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Abstract

We model the strategic interaction between a well owner and the Louisiana Department of

Natural Resources (LDNR) as a simultaneous move, incomplete information game. Well own-

ers choose whether to violate environmental regulations, and the LDNR chooses which wells it

inspects. We characterize the Bayesian Nash Equilibrium as depending on payoff parameters.

Using information on all wells in Louisiana, their operators as well as LDNR’s inspections and

their results from 2020 to 2023 we estimate the payoffs parameters of this game using a nested

fixed point (NFXP) penalized maximum likelihood (PMLE). Our estimated parameters align

intuitively with the observed inspection and violation rates and manage to reproduce average

rates similar to those in the data. Furthermore, we find heterogeneous externalities when well

owners violate but were not inspected. This study highlights the interactions between an en-

forcement agency and a well owner, providing important implications for regulatory oversight.
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1 Introduction

Hydraulic fracturing (fracking) became a widely used technique to extract natural gas from under-

ground rock formations such as shell rock. Fracking involves injecting water, sand, and xchemicals

at high pressure to fracture rock formations, allowing oil or gas to be extracted more easily. The

combination of horizontal drilling and hydraulic fracturing in the early 2000s revolutionized oil and

natural gas extraction (Bartik et al. (2019)). This innovation made reservoirs like shale formations

accessible and potentially profitable for (see Gamper-Rabindran (2018)). However, the rapid growth

of fracking has raised concerns regarding potential impacts on health outcomes, groundwater and

drinking water (Currie et al. (2017); Olmstead et al. (2013); Mason et al. (2015)), prompting calls

for increased regulatory oversight (Wynveen (2011)).

Fracking in Louisiana Louisiana has two main natural gas deposits: the Haynesville Shale,

located in northwest Louisiana, and the Tuscaloosa Marine Shale, located in central Louisiana.

The large-scale application of fracking in Louisiana started around 2007-2008, when companies like

Chesapeake Energy and others began developing the Haynesville Shale, one of the richest natural

gas formations in the U.S. This period marked the beginning of horizontal drilling and high-volume

hydraulic fracturing in the state, leading to a significant boom in natural gas production.1

The primary regulatory body overseeing the fracking industry in Louisiana is the Louisiana

Department of Natural Resources (LDNR), specifically through its Office of Conservation. The

LDNR is responsible for regulating hydraulic fracturing wells throughout their life cycle. This agency

approves and grants permits, monitors and can inspect any work done on cite, receives reports about

chemical used in the fracturing process, monitors water use and management, waste management,

and site deactivation. The LDNR can inspect the wells at any stage, from the moment work begins on

the site to after the wells are deactivated and plugged. The LDNR maintains a dedicated website

that provides up-to-date information on hydraulic fracturing activities, regulations, and related
1For an historical overview of the fracking technology and industry in the US, Europe and Asia see Gamper-

Rabindran (2018).
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environmental considerations. The LDNR documents all the inspection it conducts, their results

and whether fines were levied on the well owners.

Empirical Framework. We model the strategic interaction between a well owner and the

LDNR as a simultaneous move, incomplete information game (see Section 2). Well owners can choose

to violate or not violate environmental regulations, and the LDNR can choose to inspect. We observe

data on violations and inspections as reported by the LDNR and well owner’s characteristics. We

treat each well as an independent observation. We assume that well owners have private information

on the benefits of violating the regulations (the amount of cost saved). The inspector (LDNR) has

private information about the benefit of finding a violation in a certain location. The payoffs for

the players are modeled as linear combinations of observables and depend on a finite-dimensional

parameter. Since each player has private information and this is a simultaneous game, we use

Bayesian Nash Equilibrium (BNE) as the equilibrium concept.

This paper uses Nested Fixed Point (NFXP) algorithm within a maximum likelihood estimator

(MLE). For every guess of the structural parameters, the fixed-point algorithm finds the BNE for

each game (observation) in the sample. Then the likelihood function for this proposed parameter

is computed. The maximum likelihood procedure then finds the maximizing parameter. Generally,

finding the equilibrium for each game in the sample for each parameter considered can be a daunting

task (see Su and Judd (2012) and Bajari et al. (2013) for alternative approaches). we provide

conditions similar to the conditions in Aradillas-Lopez (2010) to show that a unique equilibrium

exists and, therefore, it is easy to find even for a large number of games. To improve the quality

of the structural parameters and to assure convergence we use external moment conditions to the

likelihood function as a penalty term. Specifically, we know the overall inspection rates and violation

rates in the data. The penalty term is the distance between the model predicted frequencies and

the observed frequencies (see Table 3).

Literature Review:

This paper contributes to the broader literature on environmental regulation. Harrington (1988)
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developed a model in which firms are divided into two groups, with one designated as the target

group based on their historical compliance records. Friesen (2003) extended this framework by

randomly assigning firms to groups, allowing firms to exit the target group based on observed

compliance. These studies find that such enforcement models can minimize inspection costs while

achieving the desired compliance rates. Shimshack and Ward (2008) empirically demonstrates that

credible enforcement, including fines, can reduce waste discharge below legally permitted levels.

Contributing to this literature, we present a case study of Louisiana, where regulators conduct

routine inspections and impose fines for violations. This paper examines the strategic interactions

between well owners, who weigh the benefits of cost reductions from violations against the risk of

penalties, and regulators, who face inspection costs and the potential negative externalities of failing

to regulate well owners effectively.

Additionally, this paper contributes to the broader literature on the economic impact of fracking.

Studies have shown that shale gas development has various negative effects. Muehlenbachs et al.

(2015) found that shale gas development impacts the housing market, with negative effects on the

values of groundwater-dependent homes located near wells. Other research has highlighted risks to

surface water quality (Olmstead et al., 2013) and potential threats to drinking water under certain

conditions (U.S. EPA, 2016).

Despite these negative impacts, fracking also generates positive welfare effects. Studies have

found increased welfare for natural gas consumers and producers (Bartik et al. (2019); (Hausman and

Kellogg, 2015)) and positive net financial impacts for local governments (Raimi and Newell, 2014).

While most of the existing literature examines the impacts of shale gas development, relatively few

studies focus on its regulatory aspects. This paper takes the insights from this literature to analyze

the strategic behaviors surrounding fracking inspections.
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2 Model

Suppose that each well pad,2 i, is characterized by a discrete characteristic r ∈ {r1, r2, . . . , rn} and a

vector of other characteristics X. In the context of the game we model, r represents the type of the

well owner. Specifically we consider a case where r ∈ {0, 1} where r = 1 means that the well owner

is one of the large operators and r = 0 otherwise. The type of the well owner affect the benefit (i.e.

cost saving) that the well owner can experience if they choose to violate the regulations. We denote

the value of violations as v(r) = v̄(r) + ξ where ξ is the well owner’s private information. Consider

the following 2 × 2 Bayesian game played between the monitoring agency (LDNR) and the well

owners. The actions available to the LDNR are ALDNR = {Inspect, Do not inspect} and the actions

available to the well owner are AWell = {Violate, Do not violate}. For each (a1, a2) ∈ ALDNR×AWell

let ULDNR(a1, a2) and UWell(a1, a2) denote the payoffs for player 1 (the LDNR) and player 2 (well

owner), respectively. The following table makes the payoff functions explicit.

LDNR
Well violate Do not violate

Inspect (−c, v̄(r)− ξ − j) (−c, 0)
Do not inspect (−x′β + ε, v̄(r)− ξ) (0, 0)

Table 1: Inspect-violate simultaneous game between the LDNR and well owners.

Equilibrium

We assume that the parameters θ = (β, j, c, {v̄(r)}r∈R) are known to the players as well as the

observables (r, x) but ξ is the private information of the well owner and ε is the private information of

the LDNR. We assume that the players have the correct common prior Fξ,ε for the joint distribution

of (ξ, ε). Let Ξ × E be the support of (ξ, ε). A pure strategy for the LDNR in the above Bayesian

game is a map tLDNR : E → {Inspect,Do not inspect}. Let TLDNR be the set of all these maps.
2A well pad refers to one location where potentially several wells are drilled in very close proximity. To simplify

the discussion we use the term ’well’ to mean a ’well pad’.
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Similarly, a strategy for a well owner is tWell : Ξ→ {V iolate,Do not violate}. Let TWell be the set

of all these maps.

Definition 1 In the above game, a pair of Bayesian Nash Equilibrium (BNE) strategies are two

maps t∗LDNR ∈ TLDNR and t∗Well ∈ TWell such that

i.

∫
ULDNR

(
t∗LDNR(ε), t

∗
Well(ξ)

)
dFξ,ε ≥

∫
ULDNR

(
t(ε), t∗Well(ξ)

)
dFξ,ε, ∀t ∈ TLDNR (1)

ii.

∫
ULDNR

(
t∗LDNR(ε), t

∗
Well(ξ)

)
dFξ,ε ≥

∫
ULDNR

(
t∗LDNR(ε), t(ξ)

)
dFξ,ε, ∀t ∈ TWell (2)

Both players use a threshold crossing strategy.In other words, there are ε̄ ∈ E and ξ̄ ∈ Ξ such

that for ε ≤ ε̄ the LDNR chooses Inspect and for ξ ≤ ξ̄ the well owner chooses V iolate. Both ε̄ and

ξ̄ depend on the parameter vector θ. As a result of this threshold crossing strategy profile, we can

write the probability that the LDNR chooses Inspect and that the well owner chooses V iolate in the

following way. Let ϕθ = Pr(V iolate|x; θ) and let ρθ = Pr(Inspect|x; θ) be the choice probabilities of

the players. Then,

ϕθ = Pr (ξ < v̄(r)− ρθ · j) = Fξ(v̄(r)− ρθ · j) (3)

ρθ = Pr

(
ε < x′β′x− ε

ϕθ

)
= Fε

(
x′β′x− ε

ϕθ

)
(4)

The inspected benefit for the inspection agency (LDNR) for inspecting a well pad with character-

istics (r, x) is (x′β − ε)ϕθ − c where c > 0 is the cost of inspection and ε is the well’s unobserved

characteristic.

Equations (3) and (4) need to be jointly satisfied. Given that both unobservables ξ and ε have

contiguous distributions, a solution for the above system of equations exists and is unique.

We assume that ξi and εi are independent of each other and accross observations (i.i.d. sample)

and distributed Logistic with a cummulative distribution function Λ(t) = ( et

1+et
). The equilibrium
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conditions in (3 and (4) can be written as,

ϕθ = F1(ρθ; r, x)− ϕθ (5)

and

ρθ = F2(ϕθ; r, x), (6)

where F1(ρθ; r, x) = Λ(v̄r − ρθ · j) and F2(ϕθ; r, x) = Λ(x′β − c
ϕθ
). Equations (5) and (6) represent

the best response functions of the LDNR and Well owners, respectively. Fix (r, x) and denote by

(ϕ∗
θ, ρ

∗
θ) the BNE of the game for the parameter θ = (β, j, c, {v̄r}r∈R). Since F1 is monotonically

decreasing in ρθ and F2 is monotonically increasing in ϕθ, there is a unique fixed-point solution to

the equation system in (5) and (6).

Figure 1: LDNR and Well owners best response functions
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Maximum Likelihood

Denote by yiLDNR ∈ {0, 1} the choice by the LDNR to inspect or not inspect well i. Denote by

yiWell ∈ {0, 1} the choice by the well owner i to violate or not violate. These choices as well as the

covariates (r, x) are observed for each well i.

Let yiLDNR = 1 if well i was inspected yiLDNR = 0 otherwise. Let yiWell = 1 if a violation was

detected in well i and yiWell = 0. We cannot observe violations or non-viloations in wells that were

not inspected. Therefore, given the parameter

Violate Don’t Violate
Inspect ρ∗ϕ∗ ρ∗(1− ϕ∗)

Don’t Inspect 1-ρ∗

Table 2: Inspection Decision Table

Therefore, the likelihood function is,

L(θ) =
∏
i

(
[1− ρ∗(ri, xi; θ)]

(1−yiLDNR)

· [ρ∗(ri, xi; θ)ϕ
∗(ri, xi; θ)]

yiLDNR·yiWell (7)

· [ρ∗(ri, xi; θ)(1− ϕ∗(ri, xi; θ))]
yiLDNR·(1−yiWell)

)

The log-likelihood is defined by taking a log of the product in (7). In addition to maximizing the

likelihood function we use the observed frequencies of inspections and violations. We, therefore, had

a penalty term to the log-likelihood function that captures deviations from the observed frequencies.

Let ϕ̂ and ρ̂ be the sample frequencies of inspections and violations, respectively. Denote by ϕ̃θ and

ρ̃θ the model induced frequencies of inspections and violations, respectively, given a parameter θ.
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We then find θ that maximizes,

LL(θ) =
∑
i

(
(1− yiLDNR) · log [1− ρ∗(ri, xi; θ)]

+ yiLDNR · yiWell · log [ρ∗(ri, xi; θ)ϕ
∗(ri, xi; θ)] (8)

+ yiLDNR · (1− yiWell) · log [ρ∗(ri, xi; θ)(1− ϕ∗(ri, xi; θ))]
)

+ λ
[
(ϕ̃θ − ϕ̄)2 + (ρ̃θ − ρ̄)2

]
,

where λ > 0 is a tuning parameter. We denote θ̂ = argmaxLL(θ) to be the estimator of the game

payoffs parameters. More details are given in Appendix A.

3 Data

We collected data from the Strategic Online Natural Resources Information System (SONRIS),

maintained by Louisiana’s Department of Energy and Natural Resources. SONRIS provides public

access to comprehensive information on the state’s natural resources, including oil and gas records,

well logs, production data, GIS maps, and coastal use permits. Our analysis focuses on fracking

well pads and their inspection reports. The well pads data includes details such as location, status

history, operators, well testing results, and production records. The inspection data covers all routine

lease facility inspections, including those for wells that were compliant and non-compliant, along

with associated penalty information.

From SONRIS, we extracted data on 6,057 fracking well pads with wells historically opened be-

tween 1967 and 2023. Using longitude and latitude coordinates from SONRIS and Census TIGER/Line

shapefiles, we mapped the locations of natural gas well pads across Louisiana (Figure 2). The ma-

jority of well pads in our data are concentrated in Louisiana’s northwest region, which coincide

with the region of the Haynesville Shale. The map we compile from the data we downloaded has
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a similar spatial distribution to the well fracking distribution in FracFocus (2024), maintained by

Ground Water Protection Council.

Figure 2: Hydraulic Fracturing Wells in Louisiana

Additionally, well pad data provides information on the fracking operators servicing the wells.

Using these data, we computed the market share of fracking operators by ranking them based on

the number of well pads they service. The cumulative well pad count is then calculated by rank and

market share is determined by dividing the cumulative well pad count by the total number of well

pads. Figure 3 illustrates the cumulative market share of well owners in 2020. The top ten biggest

fracking operators account for approximately 43% of the well pads, indicating a relatively low level

of market concentration.

This cumulative market share that we find in our data aligns with Wang and Krupnick (2015),

who report that the top thirty firms owned about 78% of natural gas wells. Moreover, for 2020,

the HHI was as low as 282, showing that this market is not concentrated. Market concentration

and market shares remained relatively stable from 2000 to 2023. In terms of the composition of the

biggest then operators, before 2020 there was a great deal of variation from year to year. From 2020
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to 2023, however, the top ten remained relatively stable, with some variation in their rankings.

Figure 3: Well Pads Market Share in 2020

For inspection reports, we analyzed routine lease facility inspections conducted between 2020

and 2023, totaling 24,718 inspections over four years. Table 3 provides a detailed breakdown of

inspection counts and violation rates, conditional on inspection, by year. Notably, the inspection

rate in 2020 was relatively higher than in any other year (29.2%), despite having the lowest violation

rate (3.5%). This noticeable difference may be attributed to the impacts of the COVID-19 pandemic.

Year 2020 2021 2022 2023
Inspected 29.21% 24.48% 25.16% 23.28%
Violated 3.56% 9.10% 8.60% 8.23%

Table 3: Inspection and violations annual frequencies

Figure 4 presents the age distribution of active wells from 2020 to 2023, where an active well

is defined as one that has not been plugged back. All producing wells are active well, but active

wells are not necessarily producing. If wells are not producing, they could be set for production

in the future and still labeled as active. Existing wells—those active before the given year—are

shown in blue, while new wells that became active that year are highlighted in red. If present, black
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bars indicate wells operated by companies not included in our fracking operators list. However, the

number of wells from non-fracking operators is negligible.

The number of new wells introduced each year during the period of our data is relatively small

compared to the total number of wells. New well additions remained above 200 wells until 2021 before

declining in subsequent years. Despite these variations, the overall shape of the age distribution

remains consistent across years, reflecting a stable pattern of well active and non-active wells.

Across all four years, the age distribution exhibits a right-skewed pattern, with the majority

of wells concentrated in the younger age brackets but a noticeable proportion persisting for over a

decade. A consistent peak is observed around the 10–12 year age range, suggesting that many wells

are producing or remain to produce in the future for an extended period. The distribution extends

up to approximately 17 years.

To complement the SONRIS dataset, we merged 2020 population data (United Nations-adjusted)

from WorldPop, which provides high-resolution gridded population estimates at a fine spatial scale

(e.g., 100m × 100m). For each well pad, we calculated population density within three zones: a 1-

kilometer radius, a 1–5 kilometer radius, and a 5–10 kilometer radius from the well pad’s location.

Figure 5 visualizes the population distribution, showing that relatively higher densities align with

the four largest cities: New Orleans, Baton Rouge, Lafayette, and Shreveport.

In general, the industry of hydraulic fracturing in Louisiana has been stable throughout the

years in our sample. Moreover, this industry is not concentrated (HHI=282). In addition, there

were no regulatory changes during the period of our changes.

4 Results

Mapping our data to the model, β includes standardized population densities within 1 km, 1–5

km, and 5–10 km radii. For v̄(r), we assume that it follows the form below. We interpret γ as an

additional benefit that top fracking operators gain from violating regulations.
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Figure 4: Age Distribution of Wells

v̄(r) = α + γ · 1(Top 10 Operatorsy−1), y ∈ {2020, 2021, 2022, 2023} (9)

All estimations in Table. 4 include only well pads where the earliest injection occurred after

2005.3 The parameters were estimated separately for each year from 2020 to 2023. To derive con-

fidence intervals, we employ an empirical bootstrap method with stratification at the parish level.

The bootstrap estimates are then sorted to determine the 2.5th and 97.5th percentiles, which de-

fine the confidence interval bounds. For each year, 100 bootstrap samples are used to compute the

confidence intervals.
3We also estimated the model using well pads that applied for a hydraulic fracturing stimulation permit and

obtained similar results.
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Table 4: Estimated Parameters by Year

2020 2021
Parameters (1) (2) (3) (1) (2) (3)
α -2.853 -2.852 -2.847 -2.088 -2.089 -2.089

(-3.07, -2.65) (-3.08, -2.58) (-3.39, -2.58) (-2.3, -1.93) (-2.34, -1.92) (-2.26, -1.93)
γ 0.699 0.699 0.699 0.699 0.699 0.699

(0.7, 0.7) (0.69, 0.71) (0.68, 0.72) (0.7, 0.7) (0.7, 0.7) (0.7, 0.7)
j 1.567 1.567 1.571 1.278 1.277 1.273

(1.51, 1.63) (1.49, 1.7) (-0.17, 1.88) (1.23, 1.33) (1.23, 1.34) (1.23, 1.32)
c 0.028 0.028 0.028 0.092 0.092 0.093

(0.02, 0.03) (0.02, 0.04) (0.02, 0.04) (0.07, 0.11) (0.07, 0.11) (0.08, 0.11)
Pop 1 radius km -0.016 0.065 0.092 -0.096 -0.116 -0.148

(-0.09, 0.05) (-0.03, 0.14) (-0.02, 0.18) (-0.19, -0.03) (-0.21, -0.03) (-0.26, -0.05)
Pop 1-5 radius km -0.137 -0.553 0.033 0.354

(-0.24, -0.02) (-0.8, -0.35) (-0.08, 0.13) (0.15, 0.55)
Pop 5-10 radius km 0.41 -0.354

(0.23, 0.57) (-0.56, -0.18)
Log likelihood -3570.0 -3566.0 -3554.0 -3509.0 -3509.0 -3501.0
Penalty 108 108 108 108 108 108

Mean ρ 0.309 0.309 0.309 0.248 0.248 0.248
Mean ϕ 0.034 0.034 0.035 0.083 0.083 0.083
N 5374 5374 5374 5570 5570 5570

(a) 2020 & 2021

2022 2023
Parameters (1) (2) (3) (1) (2) (3)
α -2.122 -2.1 -2.1 -2.116 -2.116 -2.114

(-2.31, -1.95) (-2.31, -1.95) (-2.3, -1.94) (-2.31, -1.96) (-2.3, -1.95) (-2.28, -1.95)
γ 0.699 0.699 0.699 0.699 0.699 0.699

(0.7, 0.7) (0.7, 0.7) (0.67, 0.72) (0.7, 0.7) (0.7, 0.7) (0.7, 0.7)
j 1.306 1.385 1.396 1.3 1.302 1.304

(1.35, 1.44) (1.35, 1.44) (1.36, 1.48) (1.27, 1.35) (1.27, 1.35) (1.25, 1.35)
c 0.084 0.084 0.084 0.098 0.098 0.098

(0.07, 0.1) (0.07, 0.1) (0.07, 0.1) (0.08, 0.11) (0.08, 0.12) (0.08, 0.12)
Pop 1 radius km 0.007 0.019 0.008 -0.037 -0.023 -0.035

(-0.05, 0.08) (-0.07, 0.12) (-0.12, 0.1) (-0.09, 0.02) (-0.12, 0.07) (-0.15, 0.04)
Pop 1-5 radius km -0.02 0.257 -0.025 0.218

(-0.1, 0.06) (0.12, 0.47) (-0.12, 0.08) (0.07, 0.41)
Pop 5-10 radius km -0.314 -0.275

(-0.5, -0.16) (-0.44, -0.13)
Log likelihood -3577.0 -3577.0 -3569.0 -3392.0 -3392.0 -3387.0
Penalty 108 108 108 108 108 108

Mean ρ 0.257 0.257 0.257 0.232 0.232 0.232
Mean ϕ 0.079 0.079 0.079 0.082 0.082 0.082
N 5586 5585 5585 5585 5585 5585

(b) 2022 & 2023
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Figure 5: Population Distribution in Louisiana

First, consider the estimated parameters α and γ, which constitute the term v̄(r) in the well

owner’s payoff. As noted in the data section, the top ten fracking operators remained unchanged

from 2020 to 2023. Consequently, γ remained consistent across these years, while slight variations

in α were driven by new well pads entering the sample. From 2021 to 2023, the number of new well

pads was relatively stable, resulting in a nearly identical α across those years. However, a significant

increase in new well pads from 2020 to 2021 led to a noticeably lower estimate for α in 2020.

Second, consider the parameters j, which represents the penalty for violations. Among the four

years, j is highest in 2020, although it exhibits greater variance in column (3). Theoretically, this

is reasonable given that the percentage of inspected well pads was lowest in 2020. Assuming this

is not due to COVID-19-related leniency, it may suggest that the penalty was sufficiently high to

incentivize well owners to remain compliant. In subsequent years, j is lower and remains virtually

unchanged, which aligns with the similar violation rates observed during these years.

The parameter c, representing the cost of inspection, follows a similar intuition as j. The in-

spection rate was highest in 2020, resulting in the lowest estimated c among the four years. When
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the cost of inspection is relatively low, LDNR can conduct more inspections in that year. Conse-

quently, as the inspection rate declined in subsequent years, it is reasonable to expect that the cost

of inspection increased.

Regarding the covariates, population density within a 1 km radius exhibits high variance, with

most models including zero in the confidence interval. The more relevant covariates are the pop-

ulation densities within the 1–5 km and 5–10 km radii. In most cases, the 1–5 km variable has a

positive coefficient, while the 5–10 km variable has a negative coefficient. Interestingly, in 2020, the

signs of these two covariates are reversed. The reason for this reversal is unclear, but it could be

year-specific issue.

We interpret the coefficient of the covariates to be the externalities that are considered by the

regulator. From 2021 to 2023, we interpret the positive coefficient for the 1–5 km radius as indicating

that higher population density in this range exacerbates negative externalities when well owners fail

to comply. This is intuitive, as residents closer to well pads are more likely to be directly affected

by fracking operations. However, it is interesting that the coefficient for the 5–10 km radius is

negative. This suggests that higher population density in this range is associated with a positive

externality. One possible explanation is that when fracking operators violate regulations, the benefit

that the fracking operators gain from cutting costs can contribute to local government or community

(Raimi and Newell (2014)), which may benefit communities farther from the well pads. Unlike those

within the 1–5 km radius, these communities do not experience the same negative externalities from

fracking operations.

Table 4 also presents the average ρ and ϕ, representing the mean probabilities of inspection and

violation predicted by the model using the estimated parameters, respectively. We find that these

estimates are reasonably close to the actual inspection and violation rates reported in Table 3. To

ensure that the mean values of ρ and ϕ remain aligned with the observed rates, we incorporate

a penalty term, as described in the penalized MLE in (8). For more details on the algorithm’s

mechanics, please refer to Appendix A.
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Overall, the model provides reasonable estimates. The stability of γ and the observed variations

in α highlight the role of industry structure and new well developments in shaping well owners’

payoffs. The patterns in j and c suggest that regulatory enforcement and inspection costs fluctuate

in response to changes in inspection rates and compliance behavior. Furthermore, the population

density reveals heterogeneous externalities, with closer communities bearing the brunt of negative

impacts while those farther away may experience indirect benefits through the well owners cut-

ting costs. The reversal of covariate signs in 2020 remains an open question, potentially linked to

the COVID-19 pandemic. Taken together, these results contribute to a broader understanding of

how regulatory mechanisms influence compliance decisions and externalities in the fracking indus-

try, offering valuable implications for policymakers aiming to balance enforcement efficiency and

community welfare.

5 Discussion

We explore the interactions between LDNR and well pad owners in the context of fracking in

Louisiana. Our findings demonstrate the relationship between enforcement mechanisms and exter-

nalities, having potential implications for policymakers. However, several aspects warrant further

consideration. For example, the sensitivity of our results to tuning parameters, using additional

covariates of interest in the payoff functions, and data challenges.

In terms of the estimation method, as pointed out by Bajari et al. (2013), the nested fixed-point

algorithm is highly sensitive to tuning parameters. The algorithm used to estimate the model’s pa-

rameters relies on a tuning parameter — specifically, a penalty term—that helps ensure convergence

to a fixed point for ρ and ϕ. Without a sufficiently high penalty term, the algorithm may fail to

find the fixed points, leading to divergence in the estimated parameters. To address this, we aim to

explore alternative methods that are more robust to tuning parameters.

The current model includes only nearby population density as a covariate, but we plan to in-
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corporate additional factors such as proximity to water sources, including rivers and lakes. These

variables may influence the probability of inspection or violation due to concerns from local com-

munities and LDNR. Drawing from the fracking literature, we will include more relevant covariates

that can capture the externalities that the LDNR face.

Our findings find peculiarity in the 2020 estimates, suggesting that the COVID-19 pandemic

may have impacted the inspection and enforcement process for that year. If the relatively lower

violation rate was due to regulatory leniency rather than an increase in penalty severity, this could

introduce bias into our estimates. The higher inspection rate could be a re-allocation of resources

from tasks that require higher interaction with people to tasks that require less interactions, which

lease inspections can be done in safe distance. To address this, we plan to collect and analyze 2024

data to determine whether the trends observed from 2021 to 2023 persist.

Our analysis has thus far considered a static model, but potential dynamic effects can be fur-

thered explored. For instance, well pads inspected in one year may be less likely to be inspected

the following year. Additionally, findings from the environmental regulation literature suggest that

compliance history could influence the probability of inspection. Well owners with a history of viola-

tions would face higher frequencies of inspections. Expanding the model to incorporate a historical

inspection and compliance records would provide a more comprehensive understanding of regulatory

behavior over time.

Furthermore, the model could be extended to account for potential network effects, either

through spatial proximity or shared ownership. If one well pad is inspected, nearby well pads or

those operated by the same owner may be less likely to violate compared to those outside the net-

work. Incorporating these interdependencies would help capture broader regulatory spillover effects

and improve the accuracy of enforcement models.

In summary, this study highlights the interaction between enforcement agency and well owners,

providing important implications for regulatory oversight. While the current analysis offers valuable

insights, several refinements and extensions would improve its robustness and scope. Future research

18



can provide a more comprehensive understanding of the factors shaping enforcement outcomes.
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A Algorithm

The algorithm used to estimate the parameters follows two main steps.

First, given an initial guess θ0, we find the fixed points for ρθ0 and ϕθ0 . To guarantee that we find

the fixed points for ρθ0,k and ϕθ0,k for each well pad k, we include a penalty score in the algorithm

to prevent ρ̄θ and ϕ̄θ, the averages of ρθ0,k and ϕθ0,k, from deviating too far from ρ̂ and ϕ̂, which

represent the probabilities of inspection and violation in the data. The penalty score is given by

λ
[
(ρ̂− ρ̄θ)

2 + (ϕ̂− ϕ̄θ)
2
]
,

where λ is the penalty term that assigns weight to the penalty score. The larger λ is, the more

we prioritize keeping ρ̄θ and ϕ̄θ close to ρ̂ and ϕ̂.

Second, we maximize the likelihood in (7) while incorporating the penalty score to obtain a new

set of parameters, θ1, using ρθ0 and ϕθ0 . The updated parameters are given by

θ0 + a(θ1 − θ0),

where a is the learning rate, initially set to 1. These two steps are repeated iteratively until

the parameters θl at iteration l converge within a tolerance of 10−5. The likelihood maximization is

performed using the SciPy Python package.

If, during the iteration process, θl leads to any of the following: (1) a drastically worsened log-

likelihood, (2) a drastically worsened penalty score, or (3) a failure to compute ρθl,k and ϕθl,k, the

algorithm reverts to the last best set of parameters, denoted as θb. Each occurrence of any of these

three cases causes the algorithm to update a by multiplying it by 0.8, i.e.,

a← 0.8× α.

The rule for determining θb is that θb+1 changes by more than a magnitude of 1. After revert-
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ing, the iteration continues from θb with small perturbations. If the reversion to θb occurs three

consecutive times, the algorithm terminates after five such occurrences.
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