abhiram Kumar Elliptic curves and Fermat’s last theorem



Modularity of Elliptic Curves
A modular form is a holomorphic function on the upper-half
plane satisfying certain symmetry relations and growth
conditions.
The theory of Eichler and Shimura associates to a modular form
an odd two dimensional Galois representation.

A crucial step in the proof of FLT is the following theorem due
to Ribet

Theorem (Ribet)

Let f be a weight two newform of level Nl where l ∤ N is a
prime. Suppose ρ̄f is absolutely irreducible and that one of the
following is true:

ρ̄f is unramified at l; or
l = p and ρ̄f is flat at p.

Then there is a weight two newform g of level N such that
ρ̄f ∼= ρ̄g.

Abhiram Kumar Elliptic curves and Fermat’s last theorem



Modularity of Elliptic Curves
A modular form is a holomorphic function on the upper-half
plane satisfying certain symmetry relations and growth
conditions.
The theory of Eichler and Shimura associates to a modular form
an odd two dimensional Galois representation.
A crucial step in the proof of FLT is the following theorem due
to Ribet

Theorem (Ribet)

Let f be a weight two newform of level Nl where l ∤ N is a
prime. Suppose ρ̄f is absolutely irreducible and that one of the
following is true:

ρ̄f is unramified at l; or
l = p and ρ̄f is flat at p.

Then there is a weight two newform g of level N such that
ρ̄f ∼= ρ̄g.

Abhiram Kumar Elliptic curves and Fermat’s last theorem



Modularity of Elliptic Curves

A Galois representation is called modular if it "comes from" a
modular form.
An Elliptic curve E over Q is called modular if ρE,p is modular
for all primes p.

Theorem (Wiles)
Every semistable elliptic curve over Q is modular.
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FLT proof overview

Consider the semistable Frey curve E = Eap,bp,cp with conductor
N = Nap,bp,cp . By Wiles’s modularity theorem, we know that
ρE,p is modular and there is a modular form f (which will be a
weight two newform of level N) such that ρf ∼= ρE,p.

But ρ̄E,p is absolutely irreducible and unramified outside 2p and
flat at p. Ribet’s theorem then implies that there is a weight
two newform g of level 2 such that ρ̄g ∼= ρ̄E,p.
The dimension of the space of such modular forms can be
computed easily and it turns out to be 0.
Therefore such a g cannot exist, which by Ribet’s theorem
means that such an f cannot exist, which by Wiles’s modularity
theorem means that the Frey curve cannot exist, which means
that Fermat’s last theorem is indeed true.
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