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Model for the EC Mechanism. The EC mechanism for facilitated IT is based on the
combination of simple IT at the interface and homogeneous ion—ionophore complexation in the organic
phase filled in a pipet (phase 1 in Figure 1). Specifically, simple IT is defined as
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where k; s and ki, are first-order heterogeneous rate constants. These rate constants are given by Butler-
Volmer-type relations as™ 2
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The rate constants are modulated by applying to the interface a triangle potential wave between the
initial potential, £;, and the switching potential, £, , at a constant rate, v, as given by
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where k, and kyq are association and dissociation rate constants,

respectively. In the presence of the excess amount of ionophore, the | .
homogeneous rate constants are related to each other by
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where k§ is defined as an apparent first-order rate constant.
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Figure 1. Defined space domain
for ion transfer at a tapered
micropipet electrode.




Diffusion Problem. A two-dimensional diffusion problem with the EC mechanism at a
micropipet-supported organic/water interface is defined using cylindrical coordinates, where r and z are
the coordinates in directions parallel and normal to the disk-shaped interface with the radius, a,
respectively (Figure 1).2 In the presence of the excess amount of ionophore, the diffusion of ions in free
and complex forms in the inner organic solution is expressed as
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where ¢,(r,zt) and c,(r,z) are local concentrations of the free ion and its ionophore complex,
respectively. The diffusion of the ion in the outer aqueous phase is described as
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where ¢, (r,z,t) is the local concentration of the transferring ion. The boundary condition at the
DCE/water interface is given by

D, {@} =D, {W} = kic (,0,8) - ki (r,0,1) (10)

A current response, i, is obtained from the flux of the transferring ion at the DCE/water solution
interface as
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where z; is used as the ionic charge to avoid conflict with the variable for the z coordinate.
Simulation in the Dimensionless Form. The diffusion problem was solved in a dimensionless
form using COMSOL Multiphysics version 3.5a°. Dimensionless parameters are given by
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Diffusion processes coupled with ion—ionophore complexation (eqs 7 and 8) are expressed in the
respective dimensionless forms as
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The boundary condition at the DCE/water interface (eq 10) is expressed using dimensionless parameters

as
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The triangle potential wave (eq 5) is given by
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Eqs 24 and 25 are equivalent to the expression of a flux boundary condition in COMSOL Multiphysics.
Other boundary conditions and initial condition are also given using dimensionless parameters (see the
attached example). The simulation gives a dimensionless current normalized with respect to a limiting
current at an inlaid disk-shaped interface as
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