This model was developed in the following paper.

Kurapati, N.; Pathirathna, P.; Chen, R.; Amemiya, S. "Voltammetric measurement of adsorption isotherm for ferrocene derivatives on highly oriented pyrolytic graphite." *Anal. Chem.* **2018**, *90*, 13632.

This model is also applicable to the system discussed in the following paper.

Chen, R.; Najarian, A. M.; Kurapati, N.; Balla, R. J.; Oleinick, A.; Svir, I.; Amatore, C.; McCreery, R. L.; Amemiya, S. "Self-inhibitory electron transfer of the Co(III)/Co(II)-complex redox couple at pristine carbon electrode." *Anal. Chem.* **2018**, *90*, 11115.

CV Model. A model for CV is based on the adsorption of a ferrocene derivative, FcXY, on HOPG, which proceeds its oxidation to Fc⁺XY as given by

$$FcXY(aq) \Rightarrow FcXY(HOPG) \tag{1}$$

$$Fc \cdot XY(aq) + e \Rightarrow FcXY(aq)$$
 (2)

Diffusion equations for FcXY and Fc⁺XY are given by

$$\frac{\partial c_{i}}{\partial t} = D\left(\frac{\partial^{2} c_{i}}{\partial x^{2}}\right) \tag{3}$$

where the diffusion coefficient of FcXY, D, is equivalent to that of Fc⁺XY, $D_{\text{Fc}^+\text{XY}}$. The rate of heterogeneous electron transfer, v_{et} , is given by the Butler-Volmer model as

$$v_{\text{et}} = k_{\text{red}} c_{\text{Fc}^+\text{XY}} - k_{\text{ox}} c_{\text{FcXY}} \tag{4}$$

with

$$k_{\text{red}} = k_0 \exp\left[-\alpha_{\text{ET}} F\left(E - E^{0'}\right) / RT\right]$$
 (5)

$$k_{\rm ox} = k_0 \exp\left[\left(1 - \alpha_{\rm ET}\right) F\left(E - E^{0'}\right) / RT\right]$$
 (6)

where k_{red} and k_{ox} are oxidation and reduction rate constants, k_0 is the heterogeneous standard electrontransfer rate constant, α_{ET} is transfer coefficient, E is the HOPG potential, and $E^{0'}$ is the formal potential of the redox couple. The substrate potential is cycled between E_{initial} and E_{λ} as the switching potential. The adsorption rate of FcXY, v_{ads} , is given phenomenologically by

$$v_{\text{ads}} = k_{\text{ads}} c_{\text{FeXY}} \left(\Gamma_{\text{s}} - \Gamma_{\text{FeXY}} \right) - k_{\text{des}} \Gamma_{\text{FeXY}}$$
 (7)

with

$$k_{\text{ads}} = k_{\text{ads}}^{0} \exp\left(2\alpha_{\text{ads}}g\Gamma_{\text{FcXY}} / RT\right)$$
 (8)

$$k_{\text{ads}} = k_{\text{ads}}^{0} \exp \left[-2\left(1 - \alpha_{\text{ads}}\right) g \Gamma_{\text{FcXY}} / RT \right]$$
 (9)

$$g = g'RT / 2\Gamma_{a} \tag{10}$$

where $k_{\rm ads}^0$ and $k_{\rm des}^0$ are standard adsorption and desorption rate constant, $\Gamma_{\rm FcXY}$ is the surface concentration of FcXY, g is the energy of interaction between adsorbed molecules, and $\alpha_{\rm ads}$ is a symmetry coefficient (0 < $\alpha_{\rm ads}$ < 1) regulating the effect of g on the adsorption activation barrier. Adsorption equilibrium is achieved at t=0 to yield the Frumkin isotherm based on the Bragg-Williams approximation as given by

$$c_{\text{FeXY}} = \frac{\Gamma_{\text{FeXY}} / \Gamma_{s}}{\beta \left(1 - \Gamma_{\text{FeXY}} / \Gamma_{s}\right)} \exp\left(-g' \Gamma_{\text{FeXY}} / \Gamma_{s}\right)$$
(11)

where c_{FeXY} is the concentration of ferrocene derivatives near the HOPG surface, Γ_s is the saturated surface concentration of FeXY, and $\beta(=k_{\text{ads}}^0/k_{\text{des}}^0)$ and g' are parameters characterizing the magnitude of ferrocene–HOPG and ferrocene–ferrocene interactions, respectively. Accordingly, boundary conditions at the substrate surface are given by

$$D\left[\frac{\partial c_{\text{FcXY}}}{\partial x}\right]_{x=0} = v_{\text{et}} - v_{\text{ads}}$$
(12)

$$D\left[\frac{\partial c_{\text{Fc}^{+}XY}}{\partial x}\right]_{x=0} = -v_{\text{et}}$$
 (13)

$$\left[\frac{\partial \Gamma_{\text{FcXY}}}{\partial t}\right] = v_{\text{ads}} \tag{14}$$

Finally, a current response for CV, i, is given by

$$i = FS_{\rm el} v_{\rm et} \tag{15}$$

Dimensionless CV Model. The aforementioned diffusion problem was redefined by using dimensionless parameters and solved by using a commercial finite element simulation package, COMSOL Multiphysics 5.4 (COMSOL, Burlington, MA). Specifically, eq 3 yielded

$$\frac{\partial C_{i}}{\partial \tau} = \left[\frac{\partial^{2} C_{i}}{\partial X^{2}} \right] \tag{16}$$

where

$$C_{i} = c_{i} / c_{0} \tag{17}$$

$$\tau = Fvt / RT \tag{18}$$

$$X = x\sqrt{\frac{Fv}{RTD}} \tag{19}$$

Dimensionless parameters were also introduced for boundary conditions (eqs S-8-S-10) to obtain

$$\left[\frac{\partial C_{\text{FcXY}}}{\partial X}\right]_{X=0} = V_{\text{et}} - V_{\text{ads}}$$
(12)

$$\left[\frac{\partial C_{\text{Fc}^{+}\text{XY}}}{\partial Z}\right]_{\text{Y=0}} = -V_{\text{et}} \tag{13}$$

$$\left[\frac{\partial \theta_{\text{FcXY}}}{\partial \tau}\right] = \frac{V_{\text{ads}}}{K} \tag{14}$$

where

$$K = \frac{\Gamma_s}{c_0} \sqrt{\frac{Fv}{DRT}}$$
 (15)

In these boundary conditions, the electron-transfer rate was normalized to yield

$$V_{\text{et}} = \Lambda_{\text{het}} \left[\left(\theta_{\text{ET}} \right)^{-\alpha_{\text{ET}}} C_{\text{Fc}^{+}\text{XY}} - \left(\theta_{\text{ET}} \right)^{1-\alpha_{\text{ET}}} C_{\text{FcXY}} \right]$$
(16)

with

$$\Lambda_{\text{het}} = k_0 \sqrt{\frac{RT}{DFv}} \tag{17}$$

The adsorption rate was given in the dimensionless form as

$$V_{\text{ads}} = \Lambda_{\text{ads}} \left(\theta_{\text{ads}}\right)^{\alpha_{\text{ads}}} C_{\text{FcXY}} \left(1 - \theta_{\text{FcXY}}\right) - \Lambda_{\text{dse}} \left(\theta_{\text{ads}}\right)^{\alpha_{\text{ads}} - 1} \theta_{\text{FcXY}}$$
(18)

with

$$\Lambda_{\rm ads} = k_{\rm ads}^0 \Gamma_s \sqrt{\frac{RT}{DFv}} \tag{19}$$

$$\Lambda_{\rm des} = k_{\rm des}^0 \frac{\Gamma_s}{c_o} \sqrt{\frac{RT}{DFv}}$$
 (20)

Adsorption equilibrium was achieved at t = 0 to yield

$$\frac{\Lambda_{\text{ads}}}{\Lambda_{\text{des}}} = \frac{\theta_{\text{FcXY}}}{1 - \theta_{\text{FcXY}}} \exp(-g'\theta_{\text{FcXY}})$$
(21)

Overall, $V_{\rm et}$ is equivalent to a normalized current response, I, to yield

$$I = V_{\text{et}} = \frac{i}{FS_{\text{el}}c_0} \sqrt{\frac{RT}{DFv}}$$
 (22)

where $FS_{\rm el}c_0\sqrt{DFv/RT}$ is a scaling factor and $V_{\rm et}=0.4463$ for a reversible CV without adsorption.

Table 1. Parameters Used in COMSOL and Dimensionless Models.

Parameters		Equation
COMSOL	Dimensionless Model	
Esw	$E_{\lambda} - E^0$	
Erange	$E_{\lambda} - E_{ m initial}$	
k0	$\Lambda_{\text{het}} = k_0 \sqrt{\frac{RT}{DFv}}$	17
theta0	$K = \frac{\Gamma_s}{c_0} \sqrt{\frac{Fv}{DRT}}$	15
Lamda	$rac{\Lambda_{ m ads}}{\Lambda_{ m des}}$	19 and 20
g	$g' = 2g\Gamma_s / RT$	10
kappa	$\Lambda_{\rm ads} = k_{\rm ads}^0 \Gamma_s \sqrt{\frac{RT}{DFv}}$	19
alpha	$lpha_{ m ET}$	5 and 6
beta	$lpha_{ m ads}$	8 and 9
gamma	$D_{\mathrm{Fe}^{+}\mathrm{XY}}$ / D	