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 Model. The geometry of a micropipet electrode is defined in cylindrical coordinates, 

where r and z are the coordinates in directions parallel and normal to the interface, respectively 

(Figure 1). The inner and outer solutions (phases 1 and 2, respectively) are denoted as phase 1 

and 2. The pipet size is defined by the inner and outer tip radii, a and rg. The inner and outer tip 

angles are given by θ1 and θ2. The pipet shaft is long enough for semi-infinite diffusion in the 

inner solution on a simulation time scale. The space behind the tip in the outer solution is large 

enough to accurately simulate back diffusion from behind the tip. 

An ion with the charge zi, ii
z , is initially present only in the outer solution so that simple 

transfer of the ion is defined by  

 ii
z  (outer solution) ii

z  (inner solution)     (1)  

When an ionophore with the charge zL, LL
z , forms complexes with the ion in the inner solution, 

the facilitated transfer is defined by 

 ii
z  (outer solution) + LL

z
s  (inner solution) LiiL

zsz

s


 (inner solution) (2) 

Since the ionophore is assumed to be in large excess, the facilitated transfer may be written 

simply as a first-order process by 

 ii
z  (outer solution)  ii

z  (inner solution as ionophore complexes) (3) 

The transfer of an ion that is initially present only in the inner 

solution is not simulated in this work. Theory is available for a 

steady-state voltammogram as obtained for facilitated transfer 

of an ion in large excess in the inner solution (Figure 1a).
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When an ionophore is in large excess or absent, i.e., simple 

transfer, in the outer solution, the following model is 

applicable simply by changing the initial conditions (see eqs 

10 and 11). 

 

Figure 1. Defined space domain 

for ion transfer at a tapered 

micropipet electrode. 
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Diffusion Problem. Diffusion in the inner solution is expressed as 
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where  tzrc ,,1  and D1 are the local concentration and diffusion coefficient of the ion in the 

inner solution, respectively. Diffusion in the outer solution is expressed as 
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where  tzrc ,,2  and D2 are the local concentration and diffusion coefficient of the transferring 

ion or its complex in the outer solution, respectively. 

The boundary condition at the liquid/liquid interface is given by 
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where kf and kb are the first-order heterogeneous rate constants for forward and reverse transfer, 

respectively (see eqs 1 and 3). The rate constants are given by the Butler-Volmer-type relation 

as
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where k
0
 is the standard rate constant,  is the transfer coefficient, 1

2  is the Galvani potential 

difference between the inner and outer solutions, and 0

i

1

2


   is the formal ion-transfer potential. 

In cyclic voltammetry, the potential is swept linearly at the rate of v from the initial potential, 

i

1

2 , and the sweep direction is reversed at the switching potential, λ

1

2 , maintaining the sweep 

rate. The triangle potential wave is expressed as 

 




















 

)(2
sinsin

)(2

i

1

2λ

1

2

1i

1

2λ

1

2
i

1

2

1

2









vt
   (9) 

The other boundary conditions are defined in Supporting Information. The initial conditions are 

given by 

   00,,1 zrc          (10) 

   02 0,, czrc           (11) 

where c0 is the bulk ion concentration. A current, i, is obtained by integrating flux of the 

transferring ion over the liquid/liquid interface, yielding 
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Simulation in the Dimensionless Form. The time-dependent diffusion problem was 

solved by COMSOL Multiphysics
®
 version 3.2 (COMSOL, Inc., Burlington, MA), which 

applies the finite element method. Simulation accuracy of this software package for two-phase 

diffusion processes was demonstrated previously.
5
 The diffusion problem defined above was 

solved in a dimensionless form (Supporting Information) such that a current response is 

normalized with respect to a limiting current at an inlaid disk-shaped interface, yielding i/iss, 

where acFDzi 02iss 4 . The normalized current is plotted with respect to iz  in cyclic 

voltammetry, where 0

i

1

2

1

2


  , or dimensionless time, τ, in chronoamperometry, where 

 
2

24

a

tD
          (13) 

Features of the current response depend on the tip geometry and following dimensionless 

parameters 
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ak
K    (dimensionless rate constant)    (14) 

γ = D1/D2  (diffusion coefficient ratio)    (15) 
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   (dimensionless scan rate)    (16) 

The diffusion problem defined above was solved using dimensionless parameters defined 

by 

 R = r/a          (17) 

 Z = z/a          (18) 

 C1(R,Z,τ) =   01 /,, ctzrc        (19) 

 C2(R,Z,τ) =   02 /,, ctzrc        (20) 
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The other dimensionless parameters are given by eqs 13–16. Diffusion processes (eqs 4 and 5) 

are expressed in the respective dimensionless forms as 
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The values of 0.25γ and 0.25 in eqs 22 and 23 were used as dimensionless diffusion coefficients 

in the corresponding phases. The boundary condition at the liquid/liquid interface (eq 6) is 

expressed using dimensionless parameters as 
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Eqs 24 and 25 are equivalent to the expression of a flux boundary condition in COMSOL 

Multiphysics. The triangle potential wave (eq 9) is given by 
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The other boundary conditions and initial condition are also given using dimensionless 

parameters (see the attached example). The simulation gives a dimensionless current normalized 

with respect to a limiting current at an inlaid disk-shaped interface. 
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