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Fixed Point Theorems

We have seen in the course that algebraic topology is capable of
deriving fixed point theorems

Theorem (Brouwer)
Any continuous map

f : D2 → D2

has a fixed point.

Natural to ask for generalizations
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Lefschetz FPT

Does Brouwer’s theorem hold for spaces other than D2?

If so, can we count the exact number of fixed points?

Yes and yes

Theorem (Lefschetz)
Let X be a finite simplicial complex and f : X → X be a
continuous map. Define the Lefschetz number of f by

Λf =
∑
i≥0

(−1)itr(f∗|Hi(X,Q))

If Λf ̸= 0 then f has a fixed point.

In fact, if we work with H∗ instead of H∗, then Λf is the
intersection number of ∆ and Γf in X ×X.
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Lefschetz applications

Lefschetz =⇒ Brouwer

Let f : D2 → D2 be a continuous map
Only the 0th homology of D2 is non-zero (isomorphic to Z)

The induced map on 0th homology has non-zero trace and
therefore by Lefschetz FPT, f has a fixed point
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Lefschetz applications

The Euler characteristic of a manifold M is defined as

χ(M) =
∑
i≥0

(−1)idim(Hi(M))

This is the same as the Lefschetz number of the identity map on
M (or anything homotopic to the identity map)

Example (and application)
The Euler characteristic of a connected compact Lie group G is
0. To see this, let 1 ̸= g ∈ G and let mg be the multiplication on
the left by g map on G. Since G is path-connected, mg is
homotopic to identity. But clearly mg has no fixed points and
therefore the Euler characteristic is 0.
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Algebraic analogue?

An algebraic variety over a field k is the zero set of a collection
of polynomials with coefficients in k

F (X,Y ) = Y −X2 ∈ R[X,Y ] defines a parabola in R2

More generally, given an ideal I of k[x1, . . . , xn]
V (I) = {p ∈ kn | f(p) = 0, ∀f ∈ I}

Why study them?

They are of interest in number theory (among many other
fields). For instance, the points over Q of X2 + Y 2 − 1 give
Pythagorean triples.
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Varieties over Fp and the Frobenius map

Let V be a variety defined over a finite field Fp and let V̄ be the
base change of V to an algebraic closure F̄p of Fp

The Frobenius map Frp is an endomorphism of V̄ , which maps
a point with co-ordinates (x1, . . . , xn) to (xp1, . . . , x

p
n)

We have xp = x if and only if x ∈ Fp and therefore, the
Fp-points of V are precisely the fixed points of Frp. Denote this
set by V (Fp)

We are interested in counting #V (Fp) = #Fix(Frp)
We will be able to do this if we have an analogue of the Lefschetz
fixed point theorem in the setting of varieties over finite fields
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New cohomology theory

We need a new cohomology theory that works for varieties over
finite fields, similar to how singular cohomology works for finite
simplicial complexes

For X a variety over Fp, the cohomology theory should be such
that Frp acts on H i(X,K) where K is a field of characteristic 0

Let k and K be fields with char(K) = 0

A Weil cohomology theory is a contravariant functor from the
category of smooth projective varieties over k to the category of
graded K−algebras, satisfying some axioms

The axioms include Poincare duality and Kunneth formula

Abhiram Kumar Grothendieck-Lefschetz fixed point theorem



New cohomology theory

We need a new cohomology theory that works for varieties over
finite fields, similar to how singular cohomology works for finite
simplicial complexes

For X a variety over Fp, the cohomology theory should be such
that Frp acts on H i(X,K) where K is a field of characteristic 0

Let k and K be fields with char(K) = 0

A Weil cohomology theory is a contravariant functor from the
category of smooth projective varieties over k to the category of
graded K−algebras, satisfying some axioms

The axioms include Poincare duality and Kunneth formula

Abhiram Kumar Grothendieck-Lefschetz fixed point theorem



New cohomology theory

We need a new cohomology theory that works for varieties over
finite fields, similar to how singular cohomology works for finite
simplicial complexes

For X a variety over Fp, the cohomology theory should be such
that Frp acts on H i(X,K) where K is a field of characteristic 0

Let k and K be fields with char(K) = 0

A Weil cohomology theory is a contravariant functor from the
category of smooth projective varieties over k to the category of
graded K−algebras, satisfying some axioms

The axioms include Poincare duality and Kunneth formula

Abhiram Kumar Grothendieck-Lefschetz fixed point theorem



New cohomology theory

Weil suggested that such a cohomology theory could prove the
Weil conjectures. Such a cohomology theory also gives a fixed
point theorem that we want

There exists such a theory called the étale cohomology theory
(or a small modification of that called the l−adic cohomology
theory, for l ̸= char(k)) for varieties over k

Theorem (Artin Comparison)
Let X be a smooth proper variety over C. For any i ≥ 0, we
have an isomorphism

H i
et(X,Ql) ∼= H i

sing(X(C),Ql)
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Grothendieck-Lefschetz FPT

Theorem
Let X be a smooth, proper variety over Fp. Then

X(Fp) =
∑
i

(−1)itr(Frp|H i(X̄,Ql))
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Weil Conjectures

These are conjectures about the generating function involving
the above point counts

Let Nm be the number of Fpm-points on X. The zeta function
of X is defined as

Z(X,T ) = exp
(∑

m

NmTm

m

)
∈ Q[[T ]]

The Weil conjectures assert that these zeta functions are
rational functions, satisfy a certain functional equation, and
have their zeros in restricted places

The Grothendieck-Lefschetz FPT gives a formula for Nm in
terms of traces, which is the main step in proving that Z(X,T )
is rational
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