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Lattices

A (full) lattice Λ in Rn is a Z-span of n linearly independent
vectors in Rn. The covolume of Λ is defined to be the volume of
Rn/Λ.

Z2 in R2 has covolume 1.
OK in Rr+2s has covolume 1

2s

√
|disc(K)|.
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Lattice point theorem

How big can a set which avoids all the lattice points be?

Theorem
Let Λ be a lattice in Rn and K be a convex, symmetric and
bounded subset of Rn with volume greater than 2ncovol(Λ).
Then K contains a non-zero lattice point.
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Lattice point theorem
Proof.
Let F be a fundamental domain for Λ. Then Rn is a disjoint
union of translates x+ F where x ∈ Λ

1

2
K =

⋃
x∈Λ

((
1

2
K

)
∩ (x+ F )

)

vol(F ) < vol

(
1

2
K

)
=

∑
x∈Λ

vol

((
1

2
K

)
∩ (x+ F )

)

=
∑
x∈Λ

vol

((
1

2
K − x

)
∩ F

)
Therefore, for some x1 ̸= x2 ∈ Λ(

1

2
K − x1

)
∩
(
1

2
K − x2

)
̸= ϕ
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Lattice point theorem

Proof.
Therefore, for some k1, k2 ∈ K,

1

2
k1 − x1 =

1

2
k2 − x2

Therefore, 0 ̸= (x1 − x2) =
1
2k1 +

1
2(−k2) ∈ K ∩ Λ
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Applications

Finiteness of class groups with the Minkowski bound
Dirichlet’s unit theorem
Dirichlet’s approximation
Lagrange’s four squares theorem
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Sum of four squares

Can every positive integer be written as a sum of four perfect
squares?
Yes! It was proved by Lagrange in 1770, using the principle of
infinite descent.
We give a proof using Minkowski’s lattice point theorem! This
proof is borrowed from the exercises of Lectures on Discrete
Geometry by Jiri Matousek
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Sum of four squares

Theorem
Every natural number is a sum of four squares

Proof.
It is enough to prove the statement for odd primes p

(a21 + a22 + a23 + a24)(b
2
1 + b22 + b23 + b24)

= (a1b1 − a2b2 − a3b3 − a4b4)
2 + (a1b2 + a2b1 + a3b4 − a4b2)

2

+(a1b3 − a2b4 + a3b1 + a4b2)
2 + (a1b4 + a2b3 − a3b2 + a4b1)

2
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Sum of four squares

Proof.
The first step is to show existence of integers a, b such that
a2 + b2 ≡ −1 mod p

If −1 is a quadratic residue mod p, then we are done.
If not, consider the pairs (0, p− 1), (1, p− 2), ·(p−1

2 , p−1
2 )

There exits a pair (k, p− k − 1), such that both k and p− k − 1
are quadratic residues mod p, so we are done since
k + (p− k − 1) ≡ −1 mod p
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Sum of four squares
Proof.
Next we consider the following lattice

Λ = {(x, y, z, t) ∈ Z4 : z ≡ ax+ by mod p, t ≡ bx− ay mod p}

This has a Z-basis given by

{(1, 0, a, b), (0, 1, b,−a), (0, 0, p, 0), (0, 0, 0, p)}

and hence the covolume of Λ is p2

Let K = {x2 + y2 + z2 + t2 < 2p} be a ball in R4

K is bounded, convex and symmetric with volume 2π2p2

vol(K) = 2π2p2 > 24covol(Λ)

Therefore, by Minkowski’s theorem, we get a non-zero point
(x, y, z, t) ∈ K ∩ Λ
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Sum of squares

Proof.

x2 + y2 + z2 + t2 ≡ x2 + y2 + (ax+ by)2 + (bx− ay)2 mod p

≡ x2 + y2 + a2x2 + b2y2 + b2x2 + a2y2 mod p

≡ (x2 + y2)(1 + a2 + b2) ≡ 0 mod p

Therefore, we have a non-zero point (x, y, z, t) ∈ Z4 satisfying,

x2 + y2 + z2 + t2 ≡ 0 mod p

and
0 < x2 + y2 + z2 + t2 < 2p

Therefore, we get p = x2 + y2 + z2 + t2

Abhiram Kumar Minkowski’s theorem and applications



Sum of squares

Proof.

x2 + y2 + z2 + t2 ≡ x2 + y2 + (ax+ by)2 + (bx− ay)2 mod p

≡ x2 + y2 + a2x2 + b2y2 + b2x2 + a2y2 mod p

≡ (x2 + y2)(1 + a2 + b2) ≡ 0 mod p

Therefore, we have a non-zero point (x, y, z, t) ∈ Z4 satisfying,

x2 + y2 + z2 + t2 ≡ 0 mod p

and
0 < x2 + y2 + z2 + t2 < 2p

Therefore, we get p = x2 + y2 + z2 + t2

Abhiram Kumar Minkowski’s theorem and applications



Sum of squares

Proof.

x2 + y2 + z2 + t2 ≡ x2 + y2 + (ax+ by)2 + (bx− ay)2 mod p

≡ x2 + y2 + a2x2 + b2y2 + b2x2 + a2y2 mod p

≡ (x2 + y2)(1 + a2 + b2) ≡ 0 mod p

Therefore, we have a non-zero point (x, y, z, t) ∈ Z4 satisfying,

x2 + y2 + z2 + t2 ≡ 0 mod p

and
0 < x2 + y2 + z2 + t2 < 2p

Therefore, we get p = x2 + y2 + z2 + t2

Abhiram Kumar Minkowski’s theorem and applications



Sum of squares

Proof.

x2 + y2 + z2 + t2 ≡ x2 + y2 + (ax+ by)2 + (bx− ay)2 mod p

≡ x2 + y2 + a2x2 + b2y2 + b2x2 + a2y2 mod p

≡ (x2 + y2)(1 + a2 + b2) ≡ 0 mod p

Therefore, we have a non-zero point (x, y, z, t) ∈ Z4 satisfying,

x2 + y2 + z2 + t2 ≡ 0 mod p

and
0 < x2 + y2 + z2 + t2 < 2p

Therefore, we get p = x2 + y2 + z2 + t2

Abhiram Kumar Minkowski’s theorem and applications



Sum of squares

Proof.

x2 + y2 + z2 + t2 ≡ x2 + y2 + (ax+ by)2 + (bx− ay)2 mod p

≡ x2 + y2 + a2x2 + b2y2 + b2x2 + a2y2 mod p

≡ (x2 + y2)(1 + a2 + b2) ≡ 0 mod p

Therefore, we have a non-zero point (x, y, z, t) ∈ Z4 satisfying,

x2 + y2 + z2 + t2 ≡ 0 mod p

and
0 < x2 + y2 + z2 + t2 < 2p

Therefore, we get p = x2 + y2 + z2 + t2

Abhiram Kumar Minkowski’s theorem and applications



Thank you!
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