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Abstract

Economic theory often provides us with qualitative information on the properties
of the functions in a model but rarely indicates their explicit functional form. Among
these properties one can find monotonicity, concavity and supermodularity, which involve
restricting the sign of the regression’s partial derivatives. This paper focuses on such
restrictions and provides a sieve estimator based on nonparametric least squares. The
estimator enjoys three main advantages: it can handle a variety of restrictions, separately
or simultaneously; it is easy to implement; and its geometric interpretation highlights the
small sample benefits from using prior information on the shape of the regression function.
The last is achieved by evaluating the metric entropy of the space of shape-restricted
functions. The small sample efficiency gains are approximated.
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1 Introduction

Shape restricted estimation involves finding an optimal approximation for a function of eco-

nomic interest from a family of functions that share a common property or properties. The

literature on shape restricted estimation, motivated by economic theory, considers a variety

of possible properties including monotonicity, concavity, and supermodularity, each of which

involves restricting the sign of the function’s partial derivatives. This paper focuses on re-

strictions on partial derivatives in a regression model and provides a nonparametric sieve

estimator that imposes shape restrictions on the regression function. The sieve estimator

proposed here is able to take into account a combination of shape restrictions and obtains

the optimal rate of convergence.

Incorporating monotonicity into the estimation of regression functions dates back to the

literature on isotonic regression. An early exposition of this literature appears in Barlow,

Bartholomew, Bremner & Brunk (1972) and later in Robertson, Wright & Dykstra (1988).

Consistency of monotonic regression is proved in Hanson, Pledger & Wright (1973) and of

concave regression in Hanson & Pledger (1976). Smoothed versions of the estimators in this

early literature can be found in Mukerjee (1988) and Mammen (1991). Dykstra (1983) and

Goldman & Ruud (1993) provide efficient algorithms to compute these estimators.

The literature on isotonic regression is based on determining the fitted values of the

estimator on a finite set of points (usually the observed covariates) and uses a set of inequality

constraints to impose restrictions on the value of the regression function at these points. The

algorithms used to compute these estimators can be computationally intensive and involve

a large set of inequality restrictions and require a special structure of the support.1 Series

estimators provide a convenient alternative to the isotonic regression literature. Gallant

(1981, 1982) proposes the Fourier Flexible Form (FFF) estimator which is based on the

trigonometric functions base. He identifies the set of restrictions on the coefficients of the FFF

expansion that are sufficient to impose convexity. Monotonicity, however, cannot be easily

imposed on the estimator. Gallant (1982) discusses additional restrictions like homogeneity

1Supermodularity (defined in the next section) requires lattice structure. Data coming from a continuous
distribution will not have a lattice structure almost surely. For more discussion on this see Beresteanu (2001).
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and homotheticity, which are not covered here. Gallant & Golub (1984) discuss also quasi-

convexity for FFF estimators. Especially convenient series estimators are those based on

B-splines. This is a local base of functions that produces a piece-wise polynomial spline (see

Schumaker (1981) and Chui (1992)). He & Shi (1998) uses B-splines to form a least absolute

deviations estimator under monotonicity constraints. Dole (1999) constructs an estimator

which can be monotone and concave using least squares and is based on smoothing splines.

Both papers deal with the one dimensional covariate case.2

This paper generalizes these methods to the family of restrictions on partial derivatives

of a possibly multi-dimensional regression function. The estimator proposed in this paper is

a series estimator using a B-spline wavelet base of functions. A grid of points is constructed

on the support of the covariates. The estimator imposes restrictions on the values of the

estimator at the grid points and then uses interpolation to compute the predicted values

in any desired point on the support. This yields a finite number of constraints which are

translated to linear inequality restrictions on the values of the coefficients of the B-spline

wavelet functions. The grid structure solves the problem of imposing complex restrictions on

the regression functions in a multidimensional setting.

Using shape restrictions in nonparametric estimation in economics is discussed in Matzkin

(1994). She shows that in some models, where there is lack of identification, shape restrictions

may have identifying power. This paper, however, focuses on the following nonparametric

regression model

Y = f(X) + ε

where E(ε|X) = 0 a.s. and f ∈ �, a family of functions possessing a certain common

property. Although identification of f is not an issue, prior information on the regression

function is valuable. Section 3.2 shows that incorporating restrictions on partial derivatives

in the estimation procedure does not yield a higher rate of convergence. In fact the shape

restricted estimator achieves the optimal rate of convergence computed by Stone (1980) as the

estimator that ignores the prior information would achieve. The benefits of shape-restricted

2Dole (1999) applies his method in a semi-linear setting where the nonparametric part is one dimensional
and is restricted to be monotone and concave. I discuss the semi-linear model in Section 4.1.
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estimation show in the small sample properties of the estimator. The expected distance

between the estimator and the true regression function shrinks as the number of observations

grows:

E
∣∣∣
∣∣∣f̂n − f

∣∣∣
∣∣∣ ≤ Cn−r

where n is the number of observations and f̂n is some optimal nonparametric estimator based

on a sample of n observations. Section 3.2 shows that the constant C can be significantly

reduced if the estimator takes into account the prior information. This will result in a better

performance of the estimator in small samples. The estimator proposed in this paper is a

solution to a quadratic programming problem. This formulation of the estimator yields a

geometric interpretation of the estimation problem that allows us to quantify the reduction

of the constant. Section 3.3 shows that these gains can be substantial. The Monte-Carlo

experiment described in Section 5 supports these results.

The estimator proposed here enjoys two additional advantages. First, the estimator can

handle a variety of different restrictions with a multidimensional covariate. Any restriction

on the regression function that involves signing a partial derivative of any order can be

treated by this method. It is also possible to allow a number of such restrictions to hold

simultaneously. For example, a regression function can be constrained to be both monotone

and supermodular using the same technique. Second, the estimator is easy to implement

since it is a solution of a quadratic programing problem with linear inequality constraints.

The quadratic programing problem is easy to set and exact formulas for the matrices and

vectors in this quadratic problem are given.

For tractability, the discussion about multi-dimensional covariates uses the two dimen-

sional case. All results can be extended to a higher dimensional case but not without a

considerable technical effort. In shape-restricted estimation, the curse of dimensionality has

an additional effect: the number of constraints, needed to assure that the estimator satisfies

certain restrictions on partial derivatives, increases with dimensionality. An increase in the

number of constraints in addition to the usual curse of dimensionality can make the problem

computationally cumbersome.
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The remainder of the paper is structured as follows. Section 2 lays the foundations

for estimation under restrictions on partial derivatives. Section 3 describes the asymptotic

properties of the proposed estimator and the gains from using prior information on the shape

of the regression function. Section 4 discusses two extensions: (1) a semi-linear model with

restrictions on the nonparametric part of the model and (2) testing restrictions on partial

derivatives in a nonparametric context. Section 5 presents a short Monte Carlo study on

the efficiency and rates of convergence of the estimators. Section 7 concludes. Appendix A

explains how to construct the B-spline wavelet basis functions used in this paper. Appendix

B provides proofs and technical notes and Appendix C summarizes the Monte Carlo results

for Section 5.

2 Restrictions on Partial Derivatives and their Difference Ana-

log

The objective of this section is to describe a regression estimator that takes into account a

variety of assumptions on the shape of the regression function but does not use functional

form assumptions. The focus of this paper is on shape restrictions where the signs of cer-

tain partial derivatives of the regression function are determined. Monotonicity, concavity

and supermodularity are three examples of such restrictions on partial derivatives. This sec-

tion focuses on the technical description of the estimator. A discussion on the asymptotic

properties is left for the next section.

Consider the following regression model

(1) Y = f(X) + ε,

where Y is a random variable, X is a random vector and ε is a random variable satisfying

E(ε|X) = 0. The regression function f(·) is assumed to belong to a class of functions, �,
that satisfies certain regulatory conditions. These conditions are further discussed in Section

3.

A least squares estimator of the regression function in (1) is based on the empirical analog
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of the expected value of a square loss function and is the solution to the following problem

(2) min
f∈�

1

n

n∑

i=1

(yi − f(xi))2 .

Often when the regression function is assumed to belong to a large class of functions,3 the

least squares estimator is inconsistent. The method of sieves, suggested by Genander (1981),

proposes the following remedy. Construct a sequence of approximating spaces �1,�2, ...
called a sieve. When given a finite sample of size n, perform the optimization in (2) using

�n instead of �:

(3) min
f∈�n

1

n

n∑

i=1

(yi − f̂(xi))2 .

Genander (1981) shows that controlling the rate at which the sieve sequence converges to �
provides a consistent estimator. Shen & Wong (1994) show that an appropriate choice of this

rate leads to an estimator that achieves an optimal rate of convergence. The sieve method

is also a convenient framework for taking into account shape restrictions on the estimator.

This flexibility is demonstrated in this section.

Our task in this section is to build a sieve sequence that satisfies the desired shape

restriction. We proceed in three steps. First, shape restrictions are translated into linear

inequality constraints to be imposed on the values the estimator takes on a (pre-chosen)

equidistant grid. Second, various interpolation schemes are discussed. Each interpolation

scheme is represented as a series estimator where each interpolation scheme means a different

choice of a function base for the series expansion. The outcome of this stage is a curve that is

defined on the support of the covariates and that satisfies the shape restrictions at least on the

equidistant grid. Finally, shape preserving interpolation and shape preserving function bases

are given. This step assures that the estimator satisfies the required restrictions globally on

the support.

The following notations are used throughout the paper. The support of the marginal

distribution of the covariate X is S = [0, 1] in the univariate case and S = [0, 1]2 in the

3Masures for the size of functions spaces are described in Section 3.3.
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bivariate case.4 All vectors are row vectors. Let � the space of all continuous functions f :

S → 	d. For any vector v = (v1, ..., vm) with entries from S and a function f : S → 	 define

f(v) = (f(v1), ..., f(vm)) and similarly for a matrix A = (aij)i=1..m,j=1..n and f : S → 	,
define f(A) = (f(aij))i=1..m,j=1..n. Furthermore, for a vector v, v ≤ 0 means coordinate wise

and for a matrix A, A ≤ 0 means cell wise. Finally, ⊗ is the Kronecker product for matrices

and for a matrix A of size k × l, vec(A) = (a11, ..., a1l, ..., ak1, ..., akl).

2.1 Imposing shape restrictions on an equidistant grid

Properties like monotonicity, concavity and supermodularity can be defined for non-differentiable

functions as well. In this section, I define and use a difference analogue of a partial derivative.

For notational convenience as well as for practical reasons, the support of each covariate is

assumed to be [0, 1]. In what follows, this support is divided into equal parts and the desired

restrictions are imposed on this discrete set of points.

Definition 1 A vector Γm = (γ0, ..., γm) of length m+ 1 is called a grid vector on [0, 1] if

0 ≤ γ0 < γ1 < ... < γm ≤ 1. It is called an equidistant grid vector if also γi − γi−1 =

γj − γj−1 for all 1 ≤ i, j ≤ m. We denote by Γ̄m the equidistant grid vector
(
0, 1m ,

2
m , .., 1

)
.

In this paper the regression function f (X) in (1) is estimated via a series expansion based

on local functions defined on a grid of points. In definition 1 and through out the paper when

we refer to equidistant grid vectors, sub-index m sets the mesh of the grid on which our series

of functions is defined and determines the accuracy of the approximations.

Monotonicity can be written in terms of non-negative first differences as follows.

Definition 2 A function f ∈ � has a non-negative first difference if for any grid vector
Γ1 = (γ0, γ1),

(−1, 1) · f(Γ1)′ ≥ 0 .

Non-negative first difference is just another name for monotonicity: v0 ≤ v1 ⇒ f(v1) −
f(v0) ≥ 0. Convexity constrains the second difference: v0 < v1 < v2 ⇒ [f(v2)− f(v1)] −
[f(v1)− f(v0)] ≥ 0.

4Some departures from the [0, 1]2 support are discussed in section 2.4.4.
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Definition 3 A function f ∈ � has a non-negative second difference if for any equidis-
tant grid vector Γ2 = (γ0, γ1, γ2),

(−1, 1) ·
(
−1 1 0
0 −1 1

)
· f(Γ2)′ ≥ 0 .

We now generalize the difference analogue of partial derivatives to any order using differ-

entiation matrices.

Definition 4 A differentiation matrix of size p is a p× (p+1) matrix and is denoted by

Dp and defined as

Dp =






−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

...
0 · · · 0 −1 1 0
0 · · · 0 0 −1 1






p×(p+1)

Definition 5 A function f ∈ � has a non-negative pth difference if for any equidistant

grid vector Γp = (γ0, γ1, ..., γp),

D1 · ... ·Dp · f(Γp)′ ≥ 0 .

Constraining the least squares problem in (3) by D1 · ... ·Dp · f(Γp)′ ≥ 0 for any possible

grid vector Γp implies infinite number of constraints. These infinite number of restrictions

are impossible to implement with a finite sample. We can circumvent this problem using a

sieve estimator. Starting with monotonicity, consider an estimator f̂ which is monotone on

the equidistant grid Γ̄m:

(4) f̂(0) ≤ f̂( 1
m
) ≤ ... ≤ f̂(1).

The above impliesm inequality constraints to be imposed on the estimator. These restrictions

can be written using matrix notations as Dm · f̂(Γ̄m)′ ≥ 0. Similarly, the non-negative second

difference (i.e. convexity) implies the following m− 1 restrictions on f̂ :

(5) f̂(
1

m
)− f̂(0) ≤ f̂( 2

m
)− f̂( 1

m
) ≤ ... ≤ f̂(1)− f̂(m− 1

m
),
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or in matrix notations, Dm−1 ·Dm · f̂(Γ̄m)′ ≥ 0. Using the same argument, restricting the

pth difference to be non-negative yields m− p+ 1 restrictions5 that can be written as

(6) Dm−p+1 · . . . ·Dm−1 ·Dm · f̂(Γ̄m)′ ≥ 0.

The two-dimensional case involves additional notations and definitions.

Definition 6 A matrix Γ(m1,m2) of dimensions (m1+1)×(m2+1) is called an grid matrix

based on the equidistant grid vectors (γ0, ..., γm1
) and (δ0, ..., δm2), if

Γ(m1,m2) =






(γ0, δ0) · · · (γ0, δm2)
...

...
(γm1

, δ0) · · · (γm1
, δm2)




 .

Let Γ̄(m1,m2) denotes the equidistant grid matrix which is based on the equidistant grid

vectors Γ̄m1 and Γ̄m2.

Definition 7 A bivariate function f has a non-negative (1, 1)th difference if for any grid

matrix Γ(1,1)

[(−1, 1)⊗ (−1, 1)] · vec
(
f(Γ(1,1))

)′ ≥ 0.

Functions with non-negative (1, 1)th difference are called supermodular functions.6 Fi-

nally, we extend the above definitions to mixed derivatives of order (p1, p2).

Definition 8 A bivariate function f has a non-negative (p1, p2)th difference if for any

equidistant grid matrix Γ(p1,p2)

[(D1 · ... ·Dp2)⊗ (D1 · ... ·Dp1)] · vec
(
f
(
Γ(p1,p2)

))′ ≥ 0.

Following the arguments leading to (6), an estimator f̂ has (p1, p2)
th negative difference

on an equidistant grid matrix Γ̄(m1,m2) if

(7) [(−Dm2−p2+1 · ... ·Dm2)⊗ (Dm1−p1+1 · ... ·Dm1)] · vec(f(Γ̄(m1,m2)))
′ ≥ 0,

5Generally, we cannot impose restrictions on a derivative of order higher than the number of segments in
the grid. Therefore, we require that p ≤ m.

6Proof: (−1, 1)⊗ (−1, 1) = (1,−1,−1, 1), vec(f(Γ(1,1))) = (f(γ0, δ0), f(γ0, δ1), f(γ1, δ0), f(γ1, δ1)). There-
fore, (−1, 1) ⊗ (−1, 1) · vec(f(Γ(1,1)))

′ ≥ 0 implies +f(γ0, δ0) − f(γ0, δ1) − f(γ1, δ0) + f(γ1, δ1) ≥ 0 which is
equivalent to supermodularity of f .
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where D0 = (1). Here (7) involves (m1 − p1)(m2 − p2) inequalities.
The least squares estimator in (3) can be written as a quadratic programing problem with

linear inequality constraints. Restricting the (p1, p2)
th partial derivative (or its difference

analogue) using a grid of mesh m = (m1,m2) translates to the following problem:7

(8) s.t.
min
g
||y −Bg||2
Ap
mg ≥ 0

where g = vec
(
f̂
(
Γ̄m

))
is a (m1 + 1)(m2 + 1) × 1 vector representing the values that the

estimator takes on the grid matrix and

Ap
m = ((Dm2−p2+1 · ... ·Dm2)⊗ (−Dm1−p1+1 · ... ·Dm1))

sets the linear inequality constraints assuring that the estimator satisfies the shape restrictions

on the grid. B is a N × (m1 + 1)(m2 + 1) matrix of weights depending on the observations

and the interpolation scheme that we employ. The next section explains how to construct

the weight matrix B.

2.2 Interpolation

A comparison between (3) and (8) reveals thatBg in (8) corresponds to the vector of predicted

values on the sample points (f̂(x1), ..., f̂(xn)) in (3). In other words, if g represents the values

that the estimator takes on the equidistant grid, then B represents the way in which these

values are weighted to yield the predicted values of the estimator at the sample points {xi}.
These weights depend on how we interpolate the values that the estimator takes on the

grid to the whole domain. The approach here is to represent the interpolation using a series

estimator. Thus, different choices of basis functions represent different choices of interpolation

schemes.

The series expansion implemented in this paper uses the normalized B-splines base.8

Generally speaking, normalized B-splines are a base of local functions centered around the

7To simplify the discussion on the asymptotic properties of the estimators in subsequent sections, we use
the Euclidean norm in (8). The Euclidean norm can be replaced with the absolute norm which leads to
a constrained LAD estimator. If one is willing to asume a specific distribution for the error term in the
regression function, a constrained maximum likelihood estimator is feasible here. Finally, weighted versions
of these estimators can be considered as well.

8For a comprehensive discussion of B-splines and alternative series estimators see Chen (2007).
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grid points. As is shown below, using this base yields piece-wise polynomial functions whose

properties are controlled by the degree of smoothness of the functions composing the B-spline

base and by the coefficients put on this base. In this section we look first at the second factor

- the coefficients of the expansion. In order to simplify the discussion, in this section, I

fix the base of normalized B-splines corresponding to piecewise linear splines defined on the

equidistant grid vector Γ̄m. The role of the smoothness of the base functions and B-splines

of higher degree of smoothness is discussed in the next section.

We denote the base of piece-wise linear functions on Γ̄m by Ψm. Starting with the

univariate case, let the base of functions be composed of the following m+ 1 functions

(9) Ψm =
[
ψm,0, ψm,1, ..., ψm,m

]

where

(10) ψm,j(x) =

{
1− |mx− j| x ∈

[
j−1
m , j+1m

]
∩ [0, 1]

0 otherwise

for j = 0, ...,m. This is simply a series of triangular kernel functions (see Figure 1). The

next section discusses other choices of base functions as well as the choice of m. The set of

all possible (linear) expansions based on Ψ is9

(11) � (Ψm) =

{

f (x) =
m∑

i=0

θiψi (x) : θ ∈ 	m+1

}

where θ is m+ 1 column vector of coefficients.

In the two-dimensional case define Ψ = vec(Ψ′m1
Ψm2) to be the tensor product of the two

bases Ψm1 and Ψm2 . Therefore, for m = (m1,m2), the piecewise linear spline base in two

dimensions is

Ψm

(
x1, x2

)
=

[ψm1,0

(
x1
)
ψm2,0(x

2), ..., ψm1,0(x
1)ψm2,m2

(x2),
ψm1,1(x

1)ψm2,0(x
2), ..., ψm1,1(x

1)ψm2,m2
(x2),

...
ψm1,m1

(x1)ψm2,0(x
2), ..., ψm1,m1

(x1)ψm2,m2
(x2)]

.(12)

9Note that the sieve sequence {�m(Ψm(x))}
∞

m=1 is a non-nested sequence in the sense that �m(Ψm(x)) �
�m+1(Ψm+1(x)).
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0   1/5  2/5

Figure 1: Ψ5 corresponding to the piecewise-linear spline estimator
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Meaning that Ψm is the (m1 + 1)(m2 + 1) vector of base functions that consists of all the

possible multiplications of functions from Ψm1(x
1) and from Ψm2(x

2). The set of all possible

finite expansions is

(13) �(Ψm) =





f
(
x1, x2

)
=

m1∑

i=0

m2∑

j=1

θijψm1,i

(
x1
)
ψm2,j

(
x2
)
: θ ∈ 	(m1+1)(m2+1)






where θ is (m1 + 1)(m2 + 1) column vector of coefficients

The least squares estimator based on the functional expansion Ψm is:

(14) s.t.

min
θ

1
N

∑N
i=1

(
yi −Ψm(x1i , x

2
i )θ
)2

Ap
mΨm(vec(Γ̄m))θ ≥ 0

where Γ̄m is the (m1 + 1) × (m2 + 1) equally spaced grid matrix and Ψm(vec(Γ̄m)) is the

(m1 + 1)(m2 + 1) × (m1 + 1)(m2 + 1) matrix whose columns are the values of the vector

of functions Ψm evaluated at the grid points. Ψm(x1i , x
2
i ) is the N × (m1 + 1)(m2 + 1)

matrix of base functions evaluated at the observations and therefore Ψm(x1i , x
2
i )θ represents

the expansion based on the base Ψm evaluated at the observation points. In other words

f̂
(
x1i , x

2
i

)
= Ψm(x

1
i , x

2
i )θ.

Any function base other than Ψm can fit into the framework described above. However,

the B-spline yielding the piecewise linear spline simplifies the estimator in (14). In this specific

case Ψm(vec(Γ̄m)) is equal to the identity matrix and therefore θ represents the values that

the estimator takes on the grid points. Thus, the set of constraints in (14) can be simply

written as Ap
mθ

′ ≥ 0.

2.3 Shape preserving Interpolation

We are now ready to generalize the discussion on B-splines to smoother bases. Let �p be

the set of functions in � that satisfy pth non-negative difference everywhere. Let �p(Ψm) be

the set of functions satisfying the pth non-negative difference restrictions on the equidistant

grid Γ̄m and use the interpolation scheme induced by the function basis Ψm. This section

identifies a basis Ψm such that �p(Ψm) ⊂ �p. In other words, a basis Ψm which induces a

shape preserving interpolation.
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The basis of functions used in the previous two sections yields a piecewise linear approxi-

mation. A greater degree of smoothness can be achieved using B-splines based on polynomials

of higher degree. These B-spline functions are defined in Appendix A (see also Schumaker

(1981, section 4.4)). The degree of the B-spline function is denoted by l and is assumed to

be an even number such that l ≥ 2. Using B-splines of higher degree requires extending the

grid points beyond the support of the function.

Definition 9 We denote by Γ̄lm =
(
−l/2+1

m , ...−1m , 0,
1
m , ...,

m−1
m , 1, m+1m , ..m+l/2−1m

)
the ex-

tended equidistant grid vector of length m + l − 1. The extended equidistant grid

matrix Γ̄
(l1,l2)
(m1,m2)

is based on the extended equidistant grid vectors Γ̄l1m1
and Γ̄l2m2

and has

dimensions (m1 + l1 − 1)× (m2 + l2 − 1).

Note that when l = 2 the extended equidistant grid vector becomes the regular equidistant

grid vector, i.e. Γ̄2m = Γ̄m.

Let Ψl
m be the basis functions of normalized B-splines of degree l ≥ 2 centered around

the extended equidistant grid Γ̄lm. For example, the basis defined in (10) is a normalized B-

splines of degree two and Figure 1 depicts Ψ25. The following theorem specifies the conditions

under which the basis Ψl
m is shape preserving.

Theorem 1 For any m = (m1,m2) and p = (p1, p2) such that m1 > p1 and m2 > p2.

Let �p
m(Ψl

m) =
{
θ′Ψm : Ap

mθ
′Ψl

m(vec(Γ̄l−2m )) ≥ 0
}
, if m1 > l1 ≥ p1 and m2 > l2 ≥ p2 then

�p
m

(
Ψl
m

)
⊂ �p.

The proof appears in Appendix B.

The piece-wise linear spline based onΨ2m is sufficient for imposing restrictions like monotonic-

ity, concavity or supermodularity. The higher order B-spline bases are needed if one has to

impose restrictions on derivatives of order higher than two or if one wants the estimator to

be smoother than piece-wise linear. Section 3.2 shows that higher order B-splines are also

needed in order to achieve higher rates of convergence if the regression function is known to

belong to a class of highly differentiable functions (see Theorem 3 bellow).
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2.4 Practical Implementation of the Estimator

This section discusses the computational aspects of finding the solution to the quadratic pro-

gramming problem in (14). A unique solution to this problem is shown to exist. Combining

several shape restrictions and extrapolation are discussed next.

2.4.1 Solvability

Suppose we are given a sample (y, x), where y is aN×1 vector, x is aN×k matrix of covariates

with k ∈ {1, 2}. Fix m and l and let D be the number of grid points in the equidistant grid

vector or matrix.10 The quadratic programing problem in (14) can be written as

(15) s.t
minθ∈�D θ

′Hθ + 2fθ

Rθ ≤ 0

where f = −y′Ψl
m(x), H = Ψl

m(x)′Ψl
m(x) and R = −Ap

mΨl
m(vec(Γ̄lm)). This quadratic

programing problem has a unique solution if H is a positive definite matrix. This is true if

Ψl
m (x) is a full rank matrix. To satisfy this condition we need that the sample is sufficiently

spread over the whole support set [0, 1]k. In section 2.4.4 I discuss the case where Ψl
m (x) is

not a full rank matrix and suggest solutions. In the rest of this section I assume that H is

indeed a positive definite matrix. Algorithms for solving the quadratic programing problem

(15) are well known (e.g. Luenberger (1984, Chapter 14)). The problem, however, can be

computationally intensive as D and the number of rows in R gets bigger. An algorithm for

this problem when D and R are large is discussed in Goldman & Ruud (1993).

The set {θ : Rθ ≤ 0} is an unbounded set. It can be useful to establish upper and lower

bounds on the values that θ should take. The following theorem extends the results from

Robertson et al. (1988) Theorems 1.3.1 to 1.3.4 and provides such bounds under some con-

ditions on the constraints matrix R.

Theorem 2 Let G =
{
θ ∈ 	D : Rθ ≤ 0

}
. If G is a sub-lattice (i.e. ∀θ1, θ2 ∈ G also

θ1 ∨ θ2 ∈ G and θ1 ∧ θ2 ∈ G where ∨ and ∧ are taken point-wise) that contains the point
10D = m + l − 1 in the one dimensional case and D = (m1 + l1 − 1)(m2 + l2 − 1) in the two dimensional

case.
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(1, 1, .., 1) then there is a unique solution θ∗ ∈ G to (15) such that each coordinate of θ∗ is

bounded between min(Y ) and max(Y ).

Theorem 2 is useful in two important cases. The first is under monotone restrictions. If

two functions are monotone then so are the point-wise minimum and maximum of these two

functions. The second case in which this is true is under supermodularity restrictions (i.e.

when p = (1, 1)). In other words, under either monotonicity or supermodularity, the set of

functions is a sub-lattice. It is also important to note that if the B-splines are of order 2, the

coefficients vector θ coincides with the function itself, evaluated at the grid points. Therefore,

a lattice structure of the functions implies that G is a lattice as well. This point becomes

clearer in the following section.

2.4.2 Geometric Interpretation

The proof for Theorem 2 (in Appendix B) provides an interesting insight on the geometry of

the problem. The set G can be looked at as the dual space for �p
m(Ψl

m). Formally, the dual

space of a function space � and a grid vector or matrix Γ = (γ1, ..., γD) is defined as

G(Γ,�) =
{
θ ∈ 	D : ∃f ∈ � such that θ = (f(γ1), ..., f(γD))

}
.

The proof for Theorem (2) uses the fact that the properties of �, namely the sub-lattice

structure, are transferred to its dual space. Since the problem in (15) can be written as

finding the closest point in G to the point y = (y1, ..., yN) with respect to the Euclidean

distance we can use the properties of G to draw conclusions on the solution θ∗. The dual

space of �p
m is G(Γ̄m,�p

m) =
{
θ ∈ 	D : −Ap

mΨl
m(vec(Γ̄m))θ ≤ 0

}
. This space is a polyhedron

in 	D. This interpretation is useful when we discuss the small sample efficiency gained from

using prior information on the shape of the regression function in section 3.3.

2.4.3 Combining several shape restrictions

The estimator in (14) takes into account only one shape restriction on the regression function.

Situations where the regression function is assumed to satisfy more then one shape restriction

are common. Beresteanu (2005) estimates a cost function assuming both monotonicity and
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submodularity11 with respect to the outputs produced. In other words, we assume that

f ∈ �1,0 ∩ �0,1 ∩−�1,1. The estimator in (14) can be easily modified to take into account a

combination of several restrictions. For monotonicity and submodularity the constraints in

(14) are written as 


A1,0m
A0,1m
−A1,1m



Ψm

(
vec

(
Γ̄lm

))
θ ≥ 0.

Another restriction that can be added to the above shape restriction is a restriction on the

variation of the function.12 For example, say all the derivatives up to an order k are assumed

to be bounded in the interval [L,U ]. This implies Apg ≥ L and −Apg ≥ 0 for all p ≤ k in the

one dimensional covariate case. In the multidimensional case this implies Ap1,p2g ≥ L and

−Ap1,p2g ≥ U for all integers p1, p2 such that p1+p2 ≤ k. The intersection of convex cones is

a convex cone (Rockafellar (1970, Theorem 2.5)). Therefore, the discussion in Section 2.4.1

is relevant to the case where several restrictions are combined together as well.

2.4.4 Extrapolation

In the one dimensional covariate case the sample can always be linearly transformed to cover

the interval [0, 1]. In the two dimensional case, however, we can have samples that do not

cover the whole [0, 1]2 box. Beresteanu (2005) examines the cost function of local telephone

companies in the U.S. The cost function is expressed as a function of two outputs: local and

toll calls. It is evident from Figure 2 that the support of the covariates X =(log local calls,

log toll calls) is not the whole set [0, 1]2. This means that for our choice of grid mesh m,

one can find a box
[
j1
m1
, j1+1m1

]
×
[
j2
m2
, j2+1m2

]
such that no observation point is contained in it.

The result is that the matrix H in (15) is not positive definite since it has a zero rows and

columns in it. Furthermore, the constraints matrix R in (15) will have zero rows in it as well

which puts no constrain on some of the parameters.

Whether empty boxes occur obviously depends on the mesh of the grid we choose. How-

ever, in some applications, as in the one depicted in Figure 2, any non trivial grid choice

11A function f is submodular if −f is supermodular.
12This fits the restriction

∣∣∣f (q)
∣∣∣ ≤ L used in the next section to make sure that the function space is compact.
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Figure 2: The support of outputs produced by local telephone companies and the estimation
grid

will lead to zero rows in H and R of (15). Therefore, driving down the mesh of the grid

will have no impact on the problem and will cause over-smoothing. An alternative solu-

tion is to redefine the support [0, 1]2 such that the problem will not occur. Beresteanu

(2005) imposes monotonicity and submodularity only for boxes that contain at least one

observation. According to this solution we use the same problem as in (8) but use only

the functions in Ψl
m that are non zero for at least one observation in the sample. Let

Ψ̃l
m =

{
ψ ∈ Ψl

m : ψ (xi) > 0 for some xi in the sample
}
and denote by θ̃ the coefficients in θ

that correspond to functions in Ψ̃l
m. Denote by Γ̃l−2m the points in Γ̄l−2m that correspond to

corners of boxes that contain at least one observation and rewrite (15) using f̃ = −y′Ψ̃l
m(x),

H̃ = Ψ̃l
m(x)

′Ψ̃l
m(x) and R̃ = −Ap

mΨ̃l
m(vec(Γ̃

l−2
m )). This process of trimming out empty boxes

and constraints gives a quadratic programing problem with a unique solution.
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3 Asymptotic Properties

A large body of literature is devoted to establishing the consistency of spline and series

estimators and to the rate at which they converge. Most of this literature treats the case

where no shape restrictions are imposed on the estimator. Therefore, before using any of

the results from this literature, one has to make sure that they remain intact under shape

restrictions. The results presented in this section show that the shape-restricted estimator

described above is consistent and that it achieves the same optimal rate of convergence as in

the unrestricted estimation problem. In the last part of this section I discuss the merits of

using prior information on the shape of the regression function. A measure of the information

embodied in the shape restrictions is constructed.

To avoid cluttering the discussion with complicated notations, I focus on the one dimen-

sional covariate case. Let � be the following set of functions

(16) � =

{
f ∈ Cq(S) :

∣∣∣
∣∣∣f (j)

∣∣∣
∣∣∣
sup
<∞, j = 0, ..., q,

∣∣∣f (q)(x1)− f (q)(x2)
∣∣∣ ≤ L

}

where q is an integer and L is a known scalar.13 These assumptions on the parameter space

� assure that it is compact. As before, �m(Ψ
l
m) denotes the set of functions defined by

normalized B-splines of degree l on the equidistant grid Γ̄m without any shape restrictions

and �p
m(Ψl

m) denotes the subset of functions with pth nonnegative difference. Consistency,

rate of convergence and optimal mesh selection depends on the result described below.

For a function f ∈ � and for an arbitrary set of functions �′ ⊂ � we define d(f,�′)∞ =

infg∈�′ ||f − g||∞ to be the distance between a function f and the functions space �′. Schu-
maker (1981, Theorem 6.27) shows that for f ∈ �, d(f,�m

(
Ψl
m

)
) ≤ Cm−q for some constant

C > 0. The theorem below extends this result for f ∈ �p and d(f,�p
m(Ψl

m)).

Theorem 3 Let f ∈ �p and let k = min(l − 2, p) then d(f,�p
m(Ψl

p)) ≤ m−k and ∃f̃ ∈ �p

such that d(f̃ ,�p
m(Ψl

p)) ≥ C̃m−k for some constant 0 < C̃ < 1.

13This is assumed for simplicity. Shen & Wong (1994) discuss a more general case where the condition is∣∣∣f (q)(x1)− f (q)(x2)
∣∣∣ ≤ L ||x1 − x2||

α for α > 0 and L is unknown. Unknown L requires using a bound ln

that increases with the number of observations when building a sieve. Shen & Wong (1994) discuss the rate

at which ln should grow. In case L is unknown, putting no restriction on
∣∣∣f (q)(x1)− f (q)(x2)

∣∣∣ can lead to a

suboptimal rate of convergence (a simmilar claim appears in Birge & Massart (1993)).
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Proof. See appendix B.

Theorem 3 show that the approximation error shrinks to zero as m goes to infinity.

Moreover, the rate at which the approximation goes to infinity is exactly k = min(l − 2, p).

A function which is p times differentiable can be approximated in an order m−p at most.

However, this rate is not achieved unless a smooth enough base is used (i.e. we choose

l ≥ p+ 2). In the next sections Theorem 3 is used to investigate the behavior of

(17) E

∫ (
f̂n(x)− f(x)

)2
dP (x)

where the expectation is taken over the joint distribution of (X,Y ) and P (x) is the marginal

distribution of the covariates.

3.1 Consistency

Consistency means that the expression in (17) converges to zero as n goes to infinity. This

result was first proved in Genander (1981) and in Geman & Hwang (1982).14 They treat

general parameter spaces which include the shape restricted estimator discussed in this paper.

To avoid introducing more notations and repeating much of the discussion in Genander (1981)

and in Geman & Hwang (1982), the following arguments about the applicability of their

consistency result to our case are made.

The first condition for consistency is that the sieve is dense in the parameter space �.
This is proved in Theorem 3 above. Finally, as Geman & Hwang (1982) show, the least square

criteria function satisfies the rest of the requirements in their Theorem 1. Hence, consistency

applies in the constrained case.

3.2 Rate of Convergence

Nonparametric estimators suffer from low rates of convergence. The less assumed about the

smoothness class of the regression function and the higher the dimension of the covariate

14Consistency of sieve estimators in general parameter spaces is brought in Theorem 1 in section 9.3 of
Genander (1981) and in Theorem 1 in Geman & Hwang (1982).
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space, the lower the convergence rate.15 Higher rates of convergence can be achieved by

either reducing the number of variables that are modeled nonparametrically (e.g. using a

semiparametric model) or by assuming that the regression function is smoother (e.g. by

assuming a specific functional form). Both approaches are, usually, ad-hoc and lack a solid

economic justification. It is reasonable to ask if incorporating prior information on the shape

of the regression function into the estimation can reduce the rate of convergence and by that

serve as a more appealing solution to the problem of slow rates of convergence. The results

presented below give a negative answer to this question. This result is in line with similar

results for shape restricted estimation of density functions in Kiefer (1982).

An estimator f̂n, based on a sample of size n, achieves the rate of convergence r if

(18) lim
n→∞

n2r sup
f∈�

E

∫

S

[
f̂n(x)− f(x)

]2
dP (x) ≥ C

where S is the support of the covariates as before and C is some constant depending on �.16

Stone (1980, 1982) showed that if the dimension of X is d and f has q continuous derivatives

then r = q
2q+d . Shen & Wong (1994) discuss the rate of convergence of the B-spline sieve

with no shape restrictions. They show that the convergence rate of this sieve estimator is

the optimal one. In this section I show that these results follow to the constraint case. The

first discussion on the impact of shape restrictions on the rate of convergence appears, to the

best of my knowledge, in Kiefer (1982). He considers various shape restrictions that can be

imposed in the nonparametric density estimation context. Kiefer (1982) shows that shape

restrictions cannot improve the rate at which the estimator converges to the true parameter.

The following theorem states the same result for the shape restricted estimator described in

this paper.

15For a discussion on rates of convergence for unconstraints sieve estimators see Chen & Shen (1998). The
discussion there allows weakly dependant data (see definitions in the source).

16 If instead we are interested in the supremum norm of f̂n − f , then an additional logn term is needed and
the rate of convergence is r if

lim
n→∞

(n/ logn)2r sup
f∈�

Ef sup
x∈S

(
f̂n(x)− f(x)

)2
≥ C.
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Theorem 4 Let � and �p be defined as above. Then, under the assumptions in model 1 of

Stone (1980), the optimal rate of convergence is r = q
2q+1 for both �p and �.

The proof of this theorem appears in Appendix B and follows closely the proof of Theorem

1 in Stone (1980). The intuition of the proof is as follows. Let gn be a sequence of infinitely

differentiable functions with compact support [0, xn] such that xn = Kn−
1

2p+1 for some pos-

itive K and that satisfy the Lipschitz condition in (16). Consider the following sequence of

perturbations fn = f + εgn, ε > 0. Stone computes the likelihood of distinguishing between

f and fn based on {Xi, Yi}ni=1 and shows that it shrinks to zero at a rate n−r. The proof for

Theorem 4 imitates Stone’s proof but makes sure that we choose ε small enough such that

also fn ∈ �p.

Our next task is to compute the grid’s mesh m that yields the optimal rate of conver-

gence for our estimator. Two factors determine the rate of convergence of a sieve estimator.

The first is the rate at which the sieve grows inside the target function space. This element

is nonstochastic and depends only on the structure of the chosen sieve. The second is the

stochastic element of the problem and depends on the data generating process. The follow-

ing decomposition of the distance between the estimator and the true regression function

demonstrates this argument.

(19)
∣∣∣
∣∣∣f̂n − f

∣∣∣
∣∣∣
2
≤
∣∣∣
∣∣∣f̂n − f∗n

∣∣∣
∣∣∣
2
+ ||f∗n − f ||2

where

f̂n = arg min
h∈�n

1

n

n∑

i=1

(yi − h(xi))2

f∗n = arg min
h∈�n

∫
(f(x)− h(x))2 dP (x)

and

||h||2 =
(∫

S
h2(x)dP (x)

)1
2

.

The second element on the right hand side of (19) is nonstochastic and measures the distance

between the sieve and the true function. This is the best approximation for f using �n

22



instead of �. This term is called the bias of the sieve estimator. Equation (19) demonstrates

the trade-off between bias and variance. If the rate at which the sieve grows is higher, the

rate at which the bias reduces is faster. On the other hand, the faster the sieve grows, the

slower the variance vanishes. Since the rate at which the estimator converges to the truth is

the slower of the two, the optimal rate at which the sieve grows should balance between the

“bias” and the “variance”.

The rate at which the B-spline sieve grows in the target function space ism−q and a choice

ofm that equalizes the rate at which the bias decays and the rate at which the variance decays

is the optimal choice of mesh m that achieves the optimal rate of convergence. This choice

of the optimal sieve mesh is

m = Cn
1

2q+1

for some constant C.17

3.3 Efficiency

Kiefer (1982) is also the first to suggest that the constant term in (18) can change as a

result of using shape restrictions. Motivated by this conjecture, Birge (1987) shows how to

compute a lower and upper bound for the constant for a certain family of unimodal density

functions. The constant in (18) depends on the size of the function space measured by its

metric entropy (defined below). More precisely, if the regression function comes from a rich

family of functions, the constant that we can choose in (18) is large.

Computing the exact value of the minimal convergence constant is an extremely com-

plicated task and so far only bounds on the value of the constant could be calculated for a

few specific cases. These calculations are, unfortunately, intractable and case specific. The

approach taken here is to evaluate the small sample efficiency gains in terms of reducing

E
∣∣∣
∣∣∣f̂n − f

∣∣∣
∣∣∣. The discussion makes use of the dual spaces defined in Section 2.4.2.

To facilitate the discussion on efficiency, we formalize how to measure the size of a function

space.

17The exact formulation of C is not computed here. A cross validation procedure can be used to find C.
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Definition 10 Let (F , ||·||) be a normed space and ε > 0. A collection of balls of radius ε, U,
is called an ε-covering of F if ∪U∈UU ⊃ F . N(ε,F , ||·||) is called the minimal ε-covering
number which is the minimal number of elements in an ε-covering.

If F is a compact space with respect to the norm ||·||, then N(ε,F , ||·||) is finite for

each ε > 0.18 The rate at which the covering number grows as ε → 0 plays a significant

role in the rate of convergence. Let F be a generic function space representing either � or

�p and F1,F2, ... be the appropriate sieve based on the B-spline basis functions Ψl. Before

we investigate the impact of N (ε,F , ||·||) we look at the following lemma that bounds this

covering number. Using the dual space of F we can write the metric entropy of F in terms

of the Euclidean volume of the dual space. The last is often easier to compute.

Lemma 1 Let FK =
{
f ∈ �

(
Ψl
m

)
: |f |∞ ≤ K

}
for some m > 0 and 0 < l < m. Let FK be

the dual space of FK as defined in Section 2.4.2, then N
(
ε
2 ,FK , ||·||2

)
≤ V ol(FK)·c−1m ·ε−(m+1)

where V ol(A) is the Euclidean volume of set A in 	m and cm is the volume of a ball of radius

1 in 	m.

The analysis of the impact of the minimal covering numbers on the constant hinges on the

following error decomposition. By Lemma 10.1 in Gyorfi, Kohler, Krzyzak & Walk (2002),
∫ (

f̂n(x)− f(x)
)2
dP (x)

=

{

E
(
f̂n(X)− Y

)2
−E (f(X)− Y )2 − 2

1

n

n∑

i=1

[(
f̂n(xi)− yi

)2
−
(
f(xi)− yi)2

)]
}

+

{

2
1

n

n∑

i=1

[(
f̂n(xi)− yi

)2
−
(
f(xi)− yi)2

)]
}

= An +Bn.

This rewrites the distance between the estimator f̂n and the true regression function f in

terms of distances between the criteria functions. We can bound Bn from above:

Bn ≤ 2 inf
g∈�n

∫
(g(x)− f(x))2 dP (x).

18The sufficient condition for N(ε,G, ||·||) to be finite is that G is totally bounded in the topology induced
by the norm ||·||2. For more discussion on covering numbers as well as for direct calculation of the covering
numbers of some function sapces, see Kolmogorov & Tihomirov (1961).

24



Thus, Bn is the approximation error of the sieve element �n. We first claim that Bn is

unaffected by shape restrictions. To see this, consider the case where f belongs to �p and

the regression is estimated once under the restriction that f ∈ �p and once without this

restriction. Under both estimators Bn converges at the same rate and with the same constant

to zero. This is because �p ⊂ � and thus the infimum in Bn is achieved by picking the best

function from �p. Therefore, efficiency gain, if it exists, should come from the first element,

An, which represents the estimation variance. The rate at which An converges to zero is

discussed in a few sources and under various (alternative) sets of assumptions. They all,

however, share the same general result.

P [An > δ] ≤ c1 exp (−c2nδ)

for some constants c1,c2 and for δ > δ∗n where δ∗ is such that

(20) δ∗n ≥ n−
1
2

[∫ √δ∗n

0

√
logN (ε,FK,n, ||·||2)dε

]

where FK,n is the nth element in the sieve sequence approximating FK . This relation be-

tween the metric entropy of the sieve element and the rate at which the estimator converges

to the true function appears in a number of sources. Van de Geer (2000) and Van der

Vaart & Wellner (1996) demonstrate this relation under the assumptions that the error term

in (1) is sub-Gausian and provide somewhat weaker results for error term with a thicker

tail distribution. Gyorfi et al. (2002) achieve a similar result under the assumption that

E
(
f2(X)

)
≤ K̃E(f(X)) for some constant K̃. Van der Vaart & Wellner (1996) also show

that the requirement of sub-Gausian error term can be lifted if the criteria is absolute devia-

tion instead of least squares. Condition (20) is used in these sources to build a sieve sequence

that achieves the optimal rate of convergence reported in the previous section. We will not

repeat this discussion here and instead focus on the small sample efficiency gains from shape

restrictions.

Since E [An] =
∫∞
0 P (An > u) du we have,

(21) E [An] ≤ δ∗ +
c1
c2 · n

exp (−c2nδ∗) .
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Table 1: Evaluating qualitative restrictions on the regression function

No Supermodularity
assumptions Supermodularity Monotonicity and monotonicity

Volume 1 1.095 · 10−2 1.157 · 10−4 2.756 · 10−6
δ∗ 0.05106 0.04170 0.03258 0.02540
efficiency ratio 1 1.22 1.57 2.01
# of restrictions 0 4 12 16

The second term in (21) is negligible and we should choose δ∗ such that the rates of conver-

gence of E [An] is the optimal one. The smallest δ∗ that can be chosen is such that (20) is

satisfied with an equality. As we suggested before, this metric entropy is hard to compute.

We use the upper bound on the metric entropy set in Lemma (1) to write (20) as

(22) δ∗ = n−
1
2

[∫ √
δ∗

0

√
log

[
V ol(FK,n) · c−1m+1 · ε−(m+1)

]
dε

]

.

A numerical solution for δ∗ using (22) can be computed if V ol(FK) can be computed. We

turn to this task next.

To illustrate the usage of (22) we look at the quadratic programing problem in (8) with

� = C([0, 1]2) using a grid with a mesh m = (2, 2) and K = 1 (i.e. |f | ≤ 1). The dual space

is a subset of 	9 whose volume depends on the restrictions imposed on the estimator. It is

easy to see that with no shape restrictions the volume of the dual space is 1. Adding the

assumption of supermodularity turns the dual space to a polyhedral in 	9 and reduces the

volume of the dual space and thus its metric entropy. Lemma 1 associates the metric entropy

of the sieve �m to the metric entropy of its dual space. Table 1 reports the volumes of the

polyhedrals given different set of assumptions as well as δ∗ resulting from (22) and the ration

between the δ∗ of the restricted models and that of the unrestricted model.19 We can see

that the most substantial restriction is monotonicity in terms of volume reduction. Section

5 compliments the discussion here with a Monte-Carlo experiment.

19The volumes of the polyhedrons were computed using a program for polytope volume computation from
http://www.math.uni-augsburg.de/~enge/ written by Andreas Enge. The website includes documentation
and a Unix code. The number of observations used to compute δ∗ in Table 1 is 400 and c9 =

32
945π

4.
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4 Extensions

4.1 Semiparametric models

Nonparametric estimators suffer from the curse of dimensionality. Apart from slow rates of

convergence, a large dimension of the covariates vector can make the nonparametric estima-

tor infeasible for small samples. Implementing the estimator described in Section 2 requires

setting a grid of points for a highly dimensional covariate vector and also building a restric-

tion matrix that takes into account the various multi-dimensional restrictions. A convenient

solution to the curse of dimensionality are the semiparametric methods.

Donald & Newey (1994) consider the following semi-linear model,

Y = X ′β + g(Z) + ε.

A shape restricted estimator in this case is an estimator where g ∈ �p. Donald & Newey

(1994) prove that if p = 0 (i.e. no shape restrictions) then an estimator for g using B-splines

yields a consistent estimator both for g and β and the rate of convergence of the estimator

for β is
√
n. When p > 0 (i.e. with shape restrictions on g) we need to make sure that the

assumptions in their theorems still hold.

We maintain assumptions 1 and 2 in Donald & Newey (1994) and assume that g ∈ �p.

Theorem 3 here shows that the approximation power of the B-spline estimator stays intact

under shape restriction. Therefore, under the assumptions of Theorems 1 and 2 in Donald &

Newey (1994), the shape restricted estimator produces a
√
n-consistent and estimator for β.

Moreover, the asymptotic distribution of β̂ is

(23)
(
A−1n BnA

−1
n

)−1/2√
n
(
β̂ − β

)
→ N(0, Iq)

where q is the dimension of X, An = 1
n

∑n
i=1 uiu

′
i, Bn = 1

n

∑n
i=1

(
ε2iuiu

′
i

)
and ui = xi −

E(xi|zi). A related result appears in Tripathi (2000). He shows that the efficiency of the

estimator for β, represented by its asymptotic variance, cannot be improved upon by using

an estimator that involves restrictions like g ∈ �p for p = 1 or p = 2 (i.e. monotonicity and
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concavity).20 Meaning that the asymptotic variance of β̂ when restrictions on g(·) are taken

into account is the same as the asymptotic variance when monotonicity or concavity are not

taken into account. The variance presented in (23) supports this argument since it does not

depend on the restrictions imposed on g(·).

4.2 Testing

Testing models in a nonparametric environment has received increasing attention in recent

years. Most of the literature covers the case of testing parametric models against a nonpara-

metric alternative. These procedures suffers from two main disadvantages. The first is that

the null hypothesis is that the regression function belongs to a finite dimensional parameter

space. The second is that the nonparametric alternative is totally unspecified. In this section

I review a possible extension of the literature based on the above estimator. This testing

procedure is based on Hong & White (1995).

The general testing problem is formalized as follows:

H0 : f ∈ �0

H1 : f ∈ �\�0

where �0 ⊂ �.
Hong & White (1995) suggest a testing procedure for the case of parametric �0 and

nonparametric �. The testing procedure is based on a sieve estimator for the model under

H1. A sieve sequence �1,1,�1,2, ... is built such that �1,i is a parametric subset of �. f̂1 is

replaced with f̂1,n, which is the estimator under H1,n : f ∈ �1,n.21

A natural extension of Hong & White (1995) for the case where the null is also nonpara-

metric can be based on the following procedure. Build a sieve �0,1,�0,2, ... that approximates

the null space �0 in addition to �1,1,�1,2, ... that approximates the alternative space �. The
20Significant efficiency gains do exist when g is known to be homogeneous. The difference between homo-

geneity and the restrictions discussed in this paper is that homogeneity reduces the dimensionality of the
function g whereas restrictions on partial derivatives do not.

21Wooldridge (1992) suggests an alternative procedure using the theory of non-nested tests developed for
parametric tests by Davidson & MacKinnon (1981). In his test the sieve is constructed such that �0 is not
nested in �1,n.
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estimation method proposed in this paper enjoys the advantage that �0,i and �1,i are para-

metric and thus the estimation under the null and under the alternative is easy to implement.

Furthermore, this testing procedure can take into account maintained assumptions on the

model and does not require that the alternative is totally unspecified. In other words, the

researcher can assume that the regression function is monotone and test for, say, concavity.

In this case the null hypothesis is the set of monotone and concave functions where the al-

ternative includes the monotone (but non-concave) functions. The rate of convergence, the

power of the test and many other technical aspects of this problem are yet to be worked out.

A commonly used loss function is based on the L2 distance between two functions. The

test considered here is based on the following statistic,

(24) Tn =

1
n

∑n
i=1

(
f̂0,n(xi)− y2i

)2
− 1

n

∑n
i=1

(
f̂1,n(xi)− y2i

)2

1
n

∑n
i=1

(
f̂0,n(xi)− y2i

)2

where f̂0,n is the restricted estimator under the null based on n observations and f̂1,n is the

unrestricted estimator from the space �.

Example 1 In ? two alternative models are considered. The null hypothesis is that the

expected total cost as a function of the outputs, local and toll calls, is both submodular and

monotone. The alternative is that the expected total cost is just monotone. The estimated

models are described in Figure 3. The piecewise linear estimator with grid m = (6, 6) was

used. A testing procedure compares the sum of residuals from both estimators using a bootstrap

method to compute a confidence interval for this statistic.

5 Monte Carlo Study

Four B-spline estimators are considered: unrestricted regression, monotone regression, super-

modular regression and monotone and supermodular regression. The performance of these

estimators for a sample of 400observations is compared through a Monte-Carlo study. The

models used in this study are reported in Table 2. All functions are defined on the set [0, 1]2

and are both supermodular and monotone. These models are estimated using the four es-

timators for various joint distributions of the covariates and distributions of the error term.
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Figure 3: Piecewise-linear estimation of the expected total cost of Local Exchange Companies
(LECs) as a function of local and long distance calls
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Table 2: Properties of the functions participating in the Monte Carlo study

Function Properties

f1(x1, x2) = min(x1, x2) Continuous but not differen-
tiable on the 45◦ line.

f2(x1, x2) =





(x1 − 1

2)(x2 − 1
2) + x1x2

if x1 ≥ 1
2

and x2 ≥ 1
2

x1x2 otherwise
Continuous and differentiable
but the derivatives are not con-
tinuous.

f3(x1, x2) = x
1/3
1 x

2/3
2 Infinitely differentiable on

(0, 1)2 derivatives are not
defined on the axis.

These as well as the results are reported in Appendix C. The four estimators were compared

based on four criteria: fit at X = (0, 0), fit at X =
(
0, 13

)
, fit at X =

(
1
2 ,
1
2

)
and over all fit

(L2-distance from the true function). This choice allows examination of local performance on

the boundaries of the support and in an interior point and global performance of the estima-

tors. Tables 3, 4 and 5 in Appendix C report the 95% intervals built from these Monte-Carlo

experiments.

The results demonstrate the claim that using (correct) prior information on the properties

of the regression function improves the small sample performance of the estimator. For

example, consider the first model where Y = min (X1,X2) + ε, X1,X2 are independent

and uniformly distributed on [0, 1]2 and ε˜N(0, 1). In this case E
(
Y |X =

(
1
2 ,
1
2

))
= 1

2 . The

unrestricted estimator reports 95% of the estimators in the interval [−0.5236, 1.6829]. Adding
the assumption that the regression is supermodular reduces this interval to [−0.0211, 0.8819].
Assuming monotonicity (but not supermodularity) reduces the interval to [0.1658, 0.6310].

The monotone regression increases the accuracy in compare to the unrestricted regression

by more than the supermodular regression does. Combining both assumptions reduces the

interval to [0.1685, 0.6304]. These results support the claim in Section 3.3 and the results in

Table 1.

The next Monte Carlo experiment examines the rate of convergence achieved by the

estimators proposed in Section 2.4. Using the models and estimators described above, I
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Figure 4: L2 distance of the estimator from the true model

change the number of observations and measure the L2 distance between the estimators

and the true models. For each number of observation, 250 Monte Carlo experiments were

preformed. Figure 4 describes one of the Monte Carlo experiments for y = min(x1, x2) + ε

where ε ∼ N(0, 1).22 The L2 distance in Figure 4 is the mean of the L2 distance achieved in

the 250 experiments performed. The rate of convergence computed from this Monte Carlo

experiment is approximately 1
3 . This rate of convergence corresponds to setting p = 2 in

Section 3.2. Figure 5 reports the mean of the ratio between the L2 distance of the restricted

versus the unrestricted estimators. It is clear that the gains increase the more relevant

restrictions are used. The magnitude of these gains is similar to the gains suggested in Table

1.

22Experiments performed on the other models showed the same results.
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Figure 5: Efficiency gains from shape restrictions
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6 Empirical Illustration

To be added

7 Concluding Remarks

A nonparametric shape restricted estimator based on a sieve method is described in this

paper. The benefits of the sieve framework are as follows. First, various assumptions like

monotonicity and supermodularity are easily incorporated into the estimator. Variety of

shape restrictions can be treated using the same framework. Second, the estimator is com-

puted using quadratic programming with linear inequalities constraints. Therefore, this esti-

mator is easy to implement and each additional shape restriction results in additional linear

inequality constraints added to the problem. A shape-restricted semi-linear version of the

model is discussed and adds to the applicability of the shape-restricted estimator in empirical

work. Finally, the geometric interpretation of the estimator provides an interesting insight

about the small sample efficiency gains resulting from using the information on the shape of

the regression function.
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Appendix

A Normalized B-splines

The B-spline basis defined here is based on Schumaker (1981, Chapter 4). Normalized B-

splines of degree l are piecewise polynomials of degree l − 1. It is common to use even

integers for l. It is convenient to define the normalized B-splines using a kernel function

centered around zero. Let Kl(x) be the following kernel function

Kl(x) =

{ ∑l
j=0

(−1)j
(l−1)!

(l
j

)
(x+ l

2 − j)
l−1
+ x ∈ [− l

2 ,
l
2 ]

0 otherwise

where

(x− x0)a+ =

{
(x− x0)a x ≥ x0

0 otherwise
.

To normalize Kl (x) to the interval

[
i− l

2
m ,

i+ l
2

m

]
we define

ψlm,i(x) = K
l(mx− i)

for any integer i. The basis functions in Ψl
m are centered around the extended equidistant

grid vector Γ̄lm and consist of the following m+ l − 1 function:

Ψl
m = {ψlm,i(x))}

m+l/2−1
i=−l/2+1.

The following are useful properties of the normalized B-spline basis:

1. Unit division:
∑∞

i=−∞ψ
l
m,i(x) ≡ 1 for any positive integers m ≥ 1 and l ≥ 2.

2. Differentiability: ψlm,i is l−1 times differentiable for each i and the l−1th derivative

is undefined everywhere except at a subset of the grid points Γ̄lm on which ψlm,i takes

a value different than zero.

3. Symmetry:
dkψlm,i
dxk

( i
m − c) = (−1)k d

kψlm,i
dxk

( i
m + c) for all integer i, real number c > 0

and integer k such that 0 ≤ k ≤ l − 1.
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B Proofs and Technical Notes

B.1 Proof of Theorem 1

Proof. The proof is given for the one dimensional case. The two dimensional case is analogues

to the one dimensional case but requires additional notation and thus is omitted. We prove

the claim by induction on p.

Let m > l ≥ p be three integers such that l is an even number. In what follows Γ̄lm is

the extended equidistant grid on [0, 1] as in definition (9) and Ψl
m is the base of normalized

B-spline wavelets of order l centered around the equidistant grid vector points Γ̄lm as defined

in Appendix A. Let f ∈ �p
m

(
Ψl
m

)
. We proceed using induction.

Assume p = 1 and l ≥ 2, and let Γ2 = (γ0, γ1) be a grid vector on [0, 1]. First consider

the case where l = 2 and f̂ =
∑m

i=0 θiψm,i. Assume that γ0 ∈
[
j0
m ,

j0+1
m

)
and γ1 ∈

[
j1
m ,

j1+1
m

)

where j0 ≤ j1. Since l = 2, f̂ is a piecewise linear function and f̂ (γ0) = θj0w0+θj0+1(1−w0)
and f̂ (γ1) = θj1w1 + θj1+1(1 − w1) where w0 = mγ0 − j0 and w1 = mγ1 − j1. If j0 = j1

then it has to be that w0 < w1 and thus f̂ (γ0) < f̂ (γ1). If j0 < j1 then θj0 ≤ θj1 and

θj0+1 ≤ θj1+1 and therefore f̂ (γ0) is a weighted average of two numbers which are smaller

than the two numbers that f̂ (γ1) is and average of. Now consider the case where l > 2. f̂ is

differentiable everywhere and therefore by the mean value theorem there is γ̃ ∈ [γ0, γ1] such

that f̂ (γ1)− f̂ (γ0) = f̂ ′ (γ̃) (γ1 − γ0). since γ1 ≥ γ0 the sign of f̂ (γ1)− f̂ (γ0) is equal to the

sign of f̂ ′ (γ̃). There exist an integer j̃ such that j̃
m ≤ γ̃ < j̃+1

m . From properties 1 and 2 of

the normalized B-spline in Appendix A it is clear that
∑j̃

i=−∞
dψlm,i
dx (γ̃) = −∑∞

i=j̃+1

dψlm,i
dx (γ̃)

by taking the derivative of property 1 with respect to x and evaluate it at x = γ. From

property 3 and the construction of the normalized B-splines
dψlm,i
dx (γ̃) ≤ 0 for i ≤ j̃ and

dψlm,i
dx (γ̃) ≥ 0 for i > j̃. When p = 1 Ap

mθ ≥ 0 implies that θi ≤ θi+1. Therefore, f̂ ′(γ̃) =
∑j̃

i=−∞ θi
dψlm,i
dx (γ̃) +

∑∞
i=j̃+1 θi

dψlm,i
dx (γ̃) ≤ 0. This concludes the proof for p = 1.

We now assume that for p− 1 the claim in the theorem holds. Let Γp =
(
γ0, ..., γp

)
be an

arbitrary grid vector on [0, 1] and f ∈ �p
m

(
Ψl
m

)
. Using the mean value theorem Ap

pf(Γp) =

Ap−1
p−1Dpf(Γp) ≥ Ap−1

p−1f
′(Γ̃p−1)δ where δ = mini=1..p γi − γi−1 and Γ̃p−1 = (γ̃0, ..., γ̃p−1)

such that γ̃j ∈ [γj, γj+1]. Since δ > 0, Ap
pf(Γp) ≥ 0 if Ap−1

p−1f
′(Γ̃p−1) ≥ 0. Now f ′ =
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∑m+l/2−1
i=−l/2+1 θi

dψlm,i
dx and

dψlm,i
dx satisfies conditions 1-3 above (when condition 1 is satisfied with

equality to zero instead of one). Therefore, using the induction step we conclude that the

claim in the theorem is satisfied for p.

B.2 Proof of Theorem 2

Definition 11 Let K ⊂ 	d be compact and Γ = {γ1, ..., γD} ⊂ K finite and let � ⊂ C(K)

be a sub class of continuous functions from K to 	. Then G(Γ,�) = {u ∈ 	D|∃g ∈ � and

γ ∈ Γ such that u = g(γ)} is called the dual space of (Γ,�).

Proof : Fix m and l and for notational convenience denote G = G(Γ̄m,�l
m) and Ψ =

Ψl
m(x). From the properties of �l

m it is clear that G is a non-empty, close in the topology

induced by the distance function d(u, v) = 1
D

∑D
i=1(ui − vi)2 and a convex cone. Define

y = max
i=1...D

yi and y = min
i=1...D

yi. Since (1, 1, ..., 1) ∈ G also (y, y, ..., y) and
(
y, y, ..., y

)
are in G.

Assume that θ∗ ∈ G solves (15) and define θ∗∗ = θ∗ ∨
(
y, y, ..., y

)
. From the fact that G is a

sub-lattice we know that θ∗∗ ∈ G. Assume that there exist a coordinate ı̃ such that θ∗ı̃ < θ
∗∗
ı̃ .

The matrix Ψ has only non-negative entries and thus

||Ψθ∗∗ − y|| < ||Ψθ∗ − y||

a contradiction to the fact that θ∗solves (15). The argument that θ∗i ≤ y is proved in a similar

way using θ∗∗∗ = θ∗ ∧ (y, y, ..., y).

B.3 Proof of Theorem 3

Proof. Let Γ̄m be the equidistant grid (0, 1m , ..., 1). For any function f ∈ �p, the values it

takes on Γ̄m satisfy Am
p f(Γ̄m)

′ ≤ 0. The points f(Γ̄m) on the grid Γ̄m can be interpolated

using the base Ψl
m as explained in Section 2.3. We denote this function by fm. Theorem

1 assures that fm ∈ �p
m(Ψl

m) ⊂ �p. f and fm are k = min(l − 2, p) times continuously

differentiable. Since the k-th derivative of fm is continuous, then for each x ∈ [ jm ,
j+1
m ]

there is ξx in this interval such that ∂kfm(x) = ∂kf(ξx). Thus,
∣∣∂kf(x)− ∂kfm(x)

∣∣ =
∣∣∂kf(x)− ∂kf(ξx)

∣∣ ≤ ω(∂kf, 1m)L∞[ jm , j+1
m
] where ∂

k represents the k-th derivative operator
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and ω(ϕ, δ)L∞[I] = supx1,x2∈I,|x1−x2|≤h |ϕ(x1)− ϕ(x2)| is the modulus of continuity. For f ∈
�, ω(∂kf, 1m)L∞[ jm , j+1

m
] ≤ m−k. To show the lower bound take the following f̃ ∈ �p

2m

(
Ψl
2m

)
,

f̃ =
∑2m+l/2

i=−l/2 aiψ
l
2m,i where a−l/2 = 0 and ai = 1 for i = −l

2 + 1, ...,m + l
2 . This function

has positive differences up to order l. d(f̃ ,�p
m) ≥ C̃ω(∂kf, 1m)L∞[ jm , j+1

m
] following the same

arguments in Schumaker (1981, Theorem 6.16). The constant C̃ depends on the order of

splines used.

B.4 Proof of Theorem 4

Proof. Let θ ∈ �p be the true regression function θ(x) = E(Y |X = x). Let γ = 1/ (2p+ 1)

and let ψ be an infinitely differentiable function with compact support such that ψ(0) > 0

and such that Lipschitz condition holds for any |α| ≤ p−1. Define the perturbation sequence

as follows. For δ ∈ (0, 1] and a constant M > 0 define gn(x) = δMpn−γpψ(M−1nγx) and

θn = θ + εgn. By choosing ε small enough we make sure that δ and M are chosen such that

we have also θn ∈ Θi. From this point the proof follows exactly the steps in Stone (1980,

1982).

B.5 Proof of Lemma 1

This proof builds on the proof for Lemma 9.3 in Gyorfi et al. (2002). Let {f1, ..., fn} be a ε
2 -net

in FK under ||·|| and let ψ1, ..., ψD be a basis for FK . For any (a1, ..., aD) and (b1, ..., bD), vec-

tors of real numbers, ||∑i aiψi −
∑

i biψi|| = (a−b)′Ψ(a−b), where Ψ =
(〈
ψi, ψj

〉)
i,j=1..D

. Ψ

is positive semidefinite such thatΨ = Ψ
1
2Ψ

1
2 . Therefore, ||∑i aiψi −

∑
i biψi|| =

∣∣∣
∣∣∣(a− b)′Ψ1

2

∣∣∣
∣∣∣.

Since fi ∈ FK , fi =
∑

j a
i
jψj for some vector ai =

(
ai1, ..., a

i
D

)
. Thus,

∣∣∣
∣∣∣aiΨ

1
2 − ajΨ 1

2

∣∣∣
∣∣∣ =

||fi − fj|| ≤ ε and a1Ψ
1
2 , ..., aDΨ

1
2 is an ε-net in FK of size n = N

(
ε
2 ,FK , ||·||

)
. Let cD be

the volume of a ball of radius 1 in 	D, then n · cD · εD = V ol(FK) and the conclusion follows.

C Monte Carlo Study - Results

Each model was estimated 1000 times for each design. 95% confidence intervals are calculated

and reported in Tables 3, 4 and 5. The regression models that were estimated are described
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bellow. The mesh size used for the B-spline estimation is m1,m2 = 6.

Model 1 : Y = min(X1,X2) + ε

Model 2 : Y = X1X2 + I{X1≥ 1
2
,X2≥ 1

2
} · (X1 −

1

2
)(X2 −

1

2
) + ε

Model 3 : Y = X
1
3
1 X

2
3
2 + ε .

The fit of each estimation method is checked according to four criteria:

1. The fit at the corner of the domain (x1, x2) = (0, 0).

2. The fit on a boundary point of the domain (x1, x2) = (13 , 0).

3. The fit in an interior point of the domain (x1, x2) = (12 ,
1
2).

4. The l2-distance between f̂ and f over the whole domain.

The distributions of the design points used in this study are either:

1. X1 and X2 are uniformly and independently distributed on [0, 1]2.

2. X1 ∼ U [0, 1] and X2|X1 ∼ U [X1
2 ,

X1+1
2 ].

The two distributions of errors used are:

1. ε ∼ N(0, 1).

2. ε ∼ U [−1, 1].
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Table 3: Monte Carlo results - Model 1
Y = min(X1, X2) + ε, N = 400

X1, X2 ∼ U [0, 1], ε ∼ N(0, 1)

Unrestricted Supermodularity Monotonicity Supermodularity
estimator and monotonicity

f(0, 0) = 0 [−3.12, 2.83] [−0.58, 2.09] [−1.85, 0.10] [−0.67, 0.14]
f(13 , 0) = 0 [−1.55, 1.54] [−0.54, 0.74] [−0.55, 0.23] [−0.41, 0.25]
f(12 ,

1
2) =

1
2 [−0.56, 1.64] [−0.00, 0.89] [0.16, 0.64] [0.20, 0.65]

L2-norm [0.278, 0.416] [0.145, 0.282] [0.097, 0.225] [0.084, 0.207]

X1 ∼ U [0, 1], X2|X1 ∼ U [X1
2 ,

X1+1
2 ], ε ∼ N(0, 1)

Unrestricted Supermodularity Monotonicity Supermodularity
estimator and monotonicity

f(0, 0) = 0 [−2.31, 2.31] [−0.57, 2.00] [−1.83, 0.10] [−0.67, 0.14]
f(13 , 0) = 0 [−1.17, 1.24] [−0.55, 0.64] [−0.46, 0.25] [−0.41, 0.26]
f(12 ,

1
2) =

1
2 [−0.52, 1.49] [0.01, 0.88] [0.15, 0.65] [0.18, 0.64]

L2-norm [0.378, 0.619] [0.310, 0.509] [0.306, 0.503] [0.293, 0.489]

X1,X2 ∼ U [0, 1], ε ∼ U [0, 1]
Unrestricted Supermodularity Monotonicity Supermodularity
estimator and monotonicity

f(0, 0) = 0 [−1.64, 1.63] [−0.39, 1.29] [−1.06, 0.07] [−0.44, 0.09]
f(13 , 0) = 0 [−0.93, 0.96] [−0.34, 0.47] [−0.32, 0.16] [−0.26, 0.17]
f(12 ,

1
2) =

1
2 [−0.08, 1.12] [0.16, 0.71] [0.25, 0.61] [0.25, 0.61]

L2-norm [0.163, 0.241] [0.091, 0.167] [0.067, 0.136] [0.060, 0.127]

X1 ∼ U [0, 1], X2|X1 ∼ U [X1
2 ,

X1+1
2 ], ε ∼ U [0, 1]

Unrestricted Supermodularity Monotonicity Supermodularity
estimator and monotonicity

f(0, 0) = 0 [−1.19, 1.24] [−0.38, 1.17] [−1.05, 0.06] [−0.46, 0.10]
f(13 , 0) = 0 [−1.06, 1.00] [−0.33, 0.49] [−0.44, 0.17] [−0.29, 0.18]
f(12 ,

1
2) =

1
2 [0.06, 1.04] [0.19, 0.68] [0.25, 0.59] [0.27, 0.60]

L2-norm [0.336, 0.466] [0.304, 0.414] [0.314, 0.422] [0.310, 0.412]
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Table 4: Monte Carlo results - Model 2
Y = X1X2 + I{X1≥ 1

2
,X2≥ 1

2
} · (X1 − 1

2)(X2 − 1
2) + ε

X1, X2 ∼ U [0, 1], ε ∼ N(0, 1), N = 400

Unrestricted Supermodularity Monotonicity Supermodularity
estimator and monotonicity

f(0, 0) = 0 [−2.63, 3.10] [−0.55, 2.11] [−1.69, 0.05] [−0.61, 0.08]
f(13 , 0) = 0 [−1.72, 1.72] [−0.58, 0.70] [−0.64, 0.15] [−0.47, 0.18]
f(12 ,

1
2) =

1
4 [−0.83, 1.29] [−0.22, 0.70] [0.00, 0.50] [0.02, 0.49]

L2-norm [0.280, 0.42] [0.144, 0.287] [0.09, 0.221] [0.082, 0.205]

X1 ∼ U [0, 1], X2|X1 ∼ U [X1
2 ,

X1+1
2 ], ε ∼ N(0, 1), N = 400

Unrestricted Supermodularity Monotonicity Supermodularity
estimator and monotonicity

f(0, 0) = 0 [−2.93, 3.42] [−0.10, 2.35] [−1.60, 0.31] [−0.20, 0.36]
f(13 , 0) = 0 [−1.62, 2.09] [−0.24, 1.10] [−0.31, 0.38] [−0.13, 0.38]
f(12 ,

1
2) =

1
4 [−0.73, 1.36] [−0.12, 0.75] [0.17, 0.47] [0.17, 0.46]

L2-norm [0.351, 0.616] [0.225, 0.461] [0.149, 0.275] [0.152, 0.279]

X1,X2 ∼ U [0, 1], ε ∼ U [0, 1], N = 400

Unrestricted Supermodularity Monotonicity Supermodularity
estimator and monotonicity

f(0, 0) = 0 [−1.60, 1.542] [−0.32, 1.28] [−1.10, 0.05] [−0.38, 0.07]
f(13 , 0) = 0 [−0.93, 0.88] [−0.37, 0.42] [−0.34, 0.11] [−0.28, 0.12]
f(12 ,

1
2) =

1
4 [−0.32, 0.90] [−0.04, 0.50] [0.06, 0.43] [0.07, 0.42]

L2-norm [0.163, 0.241] [0.088, 0.164] [0.067, 0.138] [0.060, 0.125]

X1 ∼ U [0, 1], X2|X1 ∼ U [X1
2 ,

X1+1
2 ], ε ∼ U [0, 1], N = 400

Unrestricted Supermodularity Monotonicity Supermodularity
estimator and monotonicity

f(0, 0) = 0 [−1.56, 2.10] [0.04, 1.33] [−0.65, 0.32] [0.02, 0.34]
f(13 , 0) = 0 [−0.60, 1.30] [−0.01, 0.77] [−0.04, 0.36] [0.07, 0.36]
f(12 ,

1
2) =

1
4 [−0.32, 0.98] [0.05, 0.57] [0.22, 0.40] [0.23, 0.40]

L2-norm [0.263, 0.439] [0.209, 0.363] [0.171, 0.273] [0.177, 0.277]
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Table 5: Monte Carlo results - Model 3

Y = X
1
3
1 X

2
3
2 + ε

X1, X2 ∼ U [0, 1], ε ∼ N(0, 1), N = 400

Unrestricted Supermodularity Monotonicity Supermodularity
estimator and monotonicity

f(0, 0) = 0 [−2.50, 2.82] [−0.56, 1.86] [−1.73, 0.16] [−0.59, 0.21]
f(13 , 0) = 0 [−1.61, 1.56] [−0.54, 0.75] [−0.54, 0.30] [−0.41, 0.30]
f(12 ,

1
2) =

1
2 [−0.59, 1.59] [−0.06, 0.95] [0.24, 0.72] [0.25, 0.71]

L2-norm [0.282, 0.416] [0.139, 0.282] [0.091, 0.220] [0.079, 0.201]

X1 ∼ U [0, 1], X2|X1 ∼ U [X1
2 ,

X1+1
2 ], ε ∼ N(0, 1), N = 400

Unrestricted Supermodularity Monotonicity Supermodularity
estimator and monotonicity

f(0, 0) = 0 [−1.84, 2.67] [−0.02, 1.81] [−0.84, 0.50] [−0.06, 0.53]
f(13 , 0) = 0 [−0.64, 1.67] [−0.05, 1.13] [−0.04, 0.55] [0.10, 0.55]
f(12 ,

1
2) =

1
2 [−0.51, 1.53] [0.06, 0.93] [0.35, 0.63] [0.36, 0.62]

L2-norm [0.330, 0.599] [0.188, 0.411] [0.103, 0.223] [0.114, 0.231]

X1,X2 ∼ U [0, 1], ε ∼ U [0, 1], N = 400

Unrestricted Supermodularity Monotonicity Supermodularity
estimator and monotonicity

f(0, 0) = 0 [−1.72, 1.50] [−0.37, 1.09] [−1.07, 0.12] [−0.41, 0.16]
f(13 , 0) = 0 [−1.02, 1.02] [−0.32, 0.43] [−0.32, 0.21] [−0.23, 0.22]
f(12 ,

1
2) =

1
2 [−0.10, 1.15] [−0.23, 0.76] [−0.31, 0.67] [−0.34, 0.67]

L2-norm [0.163, 0.241] [0.081, 0.166] [0.066, 0.136] [0.056, 0.127]

X1 ∼ U [0, 1], X2|X1 ∼ U [X1
2 ,

X1+1
2 ], ε ∼ U [0, 1], N = 400

Unrestricted Supermodularity Monotonicity Supermodularity
estimator and monotonicity

f(0, 0) = 0 [−2.16, 3.18] [0.22, 1.72] [−0.75, 0.49] [0.15, 0.51]
f(13 , 0) = 0 [−0.39, 1.35] [0.16, 0.95] [0.05, 0.52] [0.21, 0.53]
f(12 ,

1
2) =

1
2 [−0.26, 1.19] [0.21, 0.77] [0.41, 0.57] [0.41, 0.57]

L2-norm [0.241, 0.408] [0.183, 0.334] [0.129, 0.221] [0.139, 0.225]
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