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Lattices and examples

o Minkowski’s lattice point theorem

Some applications

Lagrange’s four squares theorem
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Lattices

A (full) lattice A in R"™ is a Z-span of n linearly independent
vectors in R™. The covolume of A is defined to be the volume of
R™/A.
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Lattices

A (full) lattice A in R"™ is a Z-span of n linearly independent
vectors in R™. The covolume of A is defined to be the volume of
R™/A.

e 72 in R2 has covolume 1.
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Lattices

A (full) lattice A in R™ is a Z-span of n linearly independent
vectors in R™. The covolume of A is defined to be the volume of
R™/A.

e 72 in R2 has covolume 1.

o Ok in R"™2 has covolume o /|disc(K)].
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Lattice point theorem

How big can a set which avoids all the lattice points be?
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Lattice point theorem

How big can a set which avoids all the lattice points be?

Let A be a lattice in R™ and K be a convex, symmetric and
bounded subset of R™ with volume greater than 2"covol(A).
Then K contains a non-zero lattice point.
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Lattice point theorem

Let F' be a fundamental domain for A. Then R" is a disjoint
union of translates x + F' where z € A
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Lattice point theorem

Let F' be a fundamental domain for A. Then R" is a disjoint
union of translates x + F' where z € A

o= Y () i)
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Lattice point theorem

Let F' be a fundamental domain for A. Then R" is a disjoint
union of translates x + F' where z € A

o= Y () i)

vol(F)<v0l< ) ;;uol« )ﬁ(m+F)>
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Lattice point theorem

Let F' be a fundamental domain for A. Then R" is a disjoint
union of translates x + F' where z € A

fK xg(( ) x+F)>
vol(F)<v0l< > %vol(( )ﬁ(m+F)>

:%\vol <<;K—x> ﬂF)
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Lattice point theorem

Let F' be a fundamental domain for A. Then R" is a disjoint
union of translates x + F' where z € A

fK xg(( ) x+F)>
vol(F)<v0l< > %vol(( )ﬁ(m+F)>

:%\vol <<;K—x> ﬂF)

Therefore, for some x1 # z2 € A

<;K—I1> N <;K—$2> e 0
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Lattice point theorem

Therefore, for some ki, ks € K,

1 1
5]61 — T = ik'Q — T2
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Lattice point theorem

Therefore, for some ki, ks € K,

1 1
5]61 — T = ik'Q — T2
Therefore, 0 # (21 — 22) = 3k1 + 3(—k2) € KNA O
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bplications
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Applications

o Finiteness of class groups with the Minkowski bound

Abhiram Kumar



Applications

o Finiteness of class groups with the Minkowski bound

@ Dirichlet’s unit theorem
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Applications

o Finiteness of class groups with the Minkowski bound
o Dirichlet’s unit theorem

o Dirichlet’s approximation
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Applications

Finiteness of class groups with the Minkowski bound

Dirichlet’s unit theorem

e 6 o

Dirichlet’s approximation

Lagrange’s four squares theorem
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Sum of four squares
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Sum of four squares

Can every positive integer be written as a sum of four perfect
squares?
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Sum of four squares

Can every positive integer be written as a sum of four perfect

squares?
Yes! It was proved by Lagrange in 1770, using the principle of
infinite descent.
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Sum of four squares

Can every positive integer be written as a sum of four perfect
squares?

Yes! It was proved by Lagrange in 1770, using the principle of
infinite descent.

We give a proof using Minkowski’s lattice point theorem! This
proof is borrowed from the exercises of Lectures on Discrete
Geometry by Jiri Matousek
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Sum of four squares

Every natural number is a sum of four squares
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Sum of four squares
Every natural number is a sum of four squares

It is enough to prove the statement for odd primes p

Abhiram Kumar Minkowski’s theorem and applications



Sum of four squares
Every natural number is a sum of four squares

It is enough to prove the statement for odd primes p

(a2 + a3 + a2 + a2) (b3 + b3 + b3 + b2)
= (a1by — agby — agbs — agby)? + (a1be 4 agby + azby — agbo)?

+(a163 — ashs + agby + a41)2)2 = (a1b4 + agbg — azby + a4b1)2
]

v
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Sum of four squares

The first step is to show existence of integers a, b such that
a’+b%>=—1 mod p

.
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Sum of four squares

The first step is to show existence of integers a, b such that
a’+b%>=—1 mod p
If —1 is a quadratic residue mod p, then we are done.
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Sum of four squares

The first step is to show existence of integers a, b such that
a’+b%>=—1 mod p
If —1 is a quadratic residue mod p, then we are done.
: : -1 p-1
If not, consider the pairs (0,p — 1), (1,p — 2), (55, 55~)
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Sum of four squares

The first step is to show existence of integers a, b such that
a’+b%>=—1 mod p

If —1 is a quadratic residue mod p, then we are done.

If not, consider the pairs (0,p — 1), (1,p — 2), -(7’2;1, %)

There exits a pair (k,p — k — 1), such that both k and p — k — 1
are quadratic residues mod p, so we are done since

k+(p—k—1)=-1 modp O

V.

Abhiram Kumar Minkowski’s theorem and applications



Sum of four squares

Next we consider the following lattice

A={(z,y,2,t) €Z*: 2 =ax+by modp,t=bxr—ay mod p}
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Sum of four squares

Next we consider the following lattice
A={(z,y,2,t) €Z*: 2 =ax+by modp,t=bxr—ay mod p}
This has a Z-basis given by

{(1’ O, a, b)u (07 1’ ba —CL), (07 Oapu 0)7 (07 Oa Oap)}

Abhiram Kumar Minkowski’s theorem and applications



Sum of four squares

Next we consider the following lattice
A={(z,y,2,t) €Z*: 2 =ax+by modp,t=bxr—ay mod p}
This has a Z-basis given by

{(1,0,a,b),(0,1,b,—a), (0,0, p,0),(0,0,0,p)}

and hence the covolume of A is p?
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Sum of four squares

Next we consider the following lattice
A={(z,y,2,t) €Z*: 2 =ax+by modp,t=bxr—ay mod p}
This has a Z-basis given by

{(1,0,a,b),(0,1,b,—a), (0,0, p,0),(0,0,0,p)}

and hence the covolume of A is p?
Let K = {22 +y% + 22 + t2 < 2p} be a ball in R*
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Sum of four squares

Next we consider the following lattice
A={(z,y,2,t) €Z*: 2 =ax+by modp,t=bxr—ay mod p}
This has a Z-basis given by
{(1,0,a,b),(0,1,b,—a), (0,0, p,0),(0,0,0,p)}
and hence the covolume of A is p?
Let K = {22 +y% + 22 + t2 < 2p} be a ball in R*

K is bounded, convex and symmetric with volume 272p?

vol(K) = 2r°p? > 24covol (A)
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Sum of four squares

Next we consider the following lattice
A={(z,y,2,t) €Z*: 2 =ax+by modp,t=bxr—ay mod p}
This has a Z-basis given by
{(1’ O, a, b)u (07 1’ ba —CL), (07 Oapu 0)7 (07 Oa Oap)}
and hence the covolume of A is p?
Let K = {22 +y% + 22 + t2 < 2p} be a ball in R*
K is bounded, convex and symmetric with volume 272p?

vol(K) = 2r°p? > 24covol (A)

Therefore, by Minkowski’s theorem, we get a non-zero point
(z,y,2z,t) e KNA
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Sum of squares

P2+ 2+ =22 2+ (a4 by)2 + (bz — ay)? mod p
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Sum of squares

P2+ 2+ =22 2+ (a4 by)2 + (bz — ay)? mod p

=22 + 4% +a2® + 2y® + b%2? + a%y? mod p
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Sum of squares

P2+ 2+ =22 2+ (a4 by)2 + (bz — ay)? mod p
=22 + 4% +a2® + 2y® + b%2? + a%y? mod p

=*4+ )1 +a®>+b*) =0 modp
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Sum of squares

P2+ 2+ =22 2+ (a4 by)2 + (bz — ay)? mod p
=22 + 4% +a2® + 2y® + b%2? + a%y? mod p

=*4+ )1 +a®>+b*) =0 modp
Therefore, we have a non-zero point (z,, z,t) € Z* satisfying,

2?4+ +224t2=0 modp

and
0<x®+y?+22+t2<2p
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Sum of squares

P2+ 2+ =22 2+ (a4 by)2 + (bz — ay)? mod p
=22 + 4% +a2® + 2y® + b%2? + a%y? mod p

=*4+ )1 +a®>+b*) =0 modp
Therefore, we have a non-zero point (z,, z,t) € Z* satisfying,

2?4+ +224t2=0 modp

and
0<x®+y?+22+t2<2p

Therefore, we get p = z2 + y? + 22 + t2 |
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Thank youl




