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 Model. We simulated tip current (iT) –substrate potential (ES) voltammograms under various 
geometric and kinetic conditions by solving standard diffusion problems for SECM (Figure 1). The 
cyclic sweep of substrate potential at a constant rate, v, is initiated at t = 0 from ES >> 

� 

E ′ 0  toward the 
cathodic direction to drive a one-electron process at a macroscopic substrate as 

            kf,S 
 O + e  R         (1) 
            kb,S 
where kf,S and kb,S are first-order heterogeneous rate constants. The rate constants are given by the 
Butler–Volmer relation as1 

   

� 

kf,s = k 0 exp[−αF(ES − E ′ 0 ) /RT]      (2) 
   

� 

kb,s = k 0 exp[(1−α)F(ES − E ′ 0 ) /RT]      (3) 

The use of the Butler–Volmer model is justified in this work, which is mainly concerned about the 
simple substrate reactions that give a normal α value of 0.5 and reach a diffusion limitation at substrate 
potentials where the Marcus model may be more appropriate, e.g., 

� 

ES − E ′ 0 ≥ 0.15  V for a redox couple 
with a reorganization energy of 1 eV.2 Boundary conditions at insulating walls surrounding a tip and 
simulation space limits are given in Figure 1.  
 

 
 
Figure 1. Geometry of a SECM diffusion problem in the cylindrical coordinate. The simulation space 
(light blue) is surrounded by seven boundaries (red, blue, and green lines). Boundary conditions at the 
tip and the substrate (red lines) are given in the text. There is no normal flux at symmetry axis and 
insulating surfaces (blue lines). Simulation space limits are represented by green lines. The flux of 
species O at the red dot represents a substrate current. 
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 Diffusion Problem. A cylindrical coordinate was employed (Figure 1) to define time-dependent 
axisymmetric diffusion equations for oxidized and reduced forms of a redox couple, O and R, 
respectively, as 
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where cO(r, z, t) and cR(r, z, t) are concentrations of the respective redox mediators in the solution. 
Initially, only species O is present in the bulk solution, i.e., cO(r, z, 0) = cO

*  (the bulk concentration of O) 
and cR(r, z, 0) = 0. Other boundary conditions are defined in Figure 1. 

Simulation in the Dimensionless Form. The axisymmetric, time-dependent diffusion problems 
were solved using the following dimensionless parameters by employing COMSOL Multiphysics finite 
element package (version 3.5a, COMSOL, Inc., Burlington, MA). 
 R = r/a          (5) 

 Z = z/a          (6) 

 τ = 4DOt/a2         (7) 

 CO(R, Z, τ) = cO(r, z, t)/ cO
*        (8a) 

 CR(R, Z, τ) = cR(r, z, t)/ cO
*        (8b) 

 L = d / a   (dimensionless tip–substrate distance)  (9) 

 σ = a2Fv / 4DORT  (dimensionless sweep rate for substrate potential) (10) 

 ξ = DO / DR   (dimensionless diffusion coefficient ratio)  (11) 

 λO′ = k
0d / DO   (dimensionless standard ET rate constant)  (12) 

Diffusion equations for species O and R in the solution phase (eqs 5a and 5b, respectively) were also 
expressed in dimensionless forms as 
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where values of 0.25 and 0.25/ξ2 were used as dimensionless diffusion coefficients. Substrate boundary 
conditions were given by 
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with 

 K = k0a/DO         (15) 
 A current was calculated for the diffusion-limited detection of the original mediator, O, in the 
feedback mode or the substrate-generated species, R, in the SG–TC mode to give a pair of iT–Es 
voltammograms at the same tip–substrate distance. Positive tip (and substrate) currents are based on the 
reduction of the original mediator so that feedback and SG/TC tip responses appear in the upper and 
lower panels of the following graphs, respectively. The dimensionless flux of species O at the edge of a 
macroscopic substrate (red dot in Figure 1) represents a substrate current. A SECM diffusion problem 
was solved in a dimensionless form by employing the finite element method. A tip current, iT, was 
normalized with respect to a limiting current at an inlaid disk tip in the bulk solution, iT,∞, to obtain a 
dimensionless tip current, IT, as 
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The x values simulated for different RG values at L = 50 agree with theoretical values as given by3 
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