

Locally Nilpotent Derivations and the Cancellation Theorem

Abhiram Kumar

Let k be an algebraically closed field of characteristic 0. The $n = 1$ case of the Cancellation problem asserts the following:

If R is a k -algebra such that $k[x, y] \cong R[t]$ as k -algebras then $R \cong k[z]$. In this report, we develop some basic theory of Locally Nilpotent Derivations and prove the above theorem.

Locally Nilpotent Derivations

Let B be an integral domain containing a field k of characteristic 0. Let B^* denote the group of units of B and $\text{frac}(B)$ denote the field of fractions of B .

Definition 1 A derivation $D : B \mapsto B$ is a function which satisfies the following properties for all $a, b \in B$:

$$\begin{aligned} D(a + b) &= D(a) + D(b) \\ D(ab) &= aD(b) + bD(a) \end{aligned}$$

The set of derivations on B is denoted by $\text{Der}(B)$. If A is a subring of B , then $\text{Der}_A(B)$ denotes the subset of derivations D such that $D(A) = 0$.

In particular, a derivation $D \in \text{Der}(B)$ is said to be a locally nilpotent derivation (lnd) if for every $b \in B$ there exists a positive integer n such that $D^n(b) = 0$. Here, $D^n(b)$ is D composed n times on b . The set of all locally nilpotent derivations on B is denoted by $\text{LND}(B)$.

Definition 2 A subring A of B is said to be factorially closed in B if for all non-zero $f, g \in B$, the product $fg \in A \implies f, g \in A$

Proposition 1 Let $D \in \text{LND}(B)$. The subring $\text{ker}(D)$ of B is factorially closed in B

Proof: Let $a, b \in B$ such that $ab \in \ker(D)$. Since $D \in LND(B)$, there exists positive integers m, n such that $D^m(a) = D^n(b) = 0$ but $D^{m-1}(a) \neq 0$ and $D^{n-1}(b) \neq 0$.

Suppose $a \notin \ker(D)$ so that $m > 1$.

Look at

$$D^{m+n-2}(ab) = \sum_{i+j=m+n-2} \binom{m+n-2}{i} D^i(a) D^j(b)$$

LHS is 0 and the only term contributing to the RHS is when $i = m - 1$ and $j = n - 1$.

$$\implies D^{m-1}(a) D^{n-1}(b) = 0$$

Contradicting $D^{n-1}(b) \neq 0$.

Therefore we get the proposition.

Definition 3 Given $D \in LND(B)$ with a local slice r (i.e $Dr \neq 0$ and $D^2r = 0$), the Dixmier map induced by r is $\pi_r : B \rightarrow B_{Dr}$, where:

$$\pi_r(f) = \sum_{i \geq 0} \frac{(-1)^i}{i!} D^i f \frac{r^i}{(Dr)^i}$$

and the exponential map determined by D is $\exp(D) : B \rightarrow B$, where:

$$\exp(D)(f) = \sum_{i \geq 0} \frac{1}{i!} D^i f$$

Proposition 2 Let $D \in LND(B)$ be given, $D \neq 0$, and set $A = \ker(D)$. Choose a local slice $r \in B$ of D , and let $\pi_r : B \rightarrow B_{Dr}$ denote the Dixmier map defined by r .

- a) $\pi_r(B) \subset A_{Dr}$
- b) π_r is a k -algebra homomorphism.
- c) $\ker \pi_r = rB_{Dr} \cap B$
- d) $B_{Dr} = A_{Dr}[r]$
- e) The transcendence degree of B over A is 1.

Proof: Consider first the case $Ds = 1$ for some $s \in B$.

For a), we have:

$$\pi_s(h) = \sum_{i \geq 0} \frac{(-1)^i}{i!} D^i h \frac{s^i}{(Ds)^i}$$

Therefore, it is easy to see that $D(\pi_s(h)) = 0$ for all $h \in B$. Therefore, $\pi_s(B) \subset A = A_{Ds}$

For b), let t be transcendental over B , and extend D to $B[t]$ by setting $Dt = 0$. Let $1 : B \rightarrow B[t]$ be the inclusion, and let $\epsilon : B[t] \rightarrow B$ be the evaluation map $\epsilon(t) = s$. Then $\exp(-tD)$ is an automorphism of $B[t]$. In addition, $\pi_s = \epsilon \circ \exp(-tD) \circ 1$. Therefore, π_s is a homomorphism.

For c), note that $\pi_s(s) = s - (Ds)s = 0$. Therefore, $\pi(sB) = 0$. Conversely, if $\pi_s(f) = 0$, then since $\pi_s(f) = f + sb$ for some $b \in B$, we conclude that $f \in sB$. Therefore, $\ker(\pi_s) = sB$ when $Ds = 1$.

Next, since the kernel of D on $B[t]$ equals $A[t]$, π_s extends to a homomorphism $\pi_s : B[t] \rightarrow A[t]$. Define the homomorphism $\phi : B \rightarrow A[s]$ by $\phi = \epsilon \circ \pi_s \circ \exp(tD) \circ 1$. Specifically, ϕ is defined by:

$$\phi(g) = \sum_{n \geq 0} \frac{1}{n!} \pi_s(D^n g) s^n$$

Then ϕ is a surjection, since $\phi(a) = a$ for all $a \in A$ and $\phi(s) = s$. Also, if $\phi(g) = 0$, then since s is transcendental over A , it follows that each coefficient of $\phi(g) \in A[s]$ is zero. If $g \neq 0$, then the highest degree coefficient of $\phi(g)$ equals $\frac{1}{n!} \pi_s(D^n g)$, where $n = \deg_D(g) \geq 0$. Thus, $D^n g \in \ker(\pi_s) = sB$, and since also $D^n g \in A - 0$, we conclude that $s \in A$ (since A is factorially closed). But $s \notin A$, so it must be the case that $g = 0$. Therefore, ϕ is an isomorphism which proves d).

For the general case when there need not exist an s such that $Ds = 1$, suppose that, for the local slice r , $Dr = f \in A$. Let D_f denote the extension of D to B_f . Then $s := \frac{r}{f}$ is a slice of D_f . Since π_r is the restriction to B of the homomorphism $\pi_s : B_f \rightarrow B_f$, it follows that π_r is a homomorphism. The kernel is $sB_f \cap B = rB_f \cap B$, and $B_f = A_f[s] = A_f[r]$. Therefore, results a)-d) hold in the general case. Part e) follows from d).

Proposition 3 *If B is a UFD and A is a factorially closed subring of B , then A is a UFD.*

Proof: Suppose that $a \in A$ is a prime in B . If $fg \in aA$ for $f, g \in A$, then either $f \in aB \cap A = aA$ or $g \in aB \cap A = aA$. So a is prime in A as well.

Given a nonzero $h \in A - A^*$, write $h = b_1 b_2 \dots b_n$, where b_i are primes in B . Since A is factorially closed, $b_i \in A$ which implies that b_i are primes in A . Since this factorization is unique in B , it is also unique in A . Therefore, A is a UFD.

Lemma 1 *Let A be a factorially closed subring of B . Then A is algebraically closed in B .*

Proof: Let $b \in B$ satisfy a polynomial with coefficients in A .

$$\sum_{i=0}^n a_i b^i = 0$$

where $a_i \in A$. Then

$$\sum_{i=1}^n a_i b^i = -a_0 \in A$$

Therefore, we get $b(\sum_{i=1}^n a_i b^{i-1}) \in A$.

A is factorially closed, therefore, we get $b \in A$.

Therefore, we get A is algebraically closed in B .

Theorem 1 (Cancellation theorem n=1) *Let k be an algebraically closed field of characteristic 0 and let R be a k -algebra such that $k[x, y] \cong R[t]$ as k -algebras. Then $R \cong k[z]$ as k -algebras*

Proof: Let ϕ be the isomorphism from $k[x, y]$ to $R[t]$. Let $d = \frac{d}{dt}$ be the usual derivation on $R[t]$. This induces a locally nilpotent derivation D on $k[x, y]$ defined by

$$D(p) := \phi^{-1}\left(\frac{d}{dt}(\phi(p))\right)$$

Now since ϕ is an isomorphism, we get $R = \ker(d) \cong \ker(D) =: A$.

Therefore it is enough to show that A is one-generated. If $A = k[x]$ or $k[y]$ then we are done. Otherwise, pick some irreducible $f \in A$ with the smallest x -degree. We know that $k[x, y]$ has transcendence degree 1 over A by part e) of Proposition 2 and $k[f]$ has transcendence degree 1 over k . Therefore we get that A is algebraic over $k[f]$. We show that $A = k[f]$. We do this by showing that $k[f]$ is algebraically closed in A , which would imply that $A = k[f]$ since A is algebraic over $k[f]$. But by Lemma 1, it is enough to show that $k[f]$ is factorially closed in A .

Suppose $0 \neq g, h \in A$ such that $gh \in k[f]$. Since k is algebraically closed, we can factorize

$$gh = \prod_{i=1}^n (f - \lambda_i)$$

where $\lambda_i \in k$

We have $f - \lambda_i \in A$ and since f is irreducible, each $f - \lambda_i$ is also irreducible (if $f - \lambda_i = f_1 f_2 \in A$ then A being factorially closed would imply that both $f_1, f_2 \in A$ contradicting the fact that f is the element of smallest x -degree).

By Proposition 3, A is a UFD and therefore $gh = \prod_{i=1}^n (f - \lambda_i)$ is the unique factorization into irreducibles. Therefore,

$$g = \prod_{i \in F} (f - \lambda_i)$$

and

$$h = \prod_{i \in \{1, \dots, n\} - F} (f - \lambda_i)$$

for some proper subset $F \subset \{1, 2, \dots, n\}$.

Therefore, both $g, h \in k[f]$ and hence $k[f]$ is factorially closed in A . By Lemma 1, we get that $k[f]$ is algebraically closed in A , which completes the proof of the theorem.

References

- 1) *Algebraic Theory of Locally Nilpotent Derivations* by Gene Freudenburg