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 Model. A SECM diffusion problem was defined using the Marcus–Hush–Chidsey (MHC) 
model. The cyclic sweep of substrate potential at a constant rate, v, is initiated at t = 0 from ES >> 

� 

E ′ 0  
toward the cathodic direction to drive a one-electron process at a macroscopic substrate as 

            kf,S 
 O + e  R         (1) 
            kb,S 
where kf,S and kb,S are first-order heterogeneous rate constants. The cathodic rate constant is defined by 
the MHC formalism as1 
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with 

 E* = F(ES − E
′0 )

RT
        (3) 

 λ* = λ
kBT

         (4) 

 ε* = ε
kBT

         (5) 

where λ (eV) is the reorganization energy of the redox couple and ε is an integration variable. The 
potential-independence of k0 in this model implies that the density of states in the electrode is constant 
and independent of the potential and that the electronic interaction between a redox molecule and each 
energy level in the electrode is independent of the energy level and of the neighboring levels.2 The 
Nernst equation requires3 

  kS,b = kS,f exp(E
*)         (6) 



 2 

 
 
Figure 1. Geometry of a SECM diffusion problem in the cylindrical coordinate. The simulation space 
(light blue) is surrounded by seven boundaries (red, blue, and green lines). Boundary conditions at the 
tip and the substrate (red lines) are given in the text. There is no normal flux at symmetry axis and 
insulating surfaces (blue lines). Simulation space limits are represented by green lines. The flux of 
species O at the red dot represents a substrate current. 
 

Diffusion Problem. A cylindrical coordinate was employed (Figure 1) to define time-dependent 
axisymmetric diffusion equations for oxidized and reduced forms of a redox couple, O and R, 
respectively, as 
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where cO(r, z, t) and cR(r, z, t) are concentrations of the respective redox mediators in the solution. 
Initially, only species O is present in the bulk solution, i.e., cO(r, z, 0) = cO

*  (the bulk concentration of O) 
and cR(r, z, 0) = 0. Boundary conditions at insulating walls surrounding a tip and simulation space limits 
are given in Figure 1. 

Simulation in the Dimensionless Form. A SECM diffusion problem based on the Marcus–
Hush–Chidsey (MHC) formalism was solved in a dimensionless form using COMSOL Multiphysics 
(version 4.1, COMSOL, Inc., Burlington, MA) linked to Matlab (version 2010b, MathWorks, Natick, 
MA). Potential-dependent parts of rate constants thus calculated using Matlab were called externally 
from COMSOL Multiphysics through Livelink Matlab to define the boundary condition at the substrate 
surface and solve two-dimensional, time-dependent diffusion problems for SECM using the following 
dimensionless parameters as reported elsewhere4 

 L = d / a   (dimensionless tip–substrate distance)  (8) 

 σ = a2Fv / 4DORT  (dimensionless sweep rate for substrate potential) (9) 

 ξ = DO / DR   (dimensionless diffusion coefficient ratio)  (10) 
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 R = r/a          (11) 
 Z = z/a          (12) 

 τ = 4DOt/a2         (13) 

 CO(R, Z, τ) = cO(r, z, t)/ cO
*        (14a) 

 CR(R, Z, τ) = cR(r, z, t)/ cO
*        (14b) 

where d is the tip–substrate distance, a is the tip radius, v is the sweep rate for substrate potential, and DO 
and DR are diffusion coefficients of species O and R, respectively, in the bulk solution. Diffusion 
equations for species O and R in the solution phase (eqs 5a and 5b, respectively) were also expressed in 
dimensionless forms as 
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where values of 0.25 and 0.25/ξ2 were used as dimensionless diffusion coefficients. Substrate boundary 
conditions were given by 
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with 
 K = k0a/DO         (17) 

 λO′ = k
0d / DO   (dimensionless standard ET rate constant)  (18) 

 A tip current, iT, was normalized with respect to a limiting current at an inlaid disk tip in the bulk 
solution, iT,∞, to obtain a dimensionless tip current, IT, as 
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The x values simulated for different RG values at L = 50 agree with theoretical values as given by5 
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