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Abstract. We will delve into various aspects of topological obstructions within the
framework of Sobolev spaces. To illustrate fundamental principles, we will initially explore
a Sobolev adaptation of the Brouwer Fixed Point theorem. This exploration will natu-
rally lead us to considerations regarding the definition of degree for Sobolev maps between
manifolds. Subsequently, we will examine Sobolev maps with restricted rank, alongside
examples illustrating topological obstructions encountered in the approximation or ex-
tension of Sobolev maps such as homeomorphisms. It is assumed that participants are
acquainted with the theory of Sobolev spaces in Euclidean contexts. The topological
concept needed will be defined throughout the course.
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1. Brouwer Fixed Point theorem – Classical and Sobolev

1.1. An introductory example: continuous and one-dimensional – the winding
number. Let S1 be the circle, and consider continuous maps f : S1 → S1. Having

Definition 1.1 (Winding number). We want to define the winding number.

• Any map f : S1 → S1 can be visualized as a curve in the target space (pink) S1. For
visual reason, to see the strands of f , we fatten S1. Observe we take the orientation

1
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into account, i.e. we move on the domain circle (blue) clockwise and then denote
with arrows what the curve is doing in the (pink) target sphere.

• To compute the winding number, stand on top of the circle (we use Ada Lovelace
to do this for us). We are going to care about how the curve f : S1 → S1 behaves at
the point where Ada sits, so we draw a line (remember, the pink sphere is drawn as
an annulus, but it is a onedimensional sphere; so the green line is actually a point.)

• Now we start counting. If the curve goes through the green line clockwise, then we
count this as a +1. If the curve goes counterclockwise we count this as a −1. Sum
all of those numbers up, we get the winding number
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In this picture the winding number is +2.
• A few pathological cases:

– If the curve never crosses the green line, the winding number is 0
– If the curve just touches the green line, but never crosses this, this is a zero,

actually we think of this as a +1 followed by a −1 (or vice versa).
– We only assumed continuity, so there is another pathological case. The curve

could pass through the green line infinitely many times. But it cannot go
around the full pink circle infinitely many times. Because f must be uniformly
continuous, so going through the full circle needs at least some δ0 movement in
the domain, this can only happen finitely many times. So if f passes infinitely
many times through the green line, all but finitely many times it just comes
right back (meaning +1 − 1 = 0 for the computation of the winding number).

So: The winding number is well-defined.

Let us discuss some properties

Example 1.2. The winding number does not depend on where Ada sits! To see this
(visually), move Ada continuously.
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Example 1.3. Winding number of constant map f : S1 → S1 is 0

Example 1.4. Winding number of identity map is 1
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Definition 1.5 (Homotopy). Take two sets M and N (think e.g. of two spheres).

A (continuous) curve f : M → N is homotopic to a (continuous) curve g : M → N if
there exists a homotopy between them:

• H : [0, 1] × M → N continuous such that
• H(0, x) = f(x), H(1, x) = g(x)

Here is a is a picture1 of a homotopy: Think of f as the red curve and g as the blue
curve and the cylinder on the left is [0, 1] × M and the right object is N . The homotopy
transforms continuously the red curve to the blue curve.

1Image: KSmrq, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia
Commons

https://creativecommons.org/licenses/by-sa/3.0
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Proposition 1.6. Winding number is homotopy invariant. That is if f : S1 → S1 and
g : S1 → S1 are homotopic, then the winding number of f is the same as the winding
number of g.

Proof. The best way to see this is a visual proof: follow the homotopy!

□

Corollary 1.7. Assume f : S1 → S1 is a continuous map which has an extension F :
B2 → S1. Then the winding number of f is zero.

Proof. Take H(t, x) := f(tx). For t = 1 this is just f for t = 0 this is constant. This is a
homotopy. The winding number for the constant map is zero. So the winding number for
f must be zero. □

Another formulation of Corollary 1.7 is:

Corollary 1.8. Assume a map f : S1 → S1 has a non-zero winding number.

Any such map has an extension F : B2 → R2. However there is no way to find an extension
F : B2 → S1.

The winding number is also called the Brouwer degree. The reason is the Brouwer Fixed
point theorem.

Theorem 1.9. Let F : Bn → Bn be a continuous map (where Bn denotes the closed unit
ball), then there exists a fixed point x̄ with F (x̄) = x̄.
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The statement works in any dimension, but we want to work with the winding number, so
the reader might want to think about n = 2.

Proof. Assume the claim is false. Since F is continuous and F (x) ̸= x, we them must have

(1.1) ε := inf
x∈Bn

|F (x) − x| > 0

We consider the map

H(t, x) := x − tF (x)
|x − tF (x)|

We make a few observations, leading to a contradiction

• We see that H(1, x) is a continuous map on Bn → Sn−1, by (1.1).
• Thus the winding number of H(1, x)

∣∣∣∣
Sn−1

: Sn−1 → Sn−1 is zero, by Corollary 1.7.
• We have t ∈ [0, 1]

|x − tF (x)| ≥ t|F (x) − x| − |t − 1||x|.

Thus, for t0 := max{1
2 , 1 − ε

4} < 1

inf
x∈Bn

inf
t∈[t0,1]

|x − tF (x)| ≥ 1
2ε − ε

4 ≥ ε

4 .

That is
H : [t0, 1] × Bn → Sn−1

is well-defined and continuous.
• That is the winding number of H(t, x)

∣∣∣∣
Sn−1

: Sn−1 → Sn−1 is zero, by Corollary 1.7,
for any t ∈ [t0, 1].

• For any t ∈ [0, t0] surely

inf
t∈[0,t0],|x|=1

|x − tF (x)| ≥ 1 − t0 |F (x)|︸ ︷︷ ︸
≤1

≥ 1 − t0 > 0

That is H
∣∣∣∣
[0,t0]×Sn−1

: Sn−1 → Sn−1 is continuous!

• In particular, the winding number of H(0, ·)
∣∣∣∣
Sn−1

: Sn−1 → Sn−1 must be 0, by
Proposition 1.6

• But H(0, x) = x for x ∈ Sn−1. Thus the winding number H(0, ·)
∣∣∣∣
Sn−1

: Sn−1 → Sn−1

is 1 by Example 1.4.
• We have reached a contradiction.

□
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Remark 1.10. The Brouwer fixed point theorem does not give as any information where
the fixed point is, and also not about how many fixed points there are2:

• there could be exactly one: Take F (x) = −x.
• there could be infinitely many: Take F (x) = x
• Even more crazy: take any nonempty set Σ ⊂ B with p ∈ Σ and set

F (x) :=
(

1 − dist (x, Σ)
diamB2

)
x + dist (x, Σ)

diamB2 p

The F : B2 → B2 (as convex combination of two elements in B2), and F (x) = x is
equivalent to

dist (x, Σ)
diamB2 (p − x) = 0

i.e. either p = x or dist (x, Σ) = 0.

This is all very classical, our question is what can we say if instead of F ∈ C0(Bn,Bn) we
have F ∈ W 1,p(Bn,Bn)? The point that I am trying to make in this is somewhat that we
can “save” some results over to Sobolev spaces.

1.2. Recall: Basic properties for Sobolev spaces. For now we discuss only integer
Sobolev spaces W 1,p(Bn,RN), but for the trace theorem we will need also fractional Sobolev
spaces.

• W 1,p(Bn,RN) consists of all functions f ∈ Lp(Bn,RN) such that the distributional
derivative ∂αf ∈ Lp(Bn,RN) for all α ∈ {1, . . . , n}.

• Trace of a Sobolev function: If f ∈ W 1,p(Ω,RN) then it does not make any sense
to talk about f

∣∣∣∣
∂Ω

. Indeed, Sobolev maps can be changed on a set of measure zero
(because Lp-functions are defined only modulo sets of measure zero). ∂Ω tends to
be measure zero.

However, if Ω is suitably nice, then there exists “something like” f
∣∣∣∣
∂Ω

: the trace
operator. The trace operator satisfies the following properties (below: p > 1)

–
∣∣∣∣
∂Ω

: W 1,p(Ω,RN) → W 1− 1
p

,p(∂Ω,RN) is a surjective linear map, where for
s ∈ (0, 1)

f ∈ W s,p(∂Ω)

:⇔f ∈ Lp(∂Ω, dHd−1), [f ]W s,p(∂Ω) :=
(∫

∂Ω

∫
∂Ω

(
|f(x) − f(y)|

|x − y|s

)p
dx dy

|x − y|n−1

) 1
p

< ∞

• We say f ∈ W 1,p(Bn, M) for a manifold M ⊂ RN if f ∈ W 1,p(Bn,RN) and f(x) ∈
M for a.e. x ∈ Bn. Similarly for W s,p.

2very different to the Banach Fixed Point theorem
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We recall the Morrey-Sobolev embedding

Theorem 1.11 (Morrey-Sobolev). • Assume f ∈ W 1,p(Bn,RN) and 1 − n
p

> 0 (i.e.
p > n). Then f ∈ C1− n

p (Bn,RN).
• Similarly for W s,p: if s − n

p
> 0 then it embedds into Cs− n

p (proof is the same)
• if 1 − n

p
= −n

q
< 0 for q ∈ (1, ∞) then f ∈ Lq, but f ∈ W 1,p may not be continuous

• If 1 − n
p

= 0, f ∈ V MO, which means

but f may not be continuous. The typical example is
f(x) = log log 2/|x|.

Warning: we have to be a bit careful here. If f ∈ W 1,p for 1 − n
p

> 0, f is still an Lp-
function and thus only defined modulo sets of measure zero. The statement is that there
exists (exactly one) representative f̄ of the equivalence class [f ] ∈ Lp such that f̄ is C1− n

p .

Here is our first Sobolev-version of Theorem 1.9 (spoiler: it is quite trivial)

Theorem 1.12. Let F ∈ W 1,p(Bn,Bn), for p > n, then there exists a fixed point x̄ with
F (x̄) = x̄.

Proof. Any such F is actually continuous (since p > n). Thus a fixed point exists – as long
as we mean by F (x) = x the continuous representative of F . □

So for p > n there is no real excitement.

How about p < n?

Answer: the analogue of Theorem 1.9 is very very wrong for W 1,p, p < n, indeed we have
a striking counterexample.

Example 1.13 (The hedgehog). Let

F (x) := x

|x|
Then f ∈ W 1,p(Bn,Sn−1) for any p < n. Indeed,

|∇F (x)| ≈ |x|−1

which belongs to Lp for p < n.

The hedgehog itself x
|x| : Bn → Sn−1 has of course many fixed points on ∂Bn.

But

Theorem 1.14. The map f(x) := − x
|x| has no fixed points.
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Ok, so now we could3 complain that the statement of a fixed point theorem does not make
any sense, since Sobolev functions can be changed on a set of measure zero: there may not
be any continuous representative of F .

So, what do we actually mean by F (x̄) = x̄?

As discussed in Remark 1.10, even if there is one represenative of F that has F (x̄) = x̄, we
could easily change this representative in a zero measure (one point!) such that F (x̄) ̸= x̄.
And the other way around, If F (x) ̸= x for all x, then we can easily find a representative
a.e. the same such that F (0) = 0.

So instead we might be tempted to consider

Definition 1.15. We say that a measurable F : Rn → Rn has essentially a fixed point, if
Ln ({x : |F (x) − x| < ε}) > 0 ∀ε > 0.

Exercise 1.16. Assume F : Bn → Rn (important that Bn is closed!) is continuous and
has essentially a fixed point. Then F has a fixed point.

Example 1.17. The example from before, F (x) := −x/|x|, has not essentially a fixed
point.

So for W 1,p, p < n - no Brouwer fixed point theorem

For W 1,p, p > n - yes Brouwer fixed point theorem.

What happens for p = n?

Theorem 1.18. If F ∈ W 1,n(Bn,Bn), then F has essentially a fixed point .

Whether this statement is really useful is debatable, we make it mostly to illustrate the
point of topological methods being available for (barely) non-continuous Sobolev spaces.

The proof is kind of the same as Theorem 1.12:

Again we are interested in discussing

H(t, x) := x − tF (x)
|x − tF (x)| ,

we need to take care of some technicalities.

Lemma 1.19. Fix ε > 0, set
t0 := max{1 − ε

4 ,
1
2}.

Assume F ∈ W 1,n(Bn,Rn) satisfies
Ln({x : |F (x) − x| < ε}) = 0,

3should!
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Set
H(t, x) := x − tF (x)

|x − tF (x)|
then H(t, ·) ∈ W 1,n(Bn,Rn) for any t ∈ [t0, 1] and indeed we have Lipschitz continuity,

(1.2) ∥H(t1, ·)−H(t2, ·)∥W 1,n(Bn,Rn) ≤ |t1 − t2| C(n, ε)
(
∥F∥W 1,n(Bn) + 1

)
∀t1, t2 ∈ [t0, 1].

Proof. Formally this is kind of clear: We have
|x − tF (x)| ≥ |tx − tF (x)| − |1 − t| |x|

So if t ≥ 1
2 and t ≥ 1 − ε

4 then for almost every |x| ≤ 1,

|x − tF (x)| ≥ 1
2 |F (x) − x| − ε

4 |x| ≥ 1
2ε − ε

4 = ε

4 > 0.

Then

∇xH(t, x) = ∇ (x − tF (x))
|x − tF (x)| − x − tF (x)

|x − tF (x)|2 ⟨ x − tF (x)
|x − tF (x)| , ∇(x − tF (x))⟩

implies
|∇xH(t, x)| ≤ C

1
ε

|∇(x − tF (x))| ∈ Ln.

Thus H(t, ·) ∈ W 1,n.

You might be a bit concerned about the previous argument. And you should be. A function
whose derivative is a.e. in Ln may not be in W 1,n (it could have a measure part, think of
the Heaviside function).

So the actual argument is as follows:

Consider for δ > 0
Hδ(t, x) := x − tF (x)

|x − tF (x)| + δ

Hδ(t, ·) is clearly in W 1,n since p 7→ p
|p|+δ

is a Lipschitz function, and composition of
Lipschitz functions with W 1,q is W 1,q.

Then

∇xHδ(t, x) = ∇x (x − tF (x))
|x − tF (x)| + δ

− x − tF (x)
(|x − tF (x)| + δ)2 ⟨ x − tF (x)

|x − tF (x)| , ∇x(x − tF (x))⟩

Again: we know this is the distributional derivative, since Hδ belongs to W 1,1
loc and thus

a.e. derivative and distributional derivative coincide.

Thus, for a.e. x,
|∇Hδ(t, x)| ≲ 1

ε + δ
|∇(F (x) − x)|.
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Since ε > 0 we find
sup

δ∈(0,1)
∥Hδ(t, ·)∥W 1,n(Bn) < ∞,

By reflexivity we thus conclude that there must be some H0(t, ·) ∈ W 1,n(Bn) that is the
W 1,n-weak limit of Hδn(t, ·) for some δn → 0. By Rellich’s theorem, this is a pointwise a.e.
convergence, so for every4 has point x with tF (x) ̸= x we have

H0(t, ·) = x − tF (x)
|x − tF (x)|

That is, x−tF (x)
|x−tF (x)| ∈ W 1,n(Bn,Rn).

By the same argument, for the Lipschitz bound (1.2), it suffices to show

∥Hδ(t1, ·) − Hδ(t2, ·)∥W 1,n(Bn,Rn) ≤ |t1 − t2| C(n, ε)
(
∥F∥W 1,n(Bn) + 1

)
and by the fundamental theorem in calculus for this it is enough to show to consider

∂tHδ(t, x) = F (x)
|x − tF (x)| + δ

− x − tF (x)
(|x − tF (x)| + δ)2 ⟨ x − tF (x)

|x − tF (x)| , F (x)⟩

Observe that we already know that x−tF (x)
|x−tF (x)| ∈ W 1,n then we find

∥∇∂tHδ(t, x)∥Ln ≤ C(n, ε) (∥∇F∥Ln + 1)
We can conclude. □

In the same way we have

Lemma 1.20. Assume t0 < 1 and F ∈ W 1,n(Bn,Rn) with |F (x)| ≤ 1 a.e.. Set for
t ∈ [0, t0]

H(t, x) := x − tF (x)
|x − tF (x)| ,

which is well-defined for |x| ∈ (t0, 1], and indeed we have

H(t, ·) ∈ W 1,n(B(1) \ B(1 − t0

2 ),Rn)

and
(1.3)
∥H(t1, ·)−H(t2, ·)∥

W 1,n(B(1)\B( 1−t0
2 ),Rn) ≤ |t1−t2| C(n, ε)

(
∥F∥W 1,n(Bn) + 1

)
∀t1, t2 ∈ [t0, 1].

Proof of Theorem 1.18. We follow the strategy of the proof of Theorem 1.9:

Assume the claim is false. Then there must be some ε > 0 such that
(1.4) Ln({x : |F (x) − x| < ε}) = 0.

4recall: the set {x : tF (x) = x} is a zero-set by assumption for any t ∈ [t0, 1]
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Again we consider the map

H(t, x) := x − tF (x)
|x − tF (x)|

• By Lemma 1.19, for some t0 ∈ (0, 1) we have that H(t, ·) ∈ W 1,n(Bn,Rn) for any
t ∈ [t0, 1].

• By Lemma 1.20 and the trace theorem for t ∈ [0, t0]

H(t, ·)
∣∣∣∣
Sn−1

∈ W 1− 1
n

,n(Sn−1,Sn−1).

• H is continuous in t w.r.t. above spaces.

So we are done, if we can extend the notion of winding number to maps f : Sn−1 → Sn−1

which belong to W 1− 1
n

,n(Sn−1,Rn): we need

• the winding number (or better: the degree) is defined for W 1− 1
n

,n(Sn−1,Sn−1)-maps,
and if f ∈ C0 ∩ W 1− 1

n
,n(Sn−1,Sn−1) then the notion of winding numbers (Sobolev

and usual) coincide.
• Homotopies in C0

t W 1− 1
n

,n don’t change the winding number
• If f ∈ W 1− 1

n
,n(Sn−1,Sn−1) is the trace of a map F ∈ W 1,n(Bn,Sn−1) then the

winding number of f is zero.

□

2. Degree for (essentially) VMO-maps

Again, if you are unfamiliar with topology it makes sense to think of the case of maps
S1 → S1, but this works for the degree, and more generally any homotopy invariant quantity

Theorem 2.1. Let Md and N ⊂ RN be two smooth, compact manifolds without boundary
(think of two spheres), where Md is d-dimensional.

Consider the space
X := {f : Md → N ⊂ RN continuous}.

Assume for some Y ⊂ R5 a map
deg : X → Y

which is homotopy invariant, i.e. which has the property
If f and g are homotopic then deg(f) = deg(g).

Fix s ∈ (0, 1], d
s

̸= 1 and set

X̃s ≡ W s, d
s (Md, N ) := {f ∈ W s, d

s (Md,RN) : f(x) ∈ N , for a.e. x ∈ Md}
5Y could also be something like Z or Z × Z2
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Then there exists
d̃eg : X̃s → Y

such that

• d̃eg extends deg, i.e. d̃eg(f) = deg(f) whenever f ∈ C0 ∩ W s, d
s

• d̃eg is continuous w.r.t. W s, d
s -topology. Even more: for any f ∈ W s, d

s (M, N ) there
exists δ > 0 (depending on f !) such that if g ∈ W s, d

s (M, N ) and
[f − g]

W s, d
s (M,RN )

< δ

then d̃egf = d̃egg6

• (In particular if we) assume H ∈ C0([0, 1]; W s, d
s (M, N )) i.e.

H : [0, 1] × M → N
with

H(t, ·) ∈ W s, d
s (M, N )

and for any t ∈ [0, 1] and any ε > 0 there exists δ > 0 such that for any s ∈
(t − δ, t + δ) ∩ [0, 1] we have

[H(s, ·) − H(t, ·)]
W s, d

s (M,N )
< ε.

If moreover H(0, ·) = f and H(1, ·) = g then
d̃eg(f) = d̃eg(g).

Remark 2.2. Why W s, d
s ? Because this is exactly the case when

s − d
d
s

= 0

Like W 1,d(Rd) – its the limiting case:

The above also works for W t, d
s for t > s (because then any Sobolev map is actually

continuous), and they tend to fail when t < s (essentially because x
|x| belongs to W t, d

s

which is a map that “extends a winding number 1 map homotopically to the constant in
W t, d

s , t < s”)

Once we have Theorem 2.1 we can almost conclude the proof of Theorem 1.18, indeed we
recall what we needed:

• the winding number (or better: the degree) is defined for W 1− 1
n

,n(Sn−1,Sn−1)-maps,
and if f ∈ C0 ∩ W 1− 1

n
,n(Sn−1,Sn−1) then the notion of winding numbers (Sobolev

and usual) coincide. (done)
6Well, since the image of d̃eg is Y which is discrete this is the same as saying

|d̃egf − d̃egg| < ε

for a small ε
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Figure 2.1. The nearest point projection from Lemma 2.3: close to the
manifold (the blue curve) we can project (even orthogonally, i.e. to the
nearest point) onto the manifold (in the red area, along the normal field).
Source:Oleg Alexandrov/Wikipedia

• Homotopies in C0
t W 1− 1

n
,n don’t change the winding number (done)

• If f ∈ W 1− 1
n

,n(Sn−1,Sn−1) is the trace of a map F ∈ W 1,n(Bn,Sn−1) then the
winding number of f is zero. (to be done!)

2.1. Proof of Theorem 2.1. In order to see this we need a few observations. First, we
need the nearest point projection7:

Lemma 2.3 (Nearest point projection). Let N ⊂ RN be a compact manifold without
boundary.

There exists a small δ > 0 and smooth projection π from a tubular neighborhood
Bδ(N ) := {p ∈ RN : dist (p, N ) < δ}

such that
πN : Bδ(N ) → N ; πN (p) = p ∀p ∈ N

Cf. Figure 2.1.

Lemma 2.4. Assume that M and N ⊂ RN are two smooth compact manifolds without
boundary. There exists a number ε0 = ε0(N ) > 0 such that any two continuous maps

7see [Sim96, Section 2.12.3]
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f, g : M → N with
∥f − g∥L∞(M) < ε0

are homotopic to each other.

Proof. The proof is kind of easy, since we have πN from Lemma 2.3: we use a convex
combination as homotopy.

Assume that f, g are continuous and ∥f − g∥L∞ < δ
2 , where δ is from Lemma 2.3. Set

H(t, x) := πN ((1 − t)f(x) + tg(x))

This is well defined and continuous map since

dist ((1 − t)f(x) + tg(x), N ) ≤ |(1 − t)f(x) + tg(x) − f(x)| ≤ |f(x) − g(x)| <
δ

2 .

That is H is a homotopy. We are done. □

Lemma 2.5. Let f ∈ W s, d
s (M, N ) then there exist fk ∈ C∞(M, N ) such that

∥f − fk∥
W s, d

s (M,RN )
k→∞−−−→ 0

Remark 2.6. Lemma 2.5 is due (for s = 1, but the proof easily translates to s < 1) to
Schoen and Uhlenbeck, [SU82, Section 3]. It was quickly observed [SU83, Section 4] that
this result may fail (depending on topology) if u ∈ W s,p if sp < d. We refer the interested
reader to [BZ88, Bet91, HL03, BPVS15, BM15] for this fascinating field.

Proof of Lemma 2.5. We use the usual mollification: Assume that M is embedded nicely
into some RD take η ∈ C∞

c (B(0, 1)), η ≥ 0, η

∣∣∣∣
B(0,1/2))

= 1, and set ηt(z) = t−dη( z
t
). We

shall additionally assume that η is rotation invariant, i.e. η(z) = η(|z|). Set

gt(x) :=
∫

M
f(y)ηt(x − y)dHd(y)

Set
ct(x) :=

∫
M

ηt(x − y)dHd(y) =
∫

M∩B(x,t)
ηt(x − y)dHd(y)

We have
t−dHd(M ∩ B(x, t/2)) ≤ ct(x) ≤ ∥η∥L∞t−dHd(M ∩ B(x, t))

This implies that for any fixed small t0 > 0 we have

0 < inf
t∈[0,t0],x∈M

ct(x) ≤ sup
t∈[0,t0],x∈M

ct(x) < ∞.

Moreover we claim that
lim
t→0

ct(x) = 1 ∀x ∈ M.
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To see this fix any x ∈ M, assume t ≪ 1 so that B(x, t) ∩ M can be parametrized by a
diffeomorphism Φ : Bd → B(x, t) ∩ M and up to a rotation of M ⊂ RD (which does not
change η!) we can assume that

Φ(0) = x =
(

x′

0

)
, DΦ(0) =

(
Id×d

0D−d×D−d

)
∈ RD×d

Then we have∫
M∩B(x,t)

ηt(x − y)dHd(y) =
∫
Bd∩{z:|x−Φ(z)|<t}

ηt(x − Φ(z))Jac(Φ(z))dz

By Taylor expansion, for |x − Φ(z)| < t we have
Jac(Φ(z)) = 1 + O(t)

and since ∣∣∣∣∣lim sup
t→0+

∫
Bd∩{z:|x−Φ(z)|<t}

ηt(x − Φ(z))dz

∣∣∣∣∣ < ∞

we find that∫
M∩B(x,t)

ηt(x − y)dHd(y) =
∫
Bd∩{z:|x−Φ(z)|<t}

ηt(x − Φ(z))dz + ot→0(1).

Another Taylor expansion tells us that

RD ∋ x − Φ(z) =
(

x′ − z
0

)
+ O(|x − z|2)

So that we have
ηt(x − Φ(z)) = t−dη( |x′ − z|

t
) + t−dt−1O(t2)

We conclude that∫
M∩B(x,t)

ηt(x − y)dHd(y) =
∫
Bd∩{z:|x−z|<t}

ηt(x′ − z)dz + ot→0(1).

Now we see that
lim
t→0

∫
M∩B(x,t)

ηt(x − y)dHd(y) = η(0) = 1.

In particular, since ct(x) is a smooth function in x, uniformly in t, we see that

∥∇ct∥L∞(M)
t→0−−→ 0

and in particular
∥∇

( 1
ct

)
∥L∞(M)

t→0−−→ 0

Then standard by the usual convolution argument

f̃t(x) := 1
ct(x)gt(x) t→0−−→ f(x) in W s, d

s (Md,RN)

and f̃t ∈ C∞(Md,RN). However: f̃t : Md → RN . We wanted f̃t : Md → N . (Also, so far
this would have worked for any W s,p!)
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We observe that for a.e. z ∈ M, such that f(z) ∈ N ,

dist (f̃t(x), N ) ≤ |f̃t(x) − f(z)|

Thus

dist (f̃t(x), N ) ≤ 1
ct(x) |gt(x) − ct(x)f(z)|

≤ 1
ct(x) |

∫
M

(ηt(x − y)f(y) − ηt(x − y)f(z)) dy|

≤ 1
ct(x)

∫
M

ηt(x − y)|f(y) − f(z)|dy.

Multiply this with 1
ct(x)ηt(x − z) and integrate in z (the left hand site integrates to 1 since

it doesn’t depend on z)

dist (f̃t(x), N ) ≤ 1
ct(x)

1
ct(x)

∫
M

∫
M

ηt(x − y)ηt(x − z)|f(y) − f(z)|dydz

This is BMO! For all t < t0

dist (f̃t(x), N ) ≲ 1
t2d

∫
M∩B(x,t)

∫
M∩B(x,t)

|f(y) − f(z)|dydz

We do, what essentially is Sobolev-Poincaré inequality,

dist (f̃t(x), N ) ≲

(
Hd(M ∩ B(x, t))

) 2
p′

t2d

(∫
M∩B(x,t)

∫
M∩B(x,t)

|f(y) − f(z)|pdydz

) 1
p

≲

(
Hd(M ∩ B(x, t))

) 2
p′

t2d
(2t)

d+sp
p

(∫
M∩B(x,t)

∫
M∩B(x,t)

|f(y) − f(z)|p
|y − z|d+sp

dydz

) 1
p

Now, if t is suitably small (maybe we take t0 even smaller)

Hd(M ∩ B(x, t)) ≈ td

and we arrive at

dist (f̃t(x), N ) ≲

(
td
) 2

p′

t2d
(2t)

d+sp
p

(∫
M∩B(x,t)

∫
M∩B(x,t)

|f(y) − f(z)|p
|y − z|d+sp

dydz

) 1
p

=t
−d+sp

p

(∫
M∩B(x,t)

∫
M∩B(x,t)

|f(y) − f(z)|p
|y − z|d+sp

dydz

) 1
p

This works for any s ∈ (0, 1) and p ∈ (1, ∞). But we care about the case when p = d
s
,

where some magic happens:
t

−d+sp
p = 1.
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That is, we have shown

dist (f̃t(x), N ) ≲
∫

M∩B(x,t)

∫
M∩B(x,t)

|f(y) − f(z)| d
s

|y − z|2d
dydz

 s
d

Now we recall that by assumption we know∫
M

∫
M

|f(y) − f(z)| d
s

|y − z|2d
dydz

 s
d

< ∞

Absolute continuity of the integral now implies for any δ̃ > 0 there exists a t1 (say < t0)
such that ∫

M∩B(x,t)

∫
M∩B(x,t)

|f(y) − f(z)| d
s

|y − z|2d
dydz

 s
d

< δ̃ ∀x ∈ M.

We choose δ̃ so small so that we can apply the nearest point projection, Lemma 2.3, i.e.
so that

f̃t(x) ∈ Bδ(N ) a.e. x ∈ M, for all t ∈ (0, t1)
Let us stress, that t1 strongly depends on f , not only on the norm [f ]

W s, d
s
, but on f itself.

This will be very important later.

In any case, we now have that
ft := πN (f̃t)

is well-defined for any t ∈ (0, t1), and since πN is smooth, we have that

ft
t→0+
−−−→ πN (f) in W s, d

s .

Since f(x) ∈ N a.e. we conclude that actually

ft
t→0+
−−−→ f in W s, d

s .

We can conclude. □

So if f ∈ W s, d
s (M, N ) (in the sense discussed above) we can approximate it by fk ∈

W s, d
s ∩ C0(M, N ).

So we want to define
d̃eg(f) := lim

k→∞
deg(fk)

The issue is: who says that is well-defined? It could be that d̃egfk depends on the choice
of approximation etc.

But no, it doesn’t.
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Lemma 2.7. Assume f ∈ W s, d
s (M, N ). There exists an ε > 0 (depending on f !) such

that whenever g, h ∈ C0 ∩ W s, d
s (M, N ) satisfy

(2.1) ∥f − g∥
W s, d

s (M,N )
+ ∥f − h∥

W s, d
s (M,N )

< ε

then h and g are homotopic, and in particular deg(h) = deg(g).

Proof. The idea is to mollify g and h (crazy, they are already continuous! but still we shall
do it):

So consider first
gt(x) := πN

(
1

ct(x)

∫
M

ηt(x − y)g(y)dy

)
We discussed above in the proof of Lemma 2.5 that this mollification makes sense for any
t ∈ (0, t1] where t1 was such that

(2.2) sup
x∈M,t∈(0,t1)

∫
M∩B(x,t)

∫
M∩B(x,t)

|g(y) − g(z)| d
s

|y − z|2d
dydz

 s
d

< δ̃N

where δ̃N was a constant we derived from N so that Lemma 2.3 was applicable.

Since g is continuous, we see that
t 7→ gt t ∈ [0, t1]

is a homotopy! So
deg gt = deg g t ∈ [0, t1].

The joke is that t1 from (2.2) is actually dependent on f , not on g: Namely in view of
(2.1). ∫

M∩B(x,t)

∫
M∩B(x,t)

|g(y) − g(z)| d
s

|y − z|2d
dydz

 s
d

≤

∫
M∩B(x,t)

∫
M∩B(x,t)

|f(y) − f(z)| d
s

|y − z|2d
dydz

 s
d

+ ε

So if we choose ε < δ̃N
2 (this does not depend yet on f , but just you wait!) and t1 (depending

on the absolute continuity of the integrals in the norm of f !) such that∫
M∩B(x,t)

∫
M∩B(x,t)

|f(y) − f(z)| d
s

|y − z|2d
dydz

 s
d

<
δ̃N

2

then we have
t 7→ gt := πN

(
1

ct(x)

∫
M

ηt(x − y)g(y)dy

)
t ∈ [0, t1]



TOPOLOGICAL OBSTRUCTIONS FOR SOBOLEV SPACES VERSION: June 13, 2024 21

is a homotopy.

We can do the same for h, so

t 7→:= ht := πN

(
1

ct(x)

∫
M

ηt(x − y)h(y)dy

)
t ∈ [0, t1]

The point is t1 is the same in both cases.

Now we want to show that ht and gt are homotopic, and we can use Lemma 2.4. Observe
that since πN is smooth

|gt(x) − ht(x)| ≲
∣∣∣∣∣ 1
ct(x)

∫
M

ηt(x − y)(h(y) − g(y)) dy

∣∣∣∣∣
≲

1
td

∥h − g∥L1(M)

By (2.1),

sup
x∈M

|gt(x) − ht(x)| ≤C
1
td

ε

And now here is the point: We can choose t = t1. And assume ε from (2.1) is even smaller
so that

C
1

(t1)d ε < ε0

where ε0 is from Lemma 2.4 – that condition on ε heavily depends on t1, which in turn
heavily depends on f (not just the norm of f !). Then,

sup
x∈M

|gt1(x) − ht1(x)| < ε0

and thus by Lemma 2.4 ft1 and gt1 are homotopic; thus by assumptions on deg we have
deg gt1 = deg ht1 .

Since
[0, 1] ∋ t 7→ gt

and
[0, 1] ∋ t 7→ ht

are homotopies (g and h are continuous!), and by assumption deg is homotopy invariant
in the continuous category, we conclude

deg g = deg gt1 = deg ht1 = deg h.

□

So, we have established that if f ∈ W s, d
s (M, N ) then

deg f̃ is the same ∀ W s, d
s -close, continuous maps f̃ .



TOPOLOGICAL OBSTRUCTIONS FOR SOBOLEV SPACES VERSION: June 13, 2024 22

So, for any W s, d
s ∩ C0-approximation fk of f the notion

d̃eg(f) := lim
k→∞

deg(fk)

is well-defined for all f ∈ W s, d
s (M, N )-maps. And if f ∈ C0∩W s, d

2 (M, N ) then deg f =
d̃eg(f).

The last thing to conclude the claim of Theorem 2.1 is: we still need to show the homotopy
invariance, but this is easy by now:

Lemma 2.8. Assume f ∈ W s, d
s (M, N ). Then there exists ε > 0 (depending heavily on

f !) such that for all g ∈ W s, d
s (M, N ) with

∥g − f∥
W s, d

s (M)
< ε.

we have
deg f = deg g

Proof. Approximate f by a continuous f̃ , and g by a continuous g̃ so that
deg f = deg f̃

and
deg g = deg g̃.

By Lemma 2.5 this is possible and we can even assume
∥g̃ − g∥

W s, d
s (M)

+ ∥f̃ − f∥
W s, d

s (M)
≪ 1.

In particular we can ensure that
∥g̃ − f∥

W s, d
s (M)

≤ ∥g̃ − g∥
W s, d

s (M)
+ ∥g − f∥

W s, d
s (M)

< 2ε.

If ε is suitably small, by Lemma 2.7 we find that
deg(g̃) = deg(f̃).

By choice of g̃ and f̃ this implies deg(g) = deg(f). □

Theorem 2.1 is established: any homotopy invariant notion for continuous maps can be
extended to critical Sobolev maps.

From the above approximation argument we also readily see that the notion of W s, d
s - ˜deg

is independent of the specific s:

Corollary 2.9. Let M,N , deg be as in Theorem 2.1. Assume s, t ∈ (0, 1] and f ∈
W s, d

s ∩ W t, d
s (M, N ). If we consider deg1 the extension of deg as above for W s, d

s -maps,
and deg2 the degree as above for W t, d

t -maps then
deg1 f = deg2 f.
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2.2. Conclusion of the Theorem 1.18. All that is needed to conclude Theorem 1.18 is
the following

Lemma 2.10. If f ∈ W 1− 1
n

,n(Sn−1, Sn−1) is the trace of a map F ∈ W 1,n(Bn,Sn−1) then
the winding number of f is zero.

Proof. The point is simply that we can approximate

F ∈ W 1,n(Bn,Sn−1)

w.r.t. the W 1,n(Bn,Rn)-norm
Fk ∈ C∞(Bn, Sn−1)

essentially by Lemma 2.5. The only thing different is that our “manifold” M = Bn has a
boundary, but that is easily dealt with, by a reflection-type argument. E.g. set

F̃ (x) :=

F (x) |x| ≤ 1
F (x/|x|2) |x| ∈ (1, 3

2)

This F̃ is in W 1,n
loc (B(3/2))8, so we can run the argument of Lemma 2.5 to find Fk ∈

C∞(Rn,Sn−1) such that

Fk

∣∣∣∣
Bn

k→∞−−−→ F in W 1,n(Bn,Rn).

Since the trace operator is continuous, we also have

Fk

∣∣∣∣
∂Bn

k→∞−−−→ f in W 1− 1
n

,n(Sn−1,Rn)

Since Fk is in particular continuous we find that

deg f = lim
k→∞

deg Fk

∣∣∣∣
∂Bn

.

On the other hand Fk

∣∣∣∣
∂Bn

can be extended to a map Fk : Bn → Sn−1 so deg Fk

∣∣∣∣
∂Bn

≡ 0,
Corollary 1.7. Thus

deg f = lim
k→∞

deg Fk

∣∣∣∣
∂Bn

= 0,

so we are done. □

8Observe x 7→ x
|x|2 is a C∞-diffeomorphism from B(3/2) \ B(1) to B(1) \ B(2/3), and if f is Sobolev

and τ is a diffeomorphism then f ◦ τ is Sobolev. Observe that F̃ maps still into the same set as F – if,
e.g., we were considering W 2,p we would have to be more careful with the reflection
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3. The degree formula - obstacles to extensions

We slightly shift focus, and consider the previously discussed “topology for Sobolev maps”
as non-existence results:

Above we have seen that if we have a (say smooth, for simplicity) map
f : Sn−1 → Sn−1

which has nonzero winding number / degree, then it cannot be extended to a map
F ∈ W 1,n(Bn,Sn−1),

because that would violate Lemma 2.10.

Quite differently, it is easy to find extensions
F ∈ W 1,n(Bn,Rn),

e.g. we could set
F (x) := η(x)f(x/|x|)

where η ∈ C∞, η ≡ 0 around 0 and η ≡ 1 around ∂Bn.

Our next goal is to prove the following theorem, which is essentially due [HST14]

Theorem 3.1. Assume f : Sn−1 → Sn−1 be a smooth map of nonzero degree. Then there
exist no map F ∈ W 1,n(Bn,Rn) with the properties

• F
∣∣∣∣
∂Bn

= f in the sense of traces
• rank DF ≤ n − 1 a.e. in Bn.

Any W 1,n-map F : Bn → Sn−1 has rank Df ≤ n − 1 a.e. (“by” the implicit function
theorem). The above theorem says, that being more permissive with conditions on F ,
namely allowing F to go to all of Rn, we cannot restrict the rank to be rank DF ≤ n − 1.

Also, by embedding Sn−1 ⊂ RN we get the following theorem

Theorem 3.2. Let N ≥ n. There is a smooth map f : Sn−1 → RN such that there exist
no map F ∈ W 1,n(Bn,RN) with the properties

• F

∣∣∣∣
∂Bn

= f in the sense of traces
• rank Df ≤ n − 1 a.e. in Bn.

Why do we care about maps with constrained rank? Well because there are things more
flexible than manifolds: in [HST14] we considered the Heisenberg group Hℓ, and one can
show that any map into the Heisenberg group must have rank DF ≤ ℓ, so the previous
result becomes useful.
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To prove Theorem 3.2 it is time to introduce the actual degree (not just the winding
number). The essential point is that there is a precise formula for the degree that consists
of Jacobians (determinants of ∇F ) – i.e. algebraic objects which measures quite well rank.
So let’s do some linear algebra.

4. Analytical version of degree

Essentially the main point of our future arguments are that if we can measure the topology
in terms of differential forms (i.e. DeRham-cohomology) then we are in a good shape.
Things get quite unclear if this is not the case. This is related to rational homotopy groups
(or “torsion free” parts), which by an abstract theorem by Novikov can be represented as
cohomology [HR08]. I completely don’t understand what the previous topological notions
mean. So before I say too many wrong things, let’s focus on the degree.

Fun fact 1: The Winding number we so beautifully explained with nice pictures, can be
written in a way more ugly, unintuitive, but way more analytically useful form:

w(f) =
∫
S1

(
f 1∂τ f 2 − f 2∂τ f 1

)
dσ,

and more general, for maps f : Sn → Sn we set

deg(f) :=
∫
Sn

n+1∑
i=1

(−1)i−1f i det(Df 1, . . . Df i−1, Df i+1, . . . , Dfn)dp

This is a bit messy, so we are going to use the language of differential forms and use that

deg(f) =
∫
Sn

f ∗(vol) : ∀ f ∈ C∞(Sn, Sn).

But we need to discuss what this means.

4.1. Crash course on differential forms. A k-form ω on RN , we write ω ∈ ∧k RN , is
simply something that can be written as

ω =
∑

1≤i1<i2<...<ik≤N

ωi1,...,ik
dpi1 ∧ . . . ∧ dpik

What is the meaning of dpi1 ∧ . . . ∧ dpik? We don’t really care. ω in the above form is
simply a vector in ∧k RN .

For convenience we don’t want to always have to assume i1 < i2 < . . .. So we make the
convention

dpi ∧ dpj = −dpj ∧ dpi.

ω as above is a vector in a (strange) vector space ∧k RN . We can think of a function
ω : RN → ∧k RN , which simply means that the coefficients ωi1,...,ik

depends on the point
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p ∈ RN . Then we can discuss notions such as

ω ∈ W 1,p(RN)

which simply means that

ω =
∑

1≤i1<i2<...<ik≤N

ωi1,...,ik
(p)dpi1 ∧ . . . ∧ dpik

and ωi1,...,ik
(x) ∈ W 1,p(RN ,

∧k RN). If someone needs a norm, we will say

∥ω∥W 1,p :=
∑

1≤i1<i2<...<ik≤N

∥ωi1,...,ik
∥W 1,p .

One important operation is the differential. If ω : RN → ∧k RN can afford a derivative,
e.g. if ω ∈ C1(RN ,

∧k RN), then we set

dω(p) =
N∑

j=1

∑
1≤i1<i2<...<ik≤N

∂

∂pj
ωi1,...,ik

(p) dpj ∧ dpi1 ∧ . . . ∧ dpik

Then we see

d : C1(RN ,
∧k RN) → C0(RN ,

∧k+1 RN)

(a curious observation is that d ◦ d = 0, i.e. ddω = 0 no matter what ω is)

It is somewhat instructive to see that d encodes the gradient for 0-forms (which are simply
functions)

f : RN → R then df =
N∑

i=1
∂ifdpi ∈

∧1 RN .

If we have a vectorial map

g⃗ : RN → RN

we could be tempted to “translate” g⃗ to a map f : RN → ∧1 RN ,

f =
N∑

i=1
gidpi

What is dg? Observe that d ◦ d = 0, so if g = df for a function f , we must have dg = 0.
Indeed, it turns out dg is the9 curl.

9The divergence of g can also be represented with differential forms, we just the the Hodge star operator,
or the co-differential. This is not of interest to us, so we skip this here
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Indeed,

dg =
N∑

i=1

N∑
ℓ=1

∂ℓg
i(p) dpℓ ∧ dpi

dpℓ∧dpℓ=0=
N∑

i=1

∑
ℓ<i

∂ℓg
i(p) dpℓ ∧ dpi +

N∑
i=1

∑
ℓ>i

∂ℓg
i(p) dpℓ ∧ dpi

=
N∑

i=1

∑
ℓ<i

∂ℓg
i(p) dpℓ ∧ dpi−

N∑
i=1

∑
ℓ>i

∂ℓg
i(p) dpi ∧ dpℓ

=
∑

1≤i1<i2≤N

∂i1gi2(p) dpi1 ∧ dpi2−
∑

1≤i1<i2≤N

∂i2gi1(p) dpi1 ∧ dpi2

=
∑

1≤i1<i2≤N

(
∂i1gi2(p) −∂i2gi1(p)

)
dpi1 ∧ dpi2

The second important operation is the pullback Φ∗(ω).

Let Φ : Rn → RN be any smooth (enough) map, and take ω ∈ C∞(RN ,
∧k RN),

ω =
∑

1≤i1<i2<...<ik≤N

ωi1,...,ik
(p) dpi1 ∧ . . . ∧ dpik .

Then we define the pullback Φ∗(ω) ∈ C∞(Rn,
∧k Rn)

Φ∗(ω) :=
∑

1≤i1<i2<...<ik≤N

ωi1,...,ik
(Φ(x)) dΦi1(x) ∧ . . . ∧ dΦik(x)

Here Φik(x) is the ik-th component of Φ(x) = (Φ1(x), Φ2(x), . . . , ΦN(x)). Each Φi(x) is a
zero-form in Rn, and then10

dΦi(x) = ∂

∂xj
Φi(x) dxj

So what is
dΦi1(x) ∧ . . . ∧ dΦik(x)?

Well it is a k-form so it can be written as
dΦi1(x) ∧ . . . ∧ dΦik(x) =

∑
1≤α1<α2<...<αk≤n

J i1,...,ik
α1,...,αk

(DΦ(x)) dxα1 ∧ . . . dxαk

The question is what is J?

It turns out (and that is really the beauty of these differential forms!) it is a Jacobian of
a submatrix of DΦ. If we agree on the notation

((DΦ)jα)j∈{1,...,N},α∈{1,...,n} :=
(
∂αΦj(x)

)
j∈{1,...,N},α∈{1,...,n}

.

10we sum over repeated indices!
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That is DΦ is a RN×n-matrix. We can restrict it to a k × k matrix by only considering the
rows i1, . . . , ik and the colums α1, . . . , αk.(

DΦ(x)i1,...,ik
α1,...,αk

)
j∈{i1,...,ik},α∈{α1,...,αk}

:=
(
∂αΦj(x)

)
j∈{i1,...,ik},α∈{α1,...,αk}

.

And it turns out (I am not going to prove it, but its pure algebra)

J i1,...,ik
α1,...,αk

(DΦ(x)) = ± det
k×k

(
DΦ(x)i1,...,ik

α1,...,αk

)
j∈{i1,...,ik},α∈{α1,...,αk}

The determinant of DΦ is called Jacobian, so we call these object sub-Jacobians (you
can compute the sign on your own. We don’t really care). Recall that detk×k(A) can
be interpreted as the area of the unit cube under the transform A ∈ Rk×k (with some
orientation taken into account, because the determinant can be negative). That is the
Jacobian is the area of the linearization of Φ – this is the basis for the area formula, which
for diffeomorphisms Φ : M → RN now reads as∫

Φ(M)
ω =

∫
M

Φ∗(ω)

Observe that this gives us a way of integrating differential forms on manifolds: in Rn we
call dx1 ∧ . . . dxn the volume form, and set∫

Rn
f(x)dx1 ∧ . . . dxn =

∫
Rn

f(x)dLn(x).

So if Φ is a local parametrization from U ⊂ Rn of a manifold M ⊂ RN then we define∫
M

ω :=
∫

U
Φ∗(ω).

Good news is this coincides with our usual notion of integration on manifolds. Observe
that we can only integrate k-forms on k-manifolds.

Let us also mention the integration by parts formula, Stokes’ theorem, which for differential
forms now reads as ∫

∂B
ω =

∫
B

dω.

Observe that if B has no boundary, say its the sphere Sn−1 then Stokes theorem simply is∫
Sn−1

dω = 0.

Lastly, we mention (a direct calculation) that differential and pullback commute,
dΦ∗(ω) = Φ∗(dω)

We also discuss two important notions: closed forms and exact forms.

A k-form ω is closed if dω = 0. It is exact if ω = dη for a (k − 1)-form η. In particular any
exact form is necessarily closed, but in principle a closed form could be not exact. The k-th
DeRham cohomology group consists of the closed k-forms, where two forms are considered
the same if their difference is exact.
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4.2. Back to the degree. Let
vol ∈

∧n−1 Rn

be the volume form of the sphere. Namely assume vol is a n − 1-form such that∫
Sn−1

vol = Hn−1(Sn−1).

The volume form is not unique (indeed, by stokes theorem vol + dα is still a volume form)

Usually we like to use

vol =
n∑

i=1
(−1)i−1xidx1 . . . dxi−1 ∧ dxi+1 ∧ . . . dxn.

The point of all this is that the winding number and the degree formulas we introduced
earlier are simply:

Theorem 4.1. Let f : Sn → Sn be smooth then

(4.1) deg(f) =
∫
Sn

f ∗(vol)

In the case of the winding number, quite handwavingly one could try to prove this as
follows. Fix p̄ ∈ S1, the point where we want to put our “observation point” for the
winding number.

Assume for some x ∈ S1 we have f(x) = p̄. Then

f ∗volS1 “=”
(
f 1(x)∂τ f 2(x) − f 2∂τ f 1(x)

)
=
(

−f 2(x)
f 1(x)

)
· ∂τ f(x)

=p̄⊥ · ∂τ f(x)

and observe that since p̄ ∈ R2, p̄⊥ =
(

−p̄2

p̄1

)
is a tangent vector to S1 at the point p, and

∂τ f is also tangent. So p̄⊥ · ∂τ f(x) is positive if f passes in direction p̄⊥ and negative if it
passes in direction −p̄⊥.

The following is the crucial observation: f 7→
∫

f ∗ω is “homotopically invariant” under
“homotopies” which have a rank condition instead of mapping into a manifold!

Lemma 4.2. Fix any ℓ-dimensional manifold M without boundary (think about Sn−1).

Fix ω ∈ C∞(∧ℓ RN) any smooth ℓ-form (like the volume form on Sn−1 for ℓ = n − 1,
N = n), and define for smooth maps

f : M → RN
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the operation
d̃eg(f) :=

∫
M

f ∗(ω).

Then d̃eg is invariant under homotopies with rank restricted by ℓ. More precisely:

If f, g : M → RN are smooth maps, and there exists H : [0, 1] × M → RN also smooth
with the property

rank ∇x,tH ≤ ℓ a.e.
then

d̃eg(f) = d̃eg(g)

Proof. We have [0, 1] × M is a manifold with boundary {0} × M and {1} × M (which
have opposite orientation). Thus ∫

M
f ∗(ω) −

∫
M

g∗(ω)

=
∫

∂([0,1]×M)
H∗(ω)

Stokes=
∫

[0,1]×M
dH∗(ω)

=
∫

[0,1]×M
H∗(dω)

And here comes the joke:
H∗(dω)

is the pull-back of the (ℓ+1)-form dω, that is any entry in H∗(dω) can be written as the
determinant of an (ℓ+1)×(ℓ+1)-submatrix of ∇x,tH. But we assumed that rank ∇x,tH ≤ ℓ,
so

H∗(dω) ≡ 0.

Thus we have shown ∫
M

f ∗(ω) =
∫

M
g∗(ω)

□

4.3. Proof of Theorem 3.1. This approach gives us also a proof of Theorem 3.1, first in
the smooth category

• Let F ∈ C∞(Bn,Rn) with f := F

∣∣∣∣
∂Bn

: Sn−1 → Sn−1.
• If rank DF ≤ n − 1 then F is a homotopy to a constant map g := F (0), H(t, θ) :=

F (tθ), so by the previous Lemma∫
Sn−1

f ∗(ω) = 0

for any n − 1-form ω.
• By Theorem 4.1 this means that deg f = 0.
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Did we use anywhere that F is smooth? No. It suffices that F ∗(dω) is integrable, since dω
is an n-form, F ∈ W 1,n(Bn,RN) suffices.

5. Obstacles to Sobolev-homeomorphisms with restricted rank

For our next trick we want to push Theorem 3.1 a bit further:
Theorem 5.1. Assume f : Sn−1 → RN be a smooth diffeomorphism onto its own target.

Then there exist no map F ∈ W 1,n(Bn,RN) with the properties

• F

∣∣∣∣
∂Bn

= f in the sense of traces
• rank DF ≤ n − 1 a.e. in Bn.

This is a pretty sharp statement
Example 5.2. For any α ∈ (0, 1), there exists a map F : Bn → Rn, bi-Cα-homeomorphic,
such that rank DF ≤ n − 1 a.e. and DF ∈ L(n,∞)11

This result was proven via methods of convex integration in [FMCO18]. For very related
results using more explicit constructions see also, e.g., [LM16] and [Hen11].

This F cannot belong to Ln – this follows from the area formula

|Hn(F (Bn))| ≤
∫

Ω
JF .

Here JF is the Jacobian of f ,
√

det(∇F ). This formula makes sense if DF ∈ Ln and
Jf ∈ L1. – And indeed JF = 0 a.e. if rank DF ≤ n − 1, that is we have

|Hn(F (Bn))| ≡ 0.

Since F : Bn → Rn is a homeomorphism it maps open sets to open sets, and thus F (Bn)
must have positive measure – contradiction.

The proof of Theorem 5.1 was given (in the context of Hölder mappings into the Heisenberg
group) in [Sch20, HS23] and fractional Sobolev mappings [PS24]. It is pretty easy once we
have the following
Lemma 5.3. Let f ∈ C0 ∩ W 1,n(Sn−1,RN) be a homeomorphism. Then there exists ω ∈
C∞

c (∧n−1 RN) such that ∫
Sn−1

f ∗(ω) = 1
11this is the weak Ln-space (also called Marcinkiewicz space): f ∈ Lp,∞ if and only if Chebychef-type

inequality holds for superlevel sets

|{x : |f(x)| > t}| ≤ ∥f∥Lp,∞

tp
∀t > 0.

A map in L(p,∞) is in particular in Lq
loc for any q < p.
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Once we have Lemma 5.3 we just argue as in the proof of Theorem 3.1:

Proof of Theorem 5.1. For any F ∈ W 1,n(Bn,RN) we have by Stokes’ theorem

1 =
∫
Sn−1

f ∗(ω) =
∫
Bn

F ∗(dω)

Since dω is an n-form, if rank DF ≤ n − 1, we have F ∗(dω) = 0 since it is a bunch of
n × n-determinants of DF . So we have 1 = 0 and a contradiction. □

5.1. Proof of Lemma 5.3 - Linking number. So how do we prove Lemma 5.3? If
you know algebraic topology, the proof is essentially a copy of the fact that the homology
class HN−(n−1)−1(RN \ f(Sn−1))) that can be found in the early chapters of any algebraic
topology book, see e.g. [Vic94, Corollary 1.29]. The proof below is indeed a translation of
exactly that argument to cohomology (via Poincaré duality this is always possible) with
explicit computations of the operators in the Mayer-Vietoris sequence (see remark below).
The idea is that we can think of

[f, dω] :=
∫
Sn

f ∗(ω)

as the “Linking number” between the f(Sn) and the dω (which is an element of the coho-
mology group HN−1(RN \ f(Sn−1))) and thus equivalent by Poincaré duality to an element
of the homology group HN−(n−1)−1(RN \ f(Sn−1))), i.e. we are finding an N − (n − 1) − 1-
dimensional surface that links with f(Sn−1).

Here is the picture statement that sounds very credible:

Lemma 5.4. Let K ⊂ R3 be any set homeomorphic to S1. Then there exists a curve γ
that links with K.

Assume the set K (red) is homeomorphic to a 1-sphere – then we find a linking curve
(black).

This result, and the knowledge that Algebraic Topology knows how to prove this result in
any dimension, was the motivation for the following proof12

12As a side remark: this picture of “we find a linked surface with f(Sn−1) is not fully correct. After
completing the math of [HS23], Haj lasz showed that the ”linked surface“ we find here may actually not
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Proof of Lemma 5.3. We argue by induction on the dimension of the domain sphere Sℓ.
Here we consider Sℓ−1 the equator (any choice) of the sphere Sℓ. Since the choice of the
equator does not really matter we shall assume w.l.o.g. that f

∣∣∣∣
Sℓ

∈ W 1,n(Sℓ,RN) which is
always doable by Fubini’s theorem.

We split the sphere Sℓ into the equator Sℓ−1 (red), the closed upper hemisphere Sℓ
+ and

the closed lower hemisphere Sℓ
−.

The induction claim is

For ℓ = 0, 1, . . . , n − 1 there exists an ωℓ ∈ C∞
c (∧ℓ RN) such that

• dωℓ ≡ 0 in a neighborhood of f(Sℓ)
•
∫
Sℓ f ∗(ωℓ) ̸= 0

First we consider the case ℓ = 0

By the decomposition above, S0 are simply two points, which we may denote with {p+, p−}.
Since f is a homeomorphism, f(p+) ̸= f(p−). So we just pick ω0 ∈ C∞

c (∧0 RN) a 0-form
(i.e. function on RN) to be constantly 1 around f(p+) and constantly 0 around f(p−) and
also constantly zero outside a big ball in RN . Then dω0 = 0 around f(S0), and∫

S0
f ∗(ω0) = ω0(f(p+)) − ω0(f(p−)) = 1 ̸= 0.

That was easy.

be a real link, but may consist of several surfaces that combined links [Ha19]. Of course this is not really
relevant for our purposes, but a very cool fun fact.
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Case (ℓ − 1) → ℓ:

We assume that we have found an (ℓ − 1)-form ωℓ−1 ∈ C∞
c (∧ℓ−1 RN) such that13

ηℓ−1 := dωℓ−1 ∈ C∞
c (
∧ℓ RN \ f(Sℓ−1)),

and ∫
Sℓ−1

f ∗(ωℓ−1) ̸= 0.

We first construct a closed (ℓ + 1)-form ηℓ.

We define open subsets of RN as follows:
U := RN\f(Sℓ

+), V := RN\f(Sℓ
−).

Then
U ∪ V = RN \ {f(Sℓ

+) ∩ f(Sℓ
−)} = RN \ f(Sℓ−1).

since f is one-to-one.

Morever,
(5.1) U ∩ V = RN \ {f(Sℓ

+) ∪ f(Sℓ
−)} = RN \ f(Sℓ).

The support of ηℓ−1 is bounded away from f(Sℓ−1), thus
supp ηℓ−1 ⊂ RN\f(Sℓ−1) = U ∪ V.

Any open neighborhood W of f(Sℓ
+) will cover a bit of f(Sℓ

−). However, we can choose an
open neighborhood W of f(Sℓ

+) such that the part that W covers of f(Sℓ
−) does not belong

to the support of ηℓ−1 (which is zero around f(Sℓ
+) ∩ f(Sℓ

+) = f(Sℓ−1)).

More precisely, take two small open neighborhoods W1 ⊂⊂ W2 of f(Sℓ
+) that

so that
supp ηℓ−1 ∩ W2 ⊂ V

(i.e. supp ηℓ−1 ∩ W2 does not see anything from the southern hemisphere f(Sℓ
+)). Again,

this is possible because f(Sℓ
+) ∩ f(Sℓ

−) = f(Sℓ−1) and ηℓ−1 vanishes around these points.
Cf. Figure 5.1.

Take your favorite cutoff function χ ∈ C∞
c (W2) with χ ≡ 1 in W1 and set

γV := χηℓ−1, γU := (1 − χ)ηℓ−1.

Then
supp γU ⊂ supp (1 − χ) ⊂ RN \ W1 ⊂ RN \ f(Sℓ

+) = U

and
supp γV ⊂ supp χ ∩ supp ηℓ−1 ⊂ W2 ∩ supp ηℓ−1 ⊂ V.

13Observe that f(Sℓ) is a compact set since f is continuous, so that the above means dω ≡ 0 in particular
around f(Sℓ)
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Figure 5.1. The Koch snowflake represents f(Sℓ), the green part is f(Sℓ
+),

the orange part f(Sℓ
−). The grey area is the support of ηℓ−1, which vanishes

around f(Sℓ
+) ∩ f(Sℓ

−) = f(Sℓ−1). The sets W1 and W2 (red) contain f(Sℓ
+),

but the only part of f(Sℓ
−) they touch is where ηℓ−1 vanishes – so that

supp ηℓ ∩ Wi does not contain anything of f(Sℓ
−), i = 1, 2.

and we have
(5.2) ηℓ−1 = γU + γV

We define
ωℓ := γU , ηℓ := dγU .

Since dηℓ−1 = d (dωℓ−1) = 0 we actually have
ηℓ = dγU = −dγV .

In particular, with (5.1),

supp ηℓ ⊂ supp γU ∩ supp γV ⊂ U ∩ V ⊂ RN\f(Sℓ).
Thus, we have found ωℓ, which is a smooth ℓ-form, such that dωℓ ≡ ηℓ = 0 around f(Sℓ).

That is, the induction step is completed, once we confirm

(5.3)
∫
Sℓ

f ∗(ωℓ) ̸= 0.

So let us establish (5.3). In view of the support of γU and γV and (5.2)∫
Sℓ

f ∗(ωℓ) =
∫
Sℓ

−

f ∗(γU) =
∫
Sℓ

−

f ∗(ηℓ−1 − γV ) =
∫
Sℓ

−

f ∗(ηℓ−1).

Now we use Stokes’ theorem on Sℓ
−: Observe that by construction of the spheres,

∂Sℓ
− = Sℓ−1.
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Then Stokes’ theorem tells us∫
Sℓ

−

f ∗(ηℓ−1) =
∫
Sℓ

−

f ∗(dωℓ−1) = ±
∫
Sℓ−1

f ∗(ωℓ) ̸= 0

The sign ± comes from the orientation of ∂Sℓ
− = Sℓ−1. The ̸= 0 is the induction hypothesis.

(5.3) is proven. □

Remark 5.5. Let us put the above argument into the perspective of algebraic topology.
By the induction hypothesis, ηℓ−1 is an element of the cohomology group Hℓ(RN\f(Sℓ−1)).
We just used the exact Mayer-Vietoris sequence,

. . . → Hℓ(U) ⊕ Hℓ(U) → Hℓ(U ∪ V ) c−→ Hℓ+1(U ∩ V ) → Hℓ+1(U) ⊕ Hℓ+1(U) → . . .

where we observe U ∩ V = RN\f(Sℓ), U ∪ V = RN\f(Sℓ−1). Also, since U and V are
homeomorphic to RN (that is SN) with a cube taken away,

Hℓ+1(U) = Hℓ+1(V ) = Hℓ(U) = Hℓ(V ) = 0.

Thus, the Mayer-Vietoris sequence is simply
0 → Hℓ(RN\f(Sℓ−1)) c−→ Hℓ+1(RN\f(Sℓ)) → 0.

This just means that the connecting homomorphism c : Hℓ(RN\φ(Sℓ−1)) c−→ Hℓ+1(RN\φ(Sℓ)))
is an isomorphism. On the other hand c is known, and all we did above is set ηℓ := c(ηℓ−1).

Actually one can show that η = dω 7→
∫
Sk φ∗(ω) is an isomorphism on Hk+1(RN\φ(Sk)).
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