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Fermat’s Last Theorem

Fermat’s last theorem states that there are no integers a, b and c
satisfying a™ 4 b = ¢" with abc # 0 and n > 2.
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Fermat’s Last Theorem

Fermat’s last theorem states that there are no integers a, b and c
satisfying a™ 4 b = ¢" with abc # 0 and n > 2.

In order to prove this theorem, it is enough to the case when the
exponent n is a prime.

If p > 5 is prime, and a,b,c € Z, then

A+ +P =0 = abc=0

Abhiram Kumar Elliptic curves and Fermat’s last theorem



Fermat’s Last Theorem

Suppose (aP, b, cP) is a hypothetical solution to Fermat’s
equation with abc # 0.

Not all of a, b, c can be odd, so we suppose b is even. The
integers a and ¢ have to be odd and hence +1 (mod 4). Both
cannot be —1 (mod 4) since that would mean b =2 (mod 4),
contradicting p > 5.

Therefore, we may assume without losing generality that
a=—1 (mod 4) and 2 | b.
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Fermat’s Last Theorem

To derive a contradiction, the idea is to transform the
remarkable triple (a?, b, cP) into a remarkable elliptic curve E,
so remarkable that it doesn’t exist.
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Fermat’s Last Theorem

To derive a contradiction, the idea is to transform the
remarkable triple (a?, b, cP) into a remarkable elliptic curve E,
so remarkable that it doesn’t exist.

The way we show this is by associating to F, a modular form f
whose associated Galois representation has strange properties.
This would prove that such an f cannot exist.
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A Remarkable Elliptic Curve

Let p > 5 be prime and let a, b, ¢ be coprime integers satisfying
abc # 0, a=—1 (mod 4), 2| b, and a? + b + ? = 0. Gerhard
Frey considered the following elliptic curve:

Barpwor : 4 = a(@ — a?) (@ + 17)
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A Remarkable Elliptic Curve

Let p > 5 be prime and let a, b, ¢ be coprime integers satisfying
abc # 0, a=—1 (mod 4), 2| b, and a? + b + ? = 0. Gerhard
Frey considered the following elliptic curve:

Barpwor : 4 = a(@ — a?) (@ + 17)

Proposition

The elliptic curve Egp o o0 15 semistable whose minimal
discriminant and conductor are given by the formulas

o Aprpwor =272 (abc)??, and

® Noppeer = [ 1
l|abe
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Galois Representations

The absolute Galois group of Q defined as Gg := Gal(Q/Q) can
be endowed with a topology in which a basis of neighborhoods
of the origin is given by the collection of subgroups H C Gg of
finite index. This makes Gg a compact topological group.
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Galois Representations

The absolute Galois group of Q defined as Gg := Gal(Q/Q) can
be endowed with a topology in which a basis of neighborhoods
of the origin is given by the collection of subgroups H C Gg of
finite index. This makes Gg a compact topological group.

A two dimensional Galois representation over a topological
(local) ring A is defined as a continuous group homomorphism

The residual representation p : Gg — GLa(k) is obtained
by composing p with the restriction map GLa(A) — GLa(k)
where k£ is the residue field of A.
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Galois Representations

The local Galois group G, at a prime [ is a subgroup of G if
we fix an embedding of Q into Q.

The kernel of the natural map Gg, — Gal(FF;/F;) is called the
inertia group [; at [

We say that a Galois representation p is unramified at [ if

I; C kerp, G,
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Tate Module

For an elliptic curve E over QQ, we have the Tate module defined
as
T,(E) := lim E[p"] = v/

The group Ggq acts on T},(E) and we obtain the p-adic Galois
representation
PEp : GQ — GLQ(ZP)

associated to E.
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Tate Module

For an elliptic curve E over QQ, we have the Tate module defined
as
T,(E) := lim E[p"] = v/

The group Ggq acts on T},(E) and we obtain the p-adic Galois
representation
PEp : GQ — GLQ(ZP)

associated to E.
The residual representation pg ), : Gg — GL2(F,) describes the
action of Gg on E[p] = F.
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A Remarkable Galois Representation

Gerhard Frey and Jean-Pierre Serre noted that the residual
representation pg, coming from the Tate module of the Frey
curve E has some remarkable local properties.

The following is true for the Frey curve E:

® pp,p is absolutely irreducible
® pEp 15 odd
® pgp 15 unramified outside 2p, flat at p, and semistable at 2.
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Modularity of Elliptic Curves

A modular form is a holomorphic function on the upper-half
plane satisfying certain symmetry relations and growth
conditions.
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Modularity of Elliptic Curves

A modular form is a holomorphic function on the upper-half
plane satisfying certain symmetry relations and growth
conditions.

The theory of Eichler and Shimura associates to a modular form
an odd two dimensional Galois representation.
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Modularity of Elliptic Curves

A modular form is a holomorphic function on the upper-half
plane satisfying certain symmetry relations and growth
conditions.

The theory of Eichler and Shimura associates to a modular form
an odd two dimensional Galois representation.

A crucial step in the proof of FLT is the following theorem due
to Ribet

Let f be a weight two newform of level NI where [t N is a
prime. Suppose py is absolutely irreducible and that one of the
following is true:

e py is unramified at l; or

e | =p and py is flat at p.
Then there is a weight two newform g of level N such that
pf = pg-
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Modularity of Elliptic Curves

A Galois representation is called modular if it "comes from" a
modular form.

An Elliptic curve E over Q is called modular if pg , is modular
for all primes p.
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Modularity of Elliptic Curves

A Galois representation is called modular if it "comes from" a
modular form.

An Elliptic curve E over Q is called modular if pg , is modular
for all primes p.

Every semistable elliptic curve over Q is modular.
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FLT proof overview

Consider the semistable Frey curve E = Egp v o» With conductor
N = Ngp pp cr. By Wiles’s modularity theorem, we know that
pE,p is modular and there is a modular form f (which will be a
weight two newform of level V) such that pr = pg .
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FLT proof overview

Consider the semistable Frey curve E = Egp v o» With conductor
N = Ngp pp cr. By Wiles’s modularity theorem, we know that
pE,p is modular and there is a modular form f (which will be a
weight two newform of level V) such that pr = pg .

But pg p is absolutely irreducible and unramified outside 2p and
flat at p. Ribet’s theorem then implies that there is a weight
two newform g of level 2 such that p; = pg ).
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FLT proof overview

Consider the semistable Frey curve E = Egp v o» With conductor
N = Ngp pp cr. By Wiles’s modularity theorem, we know that
pE,p is modular and there is a modular form f (which will be a
weight two newform of level V) such that pr = pg .

But pg p is absolutely irreducible and unramified outside 2p and
flat at p. Ribet’s theorem then implies that there is a weight
two newform g of level 2 such that p; = pg ).

The dimension of the space of such modular forms can be
computed easily and it turns out to be 0.
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FLT proof overview

Consider the semistable Frey curve E = Egp v o» With conductor
N = Ngp pp cr. By Wiles’s modularity theorem, we know that
pE,p is modular and there is a modular form f (which will be a
weight two newform of level V) such that pr = pg .

But pg p is absolutely irreducible and unramified outside 2p and
flat at p. Ribet’s theorem then implies that there is a weight
two newform g of level 2 such that p; = pg ).

The dimension of the space of such modular forms can be
computed easily and it turns out to be 0.

Therefore such a g cannot exist, which by Ribet’s theorem
means that such an f cannot exist, which by Wiles’s modularity
theorem means that the Frey curve cannot exist, which means
that Fermat’s last theorem is indeed true.
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