
Nicodemos 1.2

Manual

August 2014 Ayres Freitas1

1afreitas@pitt.edu

Disclaimer

Nicodemos is a Mathematica program for the numerical evaluation of loop integrals, using
subtraction terms for IR singularities. The Mathematica code performs the subtraction and
additional algebraic steps, such as necessary variable transformations. It produces a Fortran
executable for the numerical evaluation. The version 1.2 can handle one-loop and types of
two-loop integrals as described in Ref. [1] (see reference for details).

Nicodemos may be used freely for non-commercial purposes, with proper acknowledgement
of the author and citation of the original publication [1]. If you include it as part of a different
program, proper acknowledgement must be given in the documentation of the program.

The Nicodemos package includes the package Format 2.0 by Mark Sofroniou
(Copyright 1992-2003, Mark Sofroniou).

Nicodemos requires Mathematica 6.0 or above, installed on a Unix/Linux compatible op-
erating system with a Fortran 77 compiler and Perl interpreter.

It also needs the Cuba numerical integration library by Thomas Hahn [2].
Nicodemos 1.2 has been tested with Cuba version 1.4, which can be obtained from
http://www.feynarts.de/cuba/Cuba-1.4.tar.gz.

The author does not promise that this software works. Nicodemos 1.2 has been tested
with Mathematica 6.0 and 8.0 on a platform with Scientific Linux SL releases 5.1 and 6.3
and GNU Fortran 3.4.6. Usage on other systems may lead to compatibility issues which in
most cases should be straightforward to resolve by an experienced user. Bug reports are
welcome (but their timely resolution is not guaranteed).

1 Setup

Nicodemos can be downloaded from

http://www.pitt.edu/~afreitas/

It comes in a compressed zip file, which can be unpacked with

unzip nicodemos10b.zip

Unpacking creates the directory nicodemos10b/. The subdirectory main/ contains the
Nicodemos code, while several examples are collected in the subdirectory examples/.

Nicodemos requires Mathematica 6.0 or above and the Cuba library. Nicodemos 1.2

has been tested with version 1.4 which can be downloaded from http://www.feynarts.de/

cuba/Cuba-1.4.tar.gz. Installation instructions for Cuba are provided in the downloaded
tar archive.

Before running Nicodemos, the entries in main/paths must be adjusted as needed, for
example

$Compiler = "f77" command for Fortran compiler
$Cuba = "Cuba-1.4/" directory where libcuba.a is located

1

2 Overview

In this section, the usage of Nicodemos is demonstrated with two examples. First, let us
consider the one-loop QED vertex correction to γ∗ → qq̄.

After starting Mathematica the program is loaded with

In[1]:= << main/oneloop.m

The expression for the one-loop integrand is supplied in two parts, the denominator and the
numerator:

In[2]:= gaqqden = {k1.k1, (k1-p1).(k1-p1), (k1+p2).(k1+p2)};

In[3]:= gaqqnum = (2*($d-4)*k1.k1*p1.p2 - 8*(p1.k1 + p1.p2)*

(p1.p2 - p2.k1))/(27*Pi*p1.p2);

Furthermore one needs to define the external momenta, the external parameters (such as
masses and kinematic quantities), and any relevant relations between them:

In[4]:= momext = {p1,p2};

In[5]:= pars = {s};

In[6]:= rels = {p1.p1 -> 0, p2.p2 -> 0, p1.p2 -> s/2};

All relevant input parameters must be listed in pars, i. e. after application of rels the final
expression must not contain any undefined symbols.

As the next step, all IR singularities are subtracted:

In[7]:= gaqqnum = SubSoft[gaqqden, gaqqnum, k1, k1];

In[8]:= gaqqnum = SubColl[gaqqden, gaqqnum, k1, k1->p1];

In[9]:= gaqqnum = SubColl[gaqqden, gaqqnum, k1, k1->-p2];

SubSoft performs the subtraction of soft divergencies, where the third and fourth arguments
specify the loop momentum and the soft momentum, respectively (which in this example are
identical). Similarly, SubColl is used for collinear subtraction, where the third argument
again denotes the loop momentum, while the fourth argument defines the collinear limit for
this particular singularity. Soft singularities must be subtracted before collinear ones. Note
that the collinear subtraction is well-defined only for physical, gauge-invariant amplitudes.

The symbolic part of the calculation is completed by the following two commands:

In[10]:= gaqqres = OneLoop[gaqqden, gaqqnum, k1];

In[11]:= WriteCode[gaqqres, Deform->True, WorkingDirectory->"num1"];

2

The OneLoop function performs the Feynman parameterization and tensor reduction and
all other algebraic steps that finally produce a Feynman parameter integral. This result is
turned into Fortran code by the routine WriteCode. The option Deform->True indicates that
the integration contour is deformed into the complex plane to avoid threshold singularities.
The second options WorkingDirectory allows the user to specify the directory where the
numerical code is written.

After WriteCode has been executed, this directory will contain an executable run1 which
performs the numerical integration. For example, a typical call to this program isnum1 > num1/run1 5 0.3

The command line arguments correspond to the input parameters in pars, in the same
order as specified there. In this example, this is the single parameter s, which is set to the
value 5. If contour deformation is used, the last command line parameter is the deformation
parameter λ (which here is set to 0.5). See Ref. [1] for the defintion of λ. run1 produces the
following output:

(0.135636514,0.016214035) (0.000171570896,0.000149737364)

(0.00516076584,-0.148148148) (0.,0.)

(-0.0471570202,0.) (0.,0.)

Here the first line corresponds to the finite part of the result, given as real and imaginary
part, followed by the numerical error for each. The second and third line are the 1/ε and
1/ε2 poles, respectively.

Now let us turn to a two-loop example. The treatment of two-loop integrals in Nicodemos

is very similar to the one-loop case, except that now one uses the command TwoLoop instead
of OneLoop, and there are two symbols for the loop momenta.

As an example, let us consider an electroweak vertex diagram contributing to Z → bb̄ in
the limit mb → 0, with UV but without IR divergencies:

In[1]:= << main/twoloop.m

In[2]:= verden = {k1.k1 - MTs, (k1+p1+p2).(k1+p1+p2) - MTs, k2.k2 - MWs,

(k2-p2).(k2-p2) - MTs, (k2-p1-p2).(k2-p1-p2) - MWs,

(k1+k2).(k1+k2)};

In[3]:= vernum = (MZs^2*(2*(MZs-4*MWs)*($d-4)^2*(k1.k2)^2 + ... [abridged]

In[4]:= pars = {MZs,MWs,MTs};

In[5]:= muUV2 = MZs;

In[6]:= momext = {p1,p2};

In[7]:= rels = {p1.p1 -> 0, p2.p2 -> 0, p1.p2 -> MZs/2};

3

In[8]:= res = TwoLoop[verden, vernum, k1, k2];

In[9]:= WriteCode[res, WorkingDirectory->"num2"];

Here k1 and k2 are the loop momenta.
Note that for a UV-divergent two-loop integral the user must define the global sym-

bol muUV2 before running TwoLoop (besides the global symbols momext, pars, and rels

mentioned on page 2). It specifies the mass scale for the two-loop subtraction terms. The
final numerical result is independent of the value of muUV2, but the numerical integration
converges faster if it is not too small.

The numerical code for a two-loop example is operated in just the same way as at the
one-loop level, i. e. the user invokes the executable run1 with the necessary numerical input
parameters as command line arguments. For more complex two-loop examples, Nicodemos

may create several subdirectories for the numerical program, but this does not affect the
usage.

3 List of Functions and Options

Before any function of the package can be called, the user must define the integrand nu-
merator and denominator, as well as the relevant input parameters, external momenta, and
relations between them, as described in the previous section. After that, if the integral
contains soft and/or collinear divergencies, they should be subtracted with the following
functions. In the current version, only subtractions of singularities in a one-loop integral or
in one subloop of a two-loop integral are supported.

SubSoft[d, n, k, psoft] subtracts a single-loop soft singularity that occurs for
psoft → 0 from an integrand specified by the denominator d
and numerator n, where k is the loop momentum

SubSoft returns the subtracted numerator.

SubColl[d, n, k, k -> pcoll] subtracts a single-loop collinear singularity that occurs
for k → pcoll from an integrand specified by the denomi-
nator d and numerator n, where k is the loop momentum

Similar to SubSoft, SubColl returns the subtracted numerator.

4

For one-loop integrals, the function OneLoop performs the remaining algebraic manipulations
and has several options to control its operations:

OneLoop[d, n, k] transforms the integral specified by denominator d, numerator n,
and loop momentum k into a Feynman parameter integral

option default

SimpLevel 3 specifies how the level of simplification that OneLoop

tries to perform; values from 0 to 3 are possible

NestedExpressions False when set to True, breaks down long expressions by in-
troducing placeholder symbols for subexpressions

Larger values of SimpLevel lead to shorter Fortran code, but require more time and memory
in Mathematica. For large expressions it is advisable to reduce the value of SimpLevel.

NestedExpressions offers another way to keep long expressions under control and avoid
memory overflows in Mathematica. If set to true it will break down a large expression by
introducing symbols for subexpressions. This typically leads to Fortran code that compiles
faster but may be slightly slower in the numerical evaluation.

For two-loop integrals, one uses the function TwoLoop instead of OneLoop:

TwoLoop[d, n, k1, k2] transforms the integral specified by denominator d, numerator
n, and loop momenta k1 and k2 into a Feynman integral

option default

SimpLevel 3 specifies how the level of simplification that OneLoop tries to
perform; values from 0 to 5 are possible, but levels 4 and 5
should be used with caution since they may lead to very long
evaluation times and/or memory overflow

StatusInfo 0 Specifies if and how much progress and status information
should be printed out during the algebraic computation; 0 =
none, 1 = basic information, 2 = progress and timing info

As mentioned above, for large expressions it is advisable to set SimpLevel to smaller values.
TwoLoop always introduces nested subexpressions to break down large expressions, so there
is no corresponding user option.

When evaluating a two-loop integral with UV singularities, the user must define the
global symbol muUV2 before running TwoLoop. Any symbol listed in pars may be assigned to
muUV2. The final numerical result does not depend on the value of muUV2, but the numerical
integration can be made more efficient by choosing a parameter that is not far from the
largest mass or momentum scale in the problem.

5

The Fortran code is finally generated by WriteCode:

WriteCode[e] produces Fortran code from the expression e (e is the output of
OneLoop)

option default

Deform False whether to perform contour deformation to
avoid threshold singularities

EpsRange {0,-Infinity} which terms of the ε-expansion to include in the
Fortran code

SimpFunc Simplify function used to simplify the ε-expanded result

WorkingDirectory "." the directory where the Fortran code should be
written

Note that only non-positive values in EpsRange are meaningful. This option can be used
to produce numbers for, say, only the finite part of the integral.

The option SimpFunc can be adjusted to prevent Mathematica from consuming too much
time and/or memory. The operation of WriteCode can be sped up by setting SimpFunc to
some function that performs simpler operations than Simplify, As a last resort one could
simply set SimpFunc -> Identity. However, this may lead to larger Fortran code.

Options for the numerical code The directory where the executable run1 is created
will contain a file runpar.sys, which options for to control the numerical integration. By
default it contains the following values:

runpar.sys:

v integration routine (v = VEGAS, c = CUHRE)

200000 maximal number of integration points

1e-16 desired relative accuracy

1e-16 desired absolute precision

The numerical integration will stop when it reaches either of these three: (i) maximal number
of integration points, (ii) relative accuracy goal (given as relative amount of the final answer),
(iii) absolute precision goal (given as absolute error on the final answer).

References

[1] A. Freitas, JHEP 1207, 132 (2012) [arXiv:1205.3515 [hep-ph]].

[2] T. Hahn, Comput. Phys. Commun. 168, 78 (2005) [arXiv:hep-ph/0404043].

6

