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In Analysis
there are no theorems

only proofs
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These lecture notes are based to a substantial extent on the book [Haj lasz, 2020] and the
lecture notes [Haj lasz, 2008, Haj lasz, 2009] by Piotr Haj lasz. Several pictures are taken
from these notes. They can be accessed online

• http://www.pitt.edu/∼hajlasz/Teaching/Math1530Fall2018/selection.pdf
• http://www.pitt.edu/∼hajlasz/Teaching/Math1530Fall2018/AdvancedCalculusI-Fall2008.pdf
• http://www.pitt.edu/ hajlasz/Teaching/Math1530Fall2018/AdvancedCalculusII-Spring2009.pdf

Other notes include Michael Struwe’s lecture notes Analysis I-II (in German), which can
be found

• https://people.math.ethz.ch/∼struwe/Skripten/Analysis-I-II-final-6-9-2012.pdf

In particular the section about submanifolds takes content, inspiration, and images from
P. Haj lasz’ lecture notes on Differential Geometry.

• http://www.pitt.edu/∼hajlasz/Notatki/Differential Geometry 1.pdf

Pictures that were not taken from above mentioned sources or wikipedia are usually made
with geogebra.

Requisite of this course is Math 420 and Math 413 (although we revisit some aspects but
with a stronger focus on doing our own proofs).

Thanks to Piotr Haj lasz and Josh Xie for corrections.
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Part 1. Advanced Calculus I

1. Review: Elements of set theory and logic

Basic Logic. In order do rigorous proofs, we recall use the following notation: ∧ (and),
∨ (or), ¬ (not). Here is the truth table

(1.1)

A B A ∧B A ∨B ¬A
and or not

True True True True False
True False False True False
False True False True True
False False False False True

Recall the De Morgan’s laws

Theorem 1.1. Let A, B be mathematical statements (i.e. A, B are each either true or
false). Then

¬(A ∨B) = (¬A) ∧ ¬(B)

¬(A ∧B) = (¬A) ∨ ¬(B)

Exercise 1.2. Prove Theorem 1.1 by using the truth-table (1.1).

Let’s practice a bit

Exercise 1.3. Use the equivalence

(1.2) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

to prove
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

To this end apply (1.2) to ¬p, ¬q, ¬r in place of p, q, r, and negate the statement using
De Morgan’s Laws, Theorem 1.1.

A logical statement can imply another logical statement:

• A ⇒ B means: If A is true, then B is also true. (if A is false then B can be true
or false). We also say A implies B.

• We write A ⇐ B if B ⇒ A
• We say A and B are equivalent in formulas A ⇔ B if A ⇒ B and B ⇒ A. We also

say “A if and only if B”.
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Exercise 1.4. Show that
(A ⇒ B) ⇔ (¬B ⇒ ¬A)

using the truth tables.

In other words: If we want to show that A implies B, we can just proof that the negation
of B implies the negation of A.

Exercise 1.5. Is the following a true statement (every number in N)?
(1 = 0) ⇒ (There are unicorns)

We will use the following notation frequently

• ∀: for every/all
• ∃: there exists
• ≡: is exactly the same as (usually used for functions, but also similar to ⇔)

For example the following is a logical statement (and it happens to be TRUE)

∀x ∈ R :
�
x2 = 1 ⇔ x ∈ {−1, 1}

�

In Analysis, we do not want to write every statement in the above form (its annoying and
unreadable). However, it is absolutely important to be able to translate statements from
symbols to words to precise mathematical formulation. For example for two sets A, B

A ⊂ B

⇔ A is a subset of B

⇔ every element of A is also an element of B

⇔ ∀x ∈ A : x ∈ B

⇔ ∀x : (x ∈ A ⇒ x ∈ B) .

So while we may often write or say A ⊂ B or A is a subset of B, in our mind we have to
be able to write the precise logical definition!

We write A ⊃ B if B ⊂ A.

Exercise 1.6. Negate the statement1

∀ε > 0 ∃δ > 0 ∀x ∈ R ∀y ∈ R (|x− y| < δ ⇒ | sin x− sin y| < ε).

Exercise 1.7. Negate the statement: For all real numbers x, y satisfying x < y, there is a
rational number q such that x < q < y. Formulate the negation as a sentence and not as
a formula involving quantifiers.

Exercise 1.8. Use an argument by contradiction to prove that
√

3 is irrational.
1This is a true statement known as uniform continuity of the function sin x. However, you are not asked

to prove the statement only to negate it.
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Sets. By ∅ we denote the empty set consisting of no elements.

We write x ∈ A if x is an element of the set A.

How to define sets. Sets can be defined by listing all of their elements, e.g.
A = {1, 3, 5} = {5, 1, 3}

or they can be defined by some property2

B = {x ∈ A : P (x)} all elements in x ∈ A that satisfy property P .

Sets we use a lot.
N = {1, 2, 3, . . .} set of natural numbers or positive integers
N0 = {0, 1, 2, 3, . . .} = {0} ∪ N set of natural numbers including zero or nonnegative integers
Z = {. . . ,−2,−1, 0, 1, 2, . . .} set of all integers

Q =
(

p

q
, p ∈ Z, q ∈ N

)
set of all rational numbers

R =
�

lim
k→∞

qk, (qk)k∈N ⊂ Q is Cauchy sequence3
�

set of all real numbers

Rn = {(v1, v2, . . . , vn), vi ∈ R} set of n-vectors of real numbers
So for example we work with

{x ∈ N : x is an even number} = {2, 4, 6, . . .}
or

{x ∈ R : x2 ≤ 1} = [−1, 1]
or

{x ∈ Rn : |x|2 = 1} =: Sn−1 the n− 1-dimensional unit sphere.

Definition 1.9. Two sets A, B are equal if they have the same elements, namely
x ∈ A ⇔ x ∈ B.

Exercise 1.10. A = B iff A ⊂ B and B ⊂ A.

Let us recall further set operations
A ∪B ={x : x ∈ A or x ∈ B} union of A and B

A ∩B ={x : x ∈ A and x ∈ B} intersection of A and B

2One has to be a bit careful here. The set
B = {x : P (x)}

may not be well-defined (see Russel’s Paradox, [Haj lasz, 2020]) It is important that x is specified as an
object some given set. I.e. it is ok to define

B = {x∈ A : P (x)}.
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Lemma 1.11. If a ∈ A then {a} ⊂ A, and {a} ∩ A = {a}.

Although this seems like absolutely obvious, lets prove this!

Proof. Let a ∈ A.

• We first show {a} ⊂ A.
For this we need to show for any x ∈ {a} we have x ∈ A.
So let x ∈ {a}. Then x = a. So x = a ∈ A.

• We now show {a}∩A = {a}. In view of Exercise 1.10 there are two things we need
to show.

– {a} ∩ A ⊂ {a}. Let x ∈ {a} ∩ A. This means that x ∈ {a} and x ∈ A. The
former implies that x = a (which is compatible with the latter, x = a ∈ A).
So x = a ∈ {a} and the first direction is proven.

– {a} ∩ A ⊃ {a}. Let x ∈ {a}. This means x = a. By assumptions x ∈ A, and
thus x ∈ {a} ∩ A.

□

We want to use ∩ and ∪ on more than one element. Observe that for example
A ∩B ∪ C

does not make any sense. It could mean (A ∩B) ∪ C or it could mean A ∩ (B ∪ C)4

Lemma 1.12. Let A, B, C be three sets. Then

(1) (symmetry) (A ∪B) = (B ∪ A), (A ∩B) = (B ∩ A)
(2) (associative) (A ∪B) ∪ C = A ∪ (B ∪ C), (A ∩B) ∩ C = A ∩ (B ∩ C)
(3) (distributive) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)5

These claims may seem easy, but again, you should be able to prove this!
Exercise 1.13. Prove Lemma 1.12.

In particular we are going to write A ∩B ∩ C and A ∪B ∪ C (without parenthesis!).

Let us recall a third set operation
A \ B := {x : x ∈ A, x ̸∈ B} complement of B relative to A

4stuff like this is often the basis for these silly “nobody can solve this math puzzle” that you find on
your grandpa’s facebook feed

5all of these rules look similar to the rules of addition + and multiplication ×, if
∪ ↔ +

and
∩ ↔ ×
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If ∪ corresponds to + and ∩ corresponds to × then one might think that \ corresponds to
−. It is important to be a bit careful with this operation, as there are no “negative sets”.
For example

0− b + b = 0

but

(∅ \ B) ∪B = B.

Venn Diagram for set operations.

Exercise 1.14. Prove that A\(B\C) = (A\B) ∪ (A ∩ C).

Picture proof of Exercise 1.14. Careful, picture proofs can be deceiving. You are
allowed to use a picture prove for visualization and intuition. But you are not
allowed to actually prove something via a picture.6

VS

6only I can do that
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□

Rigorous proof of Exercise 1.14. We show that x ∈ A\(B\C) is equivalent to x ∈ (A\B)∪
(A ∩ C).

x ∈ A\(B\C)
⇔ x ∈ A ∧ ¬(x ∈ B\C)
⇔ x ∈ A ∧ ¬(x ∈ B ∧ x ̸∈ C)
⇔ x ∈ A ∧ (x ̸∈ B ∨ x ∈ C)
⇔ (x ∈ A ∧ x ̸∈ B) ∨ (x ∈ A ∧ x ∈ C)
⇔ (x ∈ A\B) ∨ (x ∈ A ∩ C)
⇔ x ∈ (A\B) ∪ (A ∩ C)

□

Index sets. Let I be any set. Then we can use I as an index set and associate to each
i ∈ I a set Ai. The collection (family) of these sets is denoted by (Ai)i∈I . We define

[

i∈I

Ai = {x : ∃i ∈ I : x ∈ Ai}

\

i∈I

Ai = {x : ∀i ∈ I : x ∈ Ai}

Observe that we have no structure whatsoever assumed on I. It could be the interval [0, 1].
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If I = {1, 2} then [

i∈I

Ai = A1 ∪ A2

\

i∈I

Ai = A1 ∩ A2.

Often we will a countable family, namely (Ai)i∈N. In this case we may think of7

[

i∈N
Ai = A1 ∪ A2 ∪ A3 ∪ . . .

\

i∈N
Ai = A1 ∩ A2 ∩ A3 ∪ . . .

Exercise 1.15. Prove that for any set A and any family of sets {Ai}i∈I

A \
[

i∈I

Ai =
\

i∈I

(A \ Ai) ,

A \
\

i∈I

Ai =
[

i∈I

(A \ Ai) .

Exercise 1.16. Prove that if f : X → Y is a function and A1, A2, A3, . . . are subsets of
X, then

f

 ∞[

i=1
Ai

!
=

∞[

i=1
f(Ai) ,

and

(1.3) f

 ∞\

i=1
Ai

!
⊂

∞\

i=1
f(Ai).

Provide an example to show that we do not necessarily have equality in (1.3)

1.1. Ordered Pairs. Sets do not specify any sort of order of elements, e.g.,
{1, 2} = {2, 1}.

If we want to insist on the order of elements we use the notion of an ordered pair (a, b).
By definition

(a, b) = (c, d) :⇔ a = c and b = d.

in particular (1, 2) ̸= (2, 1).

If A, B are two sets, then the Cartesian product A × B is defined as
A × B = {(a, b), a ∈ A, b ∈ B} .

For example
{1, 2} × {1, 2, 3} = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}

7but what does . . . really mean here? not so clear. Better use the above definition!
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Cartesian product of A = {x, y, z} and B = {1, 2, 3}.

Image: Quartl / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)
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1.2. Functions. Let X and Y be two sets. A function f : X → Y is a rule that assigns
to each element x ∈ X an element f(x) ∈ Y . We call

• X the domain of f
• Y the target of f
• f(X) := {y ∈ Y : ∃x ∈ X : f(x) = y} the range or the image or the codomain of f
• The graph of f is a subset of X × Y ,

graph(f) := {(x, f(x)) ∈ X × Y : x ∈ X}.

the blue curve in R2 is a graph (x, f(x)) of a function. The green circle and the
red curve are not graphs of functions over the x-axis. Of course, the red curve is a

graph of a function over the y-axis, (y, g(y)).

We often identify the function f : X → Y with its graph, graph(f) ⊂ X × Y , in the
following way.

Let R be a set R ⊂ X × Y with the property such that for every x ∈ X there exists
exactly one y ∈ Y such that (x, y) ∈ R. If we define f(x) := y then we have recovered our
function.

A function f is called one-to-one or injective if

∀x1, x2 ∈ X : (x1 ̸= x2 ⇒ f(x1) ̸= f(x2))

(in words: two different points get mapped into two different points), or equivalently
(exercise!)

∀x1, x2 ∈ X : (f(x1) = f(x2) ⇔ x1 = x2) .

(in words: two points get mapped to the same value if and only if they are the same points
or in words: two different point

If a function f : X → Y is injective, then there exists an inverse function,

f−1 : f(X) → X

such that f−1(f(x)) = x for all x ∈ X (and f(f −1(y)) = y for all y ∈ f(X)).



ADVANCED CALCULUS I & II VERSION: September 19, 2024 18

A function is called onto or surjective if f(X) = Y , i.e.
∀y ∈ Y ∃x ∈ X f(x) = y.

A map which is injective and surjective is called bijective

If f : X → Y and A ⊂ Y then we define the preimage of A under f , f−1(A) ⊂ X as
f−1(A) = {x ∈ X : f(x) ∈ A}.

The function f : X → X defined by f(x) = x is called the identity. We sometimes denote
it by id X or IX .

If the image of f consist of one point, i.e. f(X) = {a} then f is called a constant function.
If this happens, we like to write

f ≡ a in X

If f : X → Y and g : Y → Z are two functions, then the composition of g and f , g ◦ f , is
the function

g ◦ f : X → Z

defined by the formula
(g ◦ f)(x) = g(f(x)).

If f : X → Y and A ⊂ X then the restriction of f to A defined as

f
����
A

: A → Y, f
����
A

(x) := f(x) x ∈ A.

If f : X → Y and g : Z → Y and we have X ⊂ Z and f(x) = g(x) for all x ∈ X then g is
called an extension of f to Z.
Exercise 1.17. Prove that if f : X → Y is one-to-one and A1, A2, A3, . . . are subsets of
X, then

f

 ∞\

i=1
Ai

!
=

∞\

i=1
f(Ai) .

(compare this to Exercise 1.16)

2. Cardinality

Cardinality is the question of sizes of sets. It is easy to say that the two sets
{1, 2, 3} and { , , }

have the same cardinality (namely: 3).

But what about N and Z etc.?

Since N ⊊ N0 we could think that the cardinality of N is strictly less that the cardinality
of N0. But on the other hand we have for each element in N0 exactly one element in N,
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namely the function x 7→ x + 1 is a bijection from N0 to N, so they should have the “same
amount” of elements.

One could simply say: well cardinality of N is infinity, so is N0 so is Z. But R is much
larger than N, there is no bijective map f : N→ R.

So we go with the following definition

Definition 2.1. Two sets X and Y have the same cardinality if there exists a bijective
map f : X → Y .

Clearly two finite sets have the same cardinality if and only if they have the same amount
of elements.

Proposition 2.2. The sets N and

2N := {2n, n ∈ N}

have the same cardinality.

Proof. Indeed, let φ(n) := 2n then φ : N→ 2N is clearly injective and surjective. □

Proposition 2.3. The sets N and Z have the same cardinality.

Proof. We could construct a bijective map by hand in this case, but lets make it more
intuitive.

It suffices to show that we can arrange all elements of Z as a sequence

0, 1,−1, 2,−2, 3,−3, 4,−4, . . .

Then the bijection can be defined via

N ∋ 1 2 3 4 5 6 7 8 9 . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Z ∋ 0 1 −1 2 −2 3 −3 4 −4 . . .

□

Proposition 2.4. Let Z2 = Z × Z. Then Z2 has the same cardinality as N.

Proof. We can interpret Z2 as the set of all points in R2 with both coordinates being
integers,
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Again, we can arrange this as a sequence as follows

□

Theorem 2.5. The set of rational numbers Q has the same cardinality as N.
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Proof. Each rational number q ∈ Q can be uniquely represented by a quotient n
m

where
n ∈ Z and m ∈ N and the greatest common divisor of |n| and m is 1. The map φ : Q→ Z2,
φ(q) := (n, m) is injective.

Now a modification of the spiral argument of Proposition 2.4 constructs the bijection: we
simply skip the points of Z2 that are not contained in φ(Q). □

So we see that N, Z, Q, Z2 have all the same cardinality. Lets give this a name.

Definition 2.6. A set which is finite or has the same cardinality as N is called countable.
A set which is not countable is called uncountable.

Not all sets are countable, indeed our base set in Analysis, R is uncountable (as we shall
see later, Theorem 4.29).

Exercise 2.7. Let it be given that any real number in x ∈ [0, 1) can be written as their
decimal expansion8

x = 0.x1x2x3x4x5x6 . . .

(1) Show that
[0, 1) has the same cardinality as [0, 1) × [0, 1)

by considering the map
f(x, y) := 0.x1y1x2y2x3y2x4y4 . . .

(2) Show that R and R2 have the same cardinality.

3. Induction

A very important method in proving things is the method of induction. It is based on the
following theorem (which we accept without proof, cf. Math 413).

Theorem 3.1 (Principle of Mathematical Induction). Let S be a subset of N that has two
properties

1. 1 ∈ S,
2. For every natural number n, if n ∈ S, then n + 1 ∈ S.

Then S = N.

A consequence (or version) of Theorem 3.1 is the following.

Theorem 3.2 (Principle of Mathematical Induction). Let for each n ∈ N, P (n) be a
statement about a natural number n. Suppose also that

8where each xi ∈ {0, 1 . . . , 9} and there is no N such that xi = 9 for all i ≥ N .
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1. P (1) is true,
2. For every n ∈ N, if P (n) is true, then P (n + 1) is true.

Then P (n) is true for all n ∈ N.

Let’s put induction into practice.

Proposition 3.3 (Bernoulli’s inequality). For all n ∈ N and a ≥ −1 a real number we
have

(1 + a)n ≥ 1 + na.

Proof. So assume a ≥ −1. Denote by P (n) the statement

P (n) := ((1 + a)n ≥ 1 + na is true)

The first thing to check is

P (1) is true: Indeed, P (1) corresponds to 1 + a ≥ 1 + a which is clearly true.

For any n ∈ N: if P (n) is true, then P (n + 1) is true. So fix n ∈ N and assume P (n) is
true (this is called the induction hypothesis). We need to show that then P (n + 1) is also
true.

P (n) being true means that for our fixed n,
(P(n)) (1 + a)n ≥ 1 + na

Now we need to show P (n + 1), i.e. we need to show
(P(n+1)) (1 + a)n+1 ≥ 1 + (n + 1)a
so we start.

(1 + a)n+1 = (1 + a)
| {z }

≥0

(1 + a)n

P (n)
≥ (1 + a)(1 + na)
=1 + na + a + na2

|{z}
≥0

≥1 + (n + 1)a.

That is (under the assumption that P(n) holds) we have shown P(n+1).

By the method of induction P (n) is thus true for any n ∈ N.

□
Exercise 3.4. Prove that 52n − 1 is divisible by 8 for all n ∈ N
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We got to be careful with induction though, a common mistake is the following.

Exercise 3.5. Where is the mistake in the following proof?

Let us agree that there are finitely many (or countably, if you want) people in the world.
Let us also agree that at least on person lives in Pittsburgh. We now prove the following
statement.

Claim: All people in the world live in Pittsburgh.

We will show this by proving the following statement:

Let P be the set of people in the world. We prove the following statement for all n ∈ N
which readily implies the claim.

P (n): for any set A ⊂ P with at most n people: if there exists one person p ∈ A such that
p lives in Pittsburgh, then all people q ∈ A live in Pittsburgh

P(1) is true Indeed, if we have a set A consisting of one person, if that person lives in
Pittsburgh, all the persons in the A (exactly that one person) does live in Pittsburgh.

If P(n) is true, then P(n+1) is true

So assume that P (n) is true, and let us try to show P (n + 1). So let A ⊂ P be a set of at
most n + 1 people, and assume we know that one person in A lives actually in Pittsburgh.
For illustration purposes assume the set A looks as follows (with the pink dot being the
person living in Pittsburgh).

We now construct two sets B and C as follows
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Since A consists of at most n+1 people, B and C (which have one person removed) consist
of at most n people. Moreover the pink dot (the person in Pittsburgh) still belongs to B
and C. That is, B and C satisfy the assumptions of P (n), and thus all people in B and
all people in C live in Pittsburgh. Since A = B ∪ C, all people in A live in Pittsburgh.

By induction we include that all people in the world live in Pittsburgh. □

There are many modifications of the method of induction. There are obvious ones (we can
start from n = 3 or n = 0 rather than n = 1). One useful modification is the following
(proof: exercise. Hint: induction)
Theorem 3.6 (Principle of Mathematical Induction). Let for each n ∈ N, P (n) be a
statement about a natural number n. Suppose also that

1. P (1) is true,
2. For every n ∈ N: if P (k) is true for all k = 1, . . . , n then also P (n + 1) is true.

Then P (n) is true for all n ∈ N.

Induction proofs can become quite involved, one classical example is
Theorem 3.7 (Arithmetic-Geometric Mean Inequality). If a1, a2, . . . , an ≥ 0 then

n
√

a1 · . . . · an| {z }
geometric mean

≤ a1 + . . . + an

n| {z }
arithmetic mean

and the equality holds if and only if a1 = a2 = . . . = an.

Proof. We will prove the inequality only, but the reader may conclude from the proof that
the equality holds if and only if a1 = a2 = . . . = an. We leave this last conclusion as an
exercise.

First we will prove the inequality for n = 2k, k = 1, 2, 3, . . ., i.e., we will prove it for
n = 2, 4, 8, 16, . . .
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1. For n = 21 we have
a1 + a2

2 ≥ √a1a2 ⇔ a1 − 2√a1a2 + a2 ⇔ (√a1 −
√

a2)2 ≥ 0 .

Since the last condition is obviously true, the inequality, as equivalent to the last statement,
is also true.

2. Suppose that the inequality is true for n = 2k. We need to prove it for n = 2k+1. We
have

2k+1√a1 · . . . · a2k · a2k+1 · . . . · a2k+1

=
q

2k√a1 · . . . · a2k 2k√a2k+1 · . . . · a2k+1

≤
2k√a1 · . . . · a2k + 2k√a2k+1 · . . . · a2k+1

2

≤
a1+...+a2k

2k + a2k+1+...a2k+1
2k

2

= a1 + a2 + . . . + a2k+1

2k+1 .

The above estimates require some explanations. The first equality is obvious. The second
inequality is just a consequence of the arithmetic-geometric inequality for n = 1 which was
proved in 1. The third inequality follows from the inductive assumption that the inequality
is true for n = 2k and the last equality is obvious again.

We proved the inequality for n = 2, 4, 8, 16, . . .. In order to prove that the inequality is
true for all integers it suffices to prove that if it is true for n, then it is also true for n− 1
(reverse induction).

Thus suppose that the inequality is true for n. We will prove it is true for n− 1. We have

n

s
a1 · . . . · an−1 ·

�
a1 + . . . + an−1

n− 1

�

≤
a1 + . . . an−1 +

�
a1+...+an−1

n−1

�

n

= a1 + . . . + an−1

n− 1 .
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The first inequality above follows from the assumption that the arithmetic-geometric in-
equality is true for n. Hence

n
√

a1 · . . . · an−1
n

s
a1 + . . . + an−1

n− 1 ≤ a1 + . . . + an−1

n− 1 ,

so
�
a1 · . . . · an−1

�1/n ≤
�

a1 + . . . an−1

n− 1

�1−1/n

and finally
�
a1 · . . . · an−1

� 1
n−1 ≤ a1 + . . . + an−1

n− 1
which is what we wanted to prove. □

3.1. Exercises on Induction.

Exercise 3.8. Prove that for n ≥ 1
1

n + 1 + 1
n + 2 + 1

n + 3 + . . . + 1
3n

+ 1
3n + 1 > 1

Exercise 3.9. Show that 4n + 15n− 1 is divisible by 9 for all n ≥ 1

Exercise 3.10. Show that 4n + 15n− 1 is divisible by 9 for all n ≥ 1

Exercise 3.11. Prove for all n ≥ 0 that

1 · (1!) + 2 · 2! + . . . + n · (n!) = (n + 1)!

Exercise 3.12. Prove that n2 − 1 is divisible by 8 for all odd positive integers n.

Exercise 3.13. Show that n! > 2n for all n ≥ 4

Exercise 3.14. Let ai be a recursive sequence given as

a1 = 2

an+1 = 1
2(2 + 1

an

)

Then an ∈ [ 1
2 , 2] for all n ∈ N.

Exercise 3.15. Let f(x) := x2ex show that f (n)(x) = (x2 + 2nx + n(n− 1))ex.

Exercise 3.16. If A is a set, then the power set 2A is the collection of all subsets, i.e.

2A = {B ⊂ A}.

Show that if A contains n elements, then 2A contains 2n elements.
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Exercise 3.17. Let

A =




1 1 0
0 1 1
0 0 1




Show that the n-th power of the matrix, i.e.
An = A · A · A · . . . Antimes

is

An =




1 n n(n−1)
2

0 1 n
0 0 1




Exercise 3.18. Let x1, x2 . . . , xn ≥ 0 such that
x1 · x2 · . . . · xn−1 · xn = 1.

Without using the Arithmetic-Geometric Mean Inequality, Theorem 3.7, show that then
x1 + x2 + . . . + xn−1 + xn ≥ n

Exercise 3.19. Prove that 1 + 1√
2

+ 1√
3

+ · · · + 1√
n
≥ √n.

Exercise 3.20. Let a1, . . . , an, b1, . . . , bn be positive numbers. Prove that
nY

i=1
(ai + bi)1/n ≥

nY

i=1
a

1/n
i +

nY

i=1
b

1/n
i .

Hint: Use the arithmetic-geometric mean inequality, Theorem 3.7.

4. Real numbers, metric spaces, converging sequences

4.1. Fields, order, murder. The most natural set of numbers are the natural numbers
N = {1, 2, 3, . . .}, N0 = {0, 1, 2, 3, . . .}.

The numbers in N can be added and multiplied. If we extend the natural numbers N to
integers Z,

Z = {. . . ,−1, 0, 1, . . .}
we can also subtract.

Within the set of rational numbers Q,

Q =
(

p

q
: p, q ∈ Z : q > 0

)

we can also divide (by any number but 0).

Q is what we call a field.



ADVANCED CALCULUS I & II VERSION: September 19, 2024 28

Definition 4.1 (Field). A field is a set F with operations of addition ‘+’ and multiplication
‘·’ that satisfies the following 10 axioms:

(A1) x + y = y + x.
(A2) x + (y + z) = (x + y) + z.
(A3) There is an element denoted by 0 such that for every x, x + 0 = x.
(A4) For every x there is an element denoted by −x such that x + (−x) = 0.
(A5) x · y = y · x
(A6) x · (y · z) = (x · y) · z
(A7) There is an element denoted by 1 such that x · 1 = x.
(A8) For every x ̸= 0 there is an element denoted by x−1 such that x · (x−1) = 1.
(A9) x · (y + z) = x · y + x · z.

(A10) 1 ̸= 0.

Here we understand that conditions are satisfied for all x, y, z ∈ F. We did not include
quantifiers in the conditions to make them more transparent.

Remark 4.2. In more linear algebraic terms, a field is a abelian group with respect to the
+ operation (A1)-(A4), an abelian group with respect to the ·-operation, (A5)-(A8). +
and ·-operation are compatible as in (A9). And (A10) is a nontriviality assumption.

Example 4.3. • N, Z are not fields, since they do not have inverse with respect to
multiplication (e.g. 2−1 ̸∈ N).

• The smallest field is F = {0, 1} with the multiplication/addition table
· 0 1
0 0 0
1 0 1

and
+ 0 1
0 0 1
1 1 0

• Zp = {0, 1, 2, . . . , p− 1} is a field with the operations
x · y := x · y mod p

x + y := (x + y) mod p

if and only if p is a prime number (otherwise we have no multiplicative inverse)

More is true of Q, its totally ordered (i.e. if x, y ∈ Q we know that either x ≤ y or y ≤ x).

Definition 4.4. A field F (as in Definition 4.1) equipped with a relation ≤ is called an
ordered field if

(A11) x ≤ x.
(A12) x ≤ y and y ≤ x ⇒ x = y.
(A13) x ≤ y and y ≤ z ⇒ x ≤ z.
(A14) x ≤ y ⇒ x + z ≤ y + z
(A15) 0 ≤ x and 0 ≤ y ⇒ 0 ≤ xy.
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We also write x ≥ y if y ≤ x.

The field is called totally ordered if

(A16) For every x, y either x ≤ y or y ≤ x.

Example 4.5. The notion of totally ordered is a nontrivial assumption.

• For example the subset-relation is a partial order, but not a total order, since there
are sets A, B with A ̸⊆ B and B ̸⊆ A.

• Let p be a prime number, then Zp is a field. But it cannot be ordered.

At first (and thats what the ancient Greek’s thought until Hippasus9) it may seem that Q
contains all numbers, and any number may be represented by an element in Q. However
Hippasus proved10 that there is no number q ∈ Q such that q · q = 2. Observe this does
not contradict any of our field axioms. However this means that there is no solution (in
Q) to the question of the length of the diagonal of a square of sidelength 1. Now it feels
like Q is incomplete, and this is why we need the real numbers!

What does complete mean? It means that what should converge (Cauchy sequences) does
converge.

In Q it means: We can approximate the lenght of the diagonal of a square of sidelengths
1 by rational numbers. We want that approximate number “converge” to a real number
(pun intended).

4.2. The metric: absolute value; also: convergence. For x ∈ R we define the absolute
value |x| as11

|x| =




x if x > 0
−x if x ≤ 0.

The absolute value is incredibly important for the Analysis in R (later Rn), because it
gives R a metric: we can use it to measure the (a reasonable) distance between to points
x, y ∈ R. Indeed, d(x, y) := |x− y|
Definition 4.6 (metric). Let X be any set. A map d : X × X → R12 is called a metric
for X if

• d(x, y) = d(y, x) for all x, y ∈ X (symmetry)
• d(x, y) ≥ 0 for all x, y ∈ X (positivity)

9historians seem to believe that Egyptians and Babylonians had figured this out before
10and according to legend was murdered by Pythagoras for such heresy
11observe, this definition makes sense for any totally ordered field, in particular Q
12ok, here is some technicality that we already should know what R is to define what a metric is, I will

brush over this because actually we have learned what R is in Math413. To be precise one should first
define the metric on Q to map into Q, then by metric completion this extends to a R-metric etc.
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• d(x, y) = 0 if and only if x = y (non-degeneracy)
• d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X (triangular inequality).

A set X with a metric d is called a metric space.

Almost everything we do with respect to convergence, continuity has a metric space gen-
eralization. The proofs are the same, the theorem changes. Differentiability, however,
becomes more tricky, then more structure on d and X is helpful (e.g. a “norm” structure).
Example 4.7. • d(x, y) = 2|x− y| is still a metric, nothing changes.

• d(x, y) =
q

|x− y| is still a metric
• d(x, y) = |x− y|2 is no metric (triangular inequality is false)

• d(x, y) =




1 x ̸= y

0 x = y
is a metric in the above sense

Exercise 4.8. Prove that (Rn, ϱ), where

ϱ(x, y) = |x− y|
1 + |x− y|

is a metric space.
Exercise 4.9. Let (an)n∈N be a sequence13 in R.

Let p ∈ (0,∞). We say that a sequence belongs to ℓp, (an)n∈N ∈ ℓp, if14

∥(an)n∈N∥ℓp :=
 ∞X

n=1
|an|p

! 1
p

< ∞

For p = ∞ we say that a sequence belongs to ℓ∞, (an)n∈N ∈ ℓ∞, if
∥(an)n∈N∥ℓ∞ := sup

n∈N
|an| < ∞.

That is we set quite tautologically
ℓp := {(an)n∈N ∈ ℓp}.

Define for two sequences (an)n∈N and (bn)n∈N their ℓp-distance
dp ((an)n∈N, (bn)n∈N) := ∥(an − bn)n∈N∥ℓp .

Show that

(1) (ℓ1, d1) is a metric space
(2) (ℓ∞, d∞) is a metric space

(Actually, (ℓp, dp) is a metric space for any p ∈ [1,∞] – but for triangular inequality we
need Minkowski inequality that we shall not prove here, see Exercise 15.19).

13If you forgot what a sequence is, see Section 4.3
14If you forgot what convergence of a series means, Definition 4.62
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Figure 4.1. A convergent sequence

4.3. Sequences. A sequence, usually denoted by (an)∞
n=1 ⊂ X, is a map a : N 7→ X.

But instead of writing a(n) we prefer to write an. Every sequence induces a set a(N) :=
{an, n ∈ N} (but not the other way around, since we do not know which element of the set
to take first). Thus we can use set operations on sequences: e.g., if (an)n∈N ⊂ R then

sup(an)n∈N = sup{a1, a2, . . .}.

Definition 4.10 (Convergence of sequences). Let (X, d) be a metric space. We say that
a sequence (an)n∈N of elements in X are convergent if there exists b ∈ X such that (cf.
Figure 4.1)

∀ε > 0 ∃n0 ∈ N : ∀n ≥ n0 d(an, b) < ε.

We write
lim

n→∞ an = b.

Observe that two different metrics induce two different notion of convergence – and those
can be really different. So whenever we write limn→∞ an = b we assume that we already
agree on the underlying metric! Indeed Different metrics means different spaces!
Exercise 4.11. Consider R equipped with two metrics:

X = (R, de), Y = (R, d0)
where de is the usual Euclidean metric

de(x, y) := |x− y|
and d0 is the following

d0(x, y) :=




1 x ̸= y

0 x = y
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(1) Show that d0 is indeed a metric.
(2) Give an example of a sequence (xn)n∈N in R such that

lim
n→∞ xn = 0 w.r.t. de

but
lim

n→∞ xn ̸=0 w.r.t. d0

Exercise 4.12. Let (X, dX) be a metric space and f : Y → X be an injection, i.e. an
injective map. Show that

(Y, dY )
is a metric space, where

dy(a, b) := dX(f(a), f(b)).
Exercise 4.13. Consider X = (R, de) and Y := (R, d2) be two metric spaces equipped with

de(x, y) := |x− y|
and

d2(x, y) := |f(a)− f(b)|,
respectively, where we set

f(x) :=





1 x = 0
0 x = 1
x otherwise.

Set an := 1
n
. Show that

lim
n→∞ an = 0 in X

but
lim

n→∞ an = 1 in Y

Definition 4.14 (Bounded sequences). Let (X, d) be a metric space. A sequence (an)n∈N ⊂
X is bounded, if there exists x0 ∈ X and M ∈ R such that

d(x0, xn) < M ∀n ∈ N.

Lemma 4.15. Convergent sequences are bounded.

Proof. Assume that (an)n∈N is convergent to some b ∈ X. By definition this means (take
ε := 1) that there exists n1 ∈ N such that

d(an, b) < 1 ∀n ≥ n1.

So let
M := max{d(a1, b), . . . , d(an1 , b), 1} + 1.

This max exists because these are finitely many values!

Then
d(an, b) < M ∀n ∈ N.

□



ADVANCED CALCULUS I & II VERSION: September 19, 2024 33

Bounded sequences may not be convergent (e.g. an = (−1)n in R is bounded, but not
convergent).

A special type of property for sequences is if they are Cauchy sequences. This means that
the sequence elements want to converge, (but there might be a hole in our space, so they
actually dont).

Definition 4.16 (Cauchy sequence). Let (X, d) be a metric space. A sequence (an)n∈N is
called a Cauchy sequence if

∀ε > 0∃N = N(ε) ∈ N : d(an, am) < ε ∀n, m ≥ N

Lemma 4.17. Let (X, d) be any metric space. Every convergent sequence is a Cauchy
sequence.

Proof. Let (xn)n∈N ⊂ X be a convergent sequence to some x ∈ X and let ε > 0. Then
there exist N ∈ N such that

d(xn, x) <
ε

2 ∀n ≥ N.

Now let n, m ≥ N . Then by triangular inequality,
d(xn, xm) ≤ d(xn, x) + d(xm, x) < ε.

That is (xn)n∈N is a Cauchy sequence. □

In a general space not every Cauchy sequence needs to be convergent.

Exercise 4.18. Let (xn)n∈N ⊂ Q be the n-th digital expansion of π. I.e.
x1 = 3, x2 = 3.1, x3 := 3.14 . . .

Show that (xn)n∈N is a Cauchy sequence in (Q, de). Show that (xn)n∈N does not converge
in Q.

Exercise 4.19. Let (X, d) be a metric space and (xn)n∈N, (yn)n∈N two Cauchy sequences
in (X, d). Show that

(d(xn, yn))n∈N

is a Cauchy sequence in R (or Q)

Definition 4.20. A metric space (X, d) is called complete if all Cauchy sequences are
convergent.

Theorem 4.21. Let (X, d) be any metric space. Then there exists a unique metric com-
pletion (X̃, d̃).

Namely there exists a set X̃ ⊃ X and a metric d̃ on X̃ such that the following holds:

• (X̃, d̃) is complete
• (extension) d̃(x, y) = d(x, y) for all x, y ∈ X
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• (density) For any y ∈ X̃ there exists a sequence (xk)k∈N ⊂ X that converges to y
(with respect to d̃).

Uniqueness means that for any two metric completions (X̃1, d̃1), (X̃2, d̃2) of (X, d) there
exists an isometry φ : X̃1 → X̃2 namely a bijection such that d̃1(φ(x1), φ(x2)) = d̃2(x1, x2)
for all x1, x2 ∈ X̃1.

If X is a totally ordered field and d corresponds to | · |X , then X̃ inherits the metric field
structure of X, i.e. for any x, y, z ∈ X̃ and any sequence xn, yn, zn in X converging to
x, y, z, respectively we have

(x + y) · z = lim
n→∞(xn + yn) · zn.

We will not prove Theorem 4.21 for completely but here is the idea.

Sketch of the proof of Theorem 4.21. Consider Z the set of Cauchy sequences (xn)n∈N ⊂
X. This is a way to big set, since many Cauchy sequences “converge” to the same number.
So we identify two Cauchy sequences in X if “they converge to the same limit”.

(xn)n∈N ∼ (yn)n∈N :⇔ lim
n→∞ dX(xn, yn) = 0.

The set X̃ is the collection of all such Cauchy sequences.
X̃ = Z/ ∼,

and we equip it with the metric15

dX̃((xn)n∈N, (yn)n∈N) := lim
n→∞ dX(xn, yn)

Then (X̃, dX̃) is a metric space. And any element of X identified with the (convergent)
Cauchy sequence (x, x, x, x, x, x, x, . . .) is an element of X̃.

Now the point is that we can show that X̃ is complete: If we have a Cauchy sequence
(x̃k)k∈N ⊂ X̃, and each

x̃k = ((xn;k)n∈N)k∈N ⊂ X

Then by the choice of metric d̃X̃ we can build a Cauchy sequence in X via a diagonal
argument.

Fix some k ∈ N. Since (xn;k)n∈N is a Cauchy sequence, there exists some Nk such that

(4.1) d(xn;k , xm;k) <
1
k ∀n, m ≥ Nk .

W.l.o.g. we can assume
Nk+1 ≥ Nk

15careful, a little bit cheating is going on here: for this we have to show that this limit (in R) makes
sense, i.e. we already need R to be complete. If we’d known this then we can show that (d(xn, yn))n∈N is
a Cauchy sequence in R, Exercise 4.19. So technically one first defines R and then metric completion!
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Set
x̄1 := x1;1.

and
x̄n := xNn;n.

We need to show that (x̄n)n∈N is a Cauchy sequence in X. So let ε > 0. Since (x̃k)k∈N is
Cauchy there exists some K ∈ N such that

d̃(x̃k, x̃j) <
ε

4 ∀k, j ≥ K.

That is,

(4.2) lim sup
n→∞

d(xn;k, xn;j) <
ε

4 ∀k, j ≥ K.

If we take K2 > K such that 1
K2

< ε
8 then we have for any k, j ≥ K2 and any n ≥

max{Nk, Nj}
d(x̄k, x̄j) = d(xNk;k, xNj ;j) ≤d(xNk;k, xn;k) + d(xn;k, xn;j) + d(xNj ;j, xn;j)

(4.1)
≤ 1

k
+ d(xn;k, xn;j) + 1

j
k,j≥K2≤ ε

4 + d(xn;k, xn;j).

Again, this holds for any n ≥ max{Nk, Nj}, and the left-hand side is not dependent on n.
So we can take the the limsupn→∞ on both sides and in view of (4.2) we have

d(x̄k, x̄j) ≤
ε

4 + lim sup
k→∞

d(xn;k, xn;j)
(4.2)
≤ ε

2 for any k, j ≥ K2

That is we have shown: For any ε > 0 there exists a K2 = K2(ε) such that
d(x̄k, x̄j) < ε for any k, j ≥ K2

That is, the sequence (x̄n)n∈N ⊂ X is a Cauchy sequence. The last part to prove is that the
“Cauchy sequence of Cauchy sequences” (x̃k)k∈N converges (in the sequence space X̃) to (x̄n)n∈N,
i.e. we need to show

∀ε > 0 ∃K(ε) : d̃(x̃k, (x̄n)n∈N) < ε ∀k ≥ K.

Equivalently, by the definition of d̃ and x̄n, we need to show
(4.3) ∀ε > 0 ∃K(ε) : ∀k ≥ K : ∃Γ = Γ(ε, k) : d(xn;k, xNn;n) < ε ∀n ≥ Γ.

So fix ε > 0. Take K1 > 0 such that

d̃(x̃k, x̃j) <
ε

4 ∀k, j ≥ K1.

Since (x̄m)m∈N is a Cauchy sequence, we also find some M such that

(4.4) d(xNm;m, xNn;n) ≡ d(x̄m, x̄n) ≤ ε

4 ∀m, n ≥ M
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We have
d(xn;k, xNn;n) ≤ d(xn;k, xNk;k) + d(xNk;k, xNn;n).

so
d(xn;k, xNn;n) ≤ ε

4 + d(xNk;k, xNn;n) ∀n ≥ Nk, k ≥ K1

By (4.4) we conclude that

d(xn;k, xNn;n) ≤ ε

4 + ε

4 < ε ∀n ≥ max{Nk, M}
| {z }

=:Γ(ε,k)

, k ≥ max{K1, M}
| {z }

=:K

This implies (4.3). □

Metric completion should be seen as “plugging all infinitesimal holds”, i.e. adding numbers
like

√
2 to Q to make all Cauchy sequences converging.

4.4. Sequences in Euclidean space. Since often we work in Euclidean spaces with
d(x, y) = |x− y|, lets record that convergence (in Qn, Zn, Rn) means

∀ε > 0 ∃n0 ∈ N : ∀n ≥ n0 : |an − b| < ε,

i.e. the notion of convergence that we learned in Intro to Analysis!

Now let’s go back to Q and lets look at bounded, but monotonely increasing sequence
(an)n∈N ⊂ (0,∞) ∩Q.

Definition 4.22. A sequence (an)n∈N ⊂ Q is

• (monotone) increasing if a1 ≤ a2 ≤ a3 ≤ . . . or more precisely, ai ≤ ak for i ≤ k
• (monotone) decreasing if a1 ≥ a2 ≥ a3 ≥ . . . or more precisely, ai ≥ ak for i ≤ k
• strictly (monotone) increasing if a1 < a2 < a3 < . . . or more precisely, ai < ak for

i < k
• strictly (monotone) decreasing if a1 > a2 > a3 > . . . or more precisely, ai > ak for

i < k

If a sequence is either monote increasing or decreasing, we simply say “monotone”.

Exercise 4.23. Prove that the sequence
�

1 + 1
n

�n+1

is decreasing.

Definition 4.24. An totally ordered field F is called complete if every monotone and
bounded sequence is convergent (with respect to the metric induced by | · |).

Monotone, bounded sequences in Q have a special property, they are Cauchy sequences,
Definition 4.16
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Lemma 4.25. Any monotone and bounded sequence (an)n∈N in Q is a Cauchy sequence
(with respect to the metric induced by | · |)

Proof. W.l.o.g. let (an)n∈N be increasing. Assume (an)n∈N is not a Cauchy sequence. That
is,

¬ (∀ε > 0∃N = N(ε) ∈ N : d(an, am) < ε ∀n, m ≥ N) .

Let us carefully negate that statement, then we have
∃ε > 0 ¬ (∃N ∈ N : d(an, am) < ε ∀n, m ≥ N)
∃ε > 0 ∀N ∈ N ¬ (d(an, am) < ε ∀n, m ≥ N)
∃ε > 0 ∀N ∈ N ¬ (∀n, m ≥ N : d(an, am) < ε)
∃ε > 0 ∀N ∈ N ∃n, m ≥ N : ¬ (d(an, am) < ε)
∃ε > 0 ∀N ∈ N ∃n, m ≥ N : d(an, am) ≥ ε

Now n = m will not happen (because then d(an, an) = 0 < ε), so we can rephrase this as
∃ε > 0 ∀N ∈ N ∃n, m ≥ N, n > m : d(an, am) ≥ ε

Now lets get back to our situation, we are in an ordered field, an ≥ am if n > m and thus
d(an, am) = |am − an| = an − am. If moreover, m ≥ N then we have am ≥ aN . So the
above implies

∃ε > 0 ∀N ∈ N ∃n > N : an − aN ≥ ε.

Having this there exists a sequence ni
i→∞−−−→ ∞ such ani+1 ≥ ani

+ ε and we may choose
an1 := a1. Then ani

≥ a1 + iε (induction!) which means that (ani
)i is an unbounded

sequence. So (an) is an unbounded sequence, contradiction. □
Lemma 4.26. Let (X, d) be any metric space and X̃ be its metric completion of Theo-
rem 4.21. If X is a totally ordered field and d corresponds to | · |X , then X̃ inherits the
metric field structure of X, i.e. for any x, y, z ∈ X̃ and any sequence xn, yn, zn in X
converging to x, y, z, respectively we have

(x + y) · z = lim
n→∞(xn + yn) · zn.

Since we kind of used R to define metric completion, the following is a bit circiular (but
good enough for us)

Definition 4.27. R as the metric completion of (Q, | · |), which is the totally ordered field
we know and love.

Exercise 4.28 (decimal expansion). Let ni ∈ {0, . . . , 9}, i ≥ 1 and n0 ∈ Z. Then the
rational number

xℓ := n0 + n1
1
10 + . . . + nℓ

1
10ℓ

∈ Q

converges to a number in R as ℓ →∞.

Conversely, any real number can be approximated by a decimal expansion as xℓ.
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Proof. • (xℓ) is a Cauchy sequence.
• for any real number r > 0 let yℓ be yℓ = last digit of ⌊r · 10ℓ⌋ where [·] denotes the

Gaussian bracket. Then xℓ := yℓ10−ℓ is the decimal expansion.

□

Observe that the decimal expansion above is not unique, as 1 = 0.9.

Theorem 4.29 (Cantor, 1874). R is uncountable.

We first observe

Exercise 4.30. Let X be a set, and let (Yi)∞
i=1 be each a subset Yi ⊂ X such that

X =
∞[

i=1
Yi.

Show the following: X is uncountable if and only if there exists an i ∈ N such that Yi is
uncountable.

Exercise 4.31. Prove the following statement without using that R is uncountable:

R is countable if and only if (0, 1) is countable. You can use Exercise 4.30.

Proof of Theorem 4.29. Suppose not, i.e. suppose that R is countable, then (almost obvi-
ous) (0, 1) is countable.

Suppose (0, 1) is countable, so we can arrange all real numbers from (0, 1) into a sequence.
Suppose

x1, x2, x3, x4, . . .

is such a sequence, i.e. assume

(4.5) (0, 1) =
[

i∈N
{xi}.

We write the decimal expansion of each xi as follows
x1 = 0.a11a12a13a14 . . .

x2 = 0.a21a22a23a24 . . .

x3 = 0.a31a32a33a34 . . .

. . .

Now we build a new number
y := 0.b1b2b3 . . .

where we choose b1 ∈ {1, . . . , 8}\a11, b2 ∈ {1, . . . , 8}\a22, and in general bi ∈ {1, . . . , 8}\{aii}.
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y = 0. b1 b2 b3 b4 . . .
x1 = 0. a11 a12 a13 a14 . . .
x2 = 0. a21 a22 a23 a24 . . .
x3 = 0. a31 a32 a33 a34 . . .
x4 = 0. a41 a42 a43 a44 . . .

We get that y ̸∈ Si∈N{xi} (here it helps that we ensured bi ̸= 9, since 0.9 = 1, we can now
show that |y − xi| > 0 for all i ∈ N). Also y ̸= 0, y ̸= 1, so y ∈ (0, 1)\Si∈N{xi}, which is a
contradiction to (4.5). □

4.5. suprema and infima.

Definition 4.32. Let X ⊂ R. A number M ∈ R is called an upper bound of X if
x ≤ M ∀x ∈ X.

If X has an upper bound, then X is called bounded from above.

A number s ∈ R is called the least upper bound (or supremum) if

• s is an upper bound for X and
• any upper bound M for X satisfies M ≥ s.

We then write sup X := s.

Similarly we define lower bounds:

A number M ∈ R is called an lower bound of X if
x ≥ M ∀x ∈ X.

If X has a lower bound, then X is called bounded from below.

A number i ∈ R is called the largest lower bound (or infimum) if

• i is a lower bound for X and
• any lower bound M for X satisfies M ≤ i.

We then write inf X := i.

If a set is bounded from above and below, we simply say its bounded.

We also define sup ∅ = −∞ and inf ∅ = +∞.

Assume we were working in Q, and consider the set
A := {q ∈ Q : q2 ≤ 2}.

Then the set A is bounded, but the supremum does not exists in Q. Here is where the
completeness of R shows its advantage: in R suprema and infima exist (or are ±∞)



ADVANCED CALCULUS I & II VERSION: September 19, 2024 40

Theorem 4.33. If X ̸= ∅ is bounded from above then sup X ∈ R exists (and is unique).
If X is bounded from below then inf X ∈ R exists, and is unique.

Proof. We construct two sequences, (xk)k∈N and (yk)k∈N ∈ R such that

• xk ∈ X for all k, and xk is increasing.
• yk is an upper bound of X for all k, and yk is decreasing
• For k ≥ 2,

(4.6) |xk − yk| ≤ 1
2 |xk−1 − yk−1|.

Assume first we have such two sequence. Then in particular we have

x1 ≤ x2 ≤ . . . ≤ xk ≤ . . . ≤ yk ≤ yk−1 ≤ . . . ≤ y2 ≤ y1

Thus for any k ≤ ℓ

|xk − xℓ| = xℓ − xk ≤ yk − xk = |xk − yk|.
and similarly for any k ≤ ℓ

|yk − yℓ| = yk − yℓ ≤ yk − xk = |xk − yk|.

From (4.6) we obtain (by induction)

|xk − yk| ≤ 21−k|x1 − y1|.
so that we have

|xk − xℓ|, |yk − yℓ| ≤ 21−max{k,ℓ}|x1 − y1|.
This readily implies that (xk)k∈N and (yk)k∈N are both Cauchy sequences, so they are
convergent by completeness of R. From (4.6) we obtain that they converge to the same
point ȳ ∈ R. We claim that ȳ = sup X. For this we have to show

• ȳ is an upper bound: Fix any x ∈ X. Then yk ≥ x (since all yk are upper bounds).
Then

x ≤ ȳ + yk − x
k→∞−−−→ ȳ.

This holds for any x ∈ X, so ȳ is an upper bound.
• ȳ is the lowest upper bound

Assume there is ỹ is another upper bound of X. Then

xk ≤ ỹ ∀X

That is
ȳ ≤ ỹ + x̄− xk

k→∞−−−→ ỹ.

That is, ȳ ≤ ỹ and thus ȳ is the lowest upper bound.
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Figure 4.2. Construction in the proof of Theorem 4.33. The red line
represents X. We see that both xk and yk move towards each other

We leave the uniqueness to the reader.

It remains to prove that the sequence (xk)k∈N and (yk)k∈N as above exists. Cf. Figure 4.2

We define these sequences inductively. Since X ̸= ∅ there exists x1 ∈ X. Since X is
bounded, there exist y1 ∈ R such that y1 > x for all x ∈ X, i.e. we have found x1 and y1
satisfying the assumptions of our series.

Now assume that for some k ∈ N the points xk−1, yk−1 are already known – with xk−1 ∈ X
and yk−1 and upper bound of X.

Set
z := yk−1 − xk−1

2
Clearly

xk−1 ≤ z ≤ yk−1.

There are two possibilities

• If z is an upper bound of X we set xk := xk−1 and yk := z. This satisfies the
assumptions of our sequence, in particular we have

|xk − yk| = |xk−1 − z| = 1
2 |xk−1 − yk−1|.

• If z is not an upper bound of X then there must be some element x ∈ X such that
x > z ≥ xk−1. We set xk := x and yk := yk−1. Since yk−1 was an upper bound of
X, we still have yk = yk−1 ≥ xk. Then

|xk − yk|≤|z − yk| = |z − yk−1| = 1
2 |xk−1 − yk−1|.

This defines the sequences (xk)k∈N and (yk)k∈N and we can conclude.

□
Exercise 4.34. Find sup A and inf A where

A =
�

x

x + 1 : x > 0
�

.

Proof. We first observe that x
x+1 < 1 for all x > 0, so 1 is an upper bound. Assume there

is a smaller upper bound y < 1, i.e. there is y < 1 such that
x

x + 1 ≤ y ∀x > 0.
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Equivalence transformation says that since 0 < y < 1 this is equivalent to

x ≤ 1
1− y

∀x > 0.

But this is a contradiction, since we could choose x := 1
1−y

+ 1 which is larger than 1
1−y

.
So y ≥ 1, i.e. 1 = sup A.

Similarly one shows inf A = 0. □

Recall a characterization

Theorem 4.35. Let M be an upper bound of X ⊂ R. Then M = sup X if and only if for
any ε > 0 there exists x ∈ X such that M − ε < x ≤ M .

A similar statement holds for inf.

Exercise 4.36. Prove Theorem 4.35 (using the definition of sup and inf from Defini-
tion 4.32)

Exercise 4.37. Find sup A and inf A, where

A =
(

n2 + 2n− 3
n + 1 : n = 1, 2, 3, . . .

)
.

4.6. Power function.
Example 4.38. Prove that there exists a ∈ R, a > 0, such that a2 = 2. We denote this
number by

√
2 := a.

Proof. Consider
A := {x ∈ R : x2 ≤ 2}.

This set is bounded, and thus a := sup A exists by Theorem 4.33. Clearly a ≥ 1 > 0 (since
a must be an upper bound and 1 ∈ A).

We need to show that a2 = 2. Let ε ∈ (0, 1) then by Theorem 4.35 there exists x ∈ A such
that

a− ε < x.

Both sides are positive, so we square

(a− ε)2 < x2 x∈A
≤ 2.

Thus
(4.7) (a− ε)2 ≤ 2 ∀ε > 0
That is

a2 ≤ a2 + ε2 − 2εa| {z }
=(a−ε)2≤2

+2εa = (a− ε)2 + 2εa
(4.7)
≤ 2 + 2εa ∀ε > 0.
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This inequality we can reformulate
a2 ≤ 2 + 2εa ∀ε > 0

a>0⇔ a2 − 2
2a

≤ ε ∀ε > 0

Assume now that a2 > 2. Then the last statement is clearly false for ε = a2−2
2a

> 0. So we
must have a2 ≤ 2.

On the other hand assume that a2<2. Then there must be ε > 0 such that
(a + ε)2 = a2

|{z}
<2

+ ε2 + 2aε| {z }
≪1

< 2.

But then a + ε ∈ A which is a contradiction to a being an upper bound of A. Thus we
must have a2 ≥ 2

Consequently, a2 = 2 which is what we wanted to show. □

Similarly one can show

Theorem 4.39. For every real x > 0 and every integer n > 0 there is exactly one positive
number y ∈ R such that yn = x.

We denote y := n
√

x ≡ x
1
n .

With this at hand we can define x
m
n :=

�
x

1
n

�m
and x− m

n := 1
x

m
n

.

That is, we can define xq for any x > 0 and q ∈ Q.

For r ∈ R and x > 0 we can define xr := limn→∞ xqn for an arbitary sequence of rational
numbers qn convergent to x and qn monotone (if we ensure that qn always has the same
sign, then the sequence xqn is monotone, and since it is also bounded, it has a limit in R)

So we can define powers xr for two real numbers (if x is positive):

Definition 4.40. For x, r ∈ R we define xr in the following way:

• If x > 0, r > 0 we set
xr := lim

qn→r
xqn ,

where qn ∈ Q is a nonnegative monotone increasing sequence of rational numbers
that converges to r (and thus xqn is a bounded and monotone sequence)

• If x > 0 and r < 0 we set
xr := lim

qn→r

1
xqn

• If x > 0 and r = 0 we set
x0 = 1
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• If x = 0 and r > 0
0r = 0.

• 00 is not defined.
• xr is not defined for x < 0.

Exercise 4.41. Show the following:

• Assume r > 1 and x < y show that rx < ry.
• Assume r < 1 and x < y show that rx > ry.
• Show that 1r = 1

In your proof be careful: limits can mess with strict inequalities! You get −1000 points if
you make this mistake!

4.7. More on Sequences in R. We recall (and defined above for metric spaces) the
definition of the limit of a sequence (in R for simplicity).

A sequence (xn)n∈N ⊂ R converges to x ∈ R if
∀ε > 0 ∃N = N(ε) ∈ N : |xn − x| < ε ∀n ≥ N.

In this case we write limn→∞ xn = x.
Exercise 4.42. Use the definition of the limit to prove that

lim
n→∞

n

n + 1 = 1.

Solution. We need to prove that

∀ε > 0 ∃N = N(ε) ∈ N :
����

n

n + 1 − 1
���� < ε ∀n ≥ N.

So fix ε > 0. How do we find N? Well, we compute a bit around,
����

n

n + 1 − 1
���� < ε

⇔
����
n− n− 1

n + 1

���� < ε

⇔ 1
n + 1 < ε

⇔1
ε
− 1 < n

So if we choose N := 1
ε
− 1 + 1000, then surely, for n ≥ N we have

����
n

n + 1 − 1
���� < ε.

□
Theorem 4.43. If limn→∞ an = a ∈ R and limn→∞ bn = b ∈ R then
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• limn→∞(an + bn) = a + b
• limn→∞(anbn) = ab
• limn→∞

an

bn
= a

b
provided that b ̸= 0.

Exercise 4.44. Prove Theorem 4.43 using the ε-definition of the limit.

Example 4.45. Find the limit of

lim
n→∞

3n2 + 5
2n2 + n + 7 .

Solution. In Calculus we argued as follows,

3n2 + 5
2n2 + n + 7 =

3 + 5
n2

2 + 1
n

+ 7
n2

Since 5
n2 , 1

n
and 7

n2 all tend to zero as n →∞, the limit is

lim
n→∞

3n2 + 5
2n2 + n + 7 = lim

n→∞
3 + 5

n2

2 + 1
n

+ 7
n2

= lim
n→∞

3 + 0
2 + 0 + 0 = 3

2 .

That is kind of ok, but you must know how to write the formal proof (using several instances
of Theorem 4.43)! □

Theorem 4.46 (Squeeze theorem). Let an ≤ bn ≤ cn for all n ∈ N and assume that

lim
n→∞ an = lim

n→∞ bn = g ∈ R.

Then limn→∞ bn = g.

Proof. This is a proof we have seen before, but again, we have to know how to prove it.

Let ε > 0 be arbitrary. Since limn→∞ an = limn→∞ bn = g there must be N1 and N2 ∈ N
such that

|an − g| < ε, ∀n ≥ N1

|bn − g| < ε, ∀n ≥ N2

Let N := max{N1, N2}. Then we have for all n ≥ N

g − ε < an ≤ bn ≤ cn < g + ε,

and thus
|bn − g| < ε ∀n ≥ N.

Since ε was arbitrary this implies that limn→∞ bn = g. □

Example 4.47. For a > 0 we have limn→∞ n
√

a = 1.
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Proof. For a = 1 the statement is trivial.

If a ∈ (0, 1] then for b := 1
a
∈ [1,∞) we have limn→∞

n
√

b = 1, and thus if we know the case
a > 1 by the limit laws Theorem 4.43,

n
√

a = 1
n
√

b

n→∞−−−→ 1
1 = 1.

So, w.l.o.g. assume that a > 1.

One way to prove this is brute force: Assume the statement is false. Note n 7→ n
√

a is
monotone decreasing. Moreover n

√
a ≥ 1. Thus, since by assumption limn→∞ n

√
a = 1 is

false, there must be an ε > 0
n
√

a ≥ 1 + ε for all n ∈ N

but then
a ≥ (1 + ε)n n→∞−−−→∞

But this contradicts that a is finite, so we have limn→∞ n
√

a = 1.

We can also be more elegant: By Bernoulli’s inequality, Proposition 3.3,

a =
�
1 + n

√
a− 1

�n ≥ 1 + n
�

n
√

a− 1
�

.

Thus
0

a≥1
≤ n
√

a− 1 ≤ a− 1
n| {z }

n→∞−−−→0

.

By the squeeze theorem, Theorem 4.46, n
√

a− 1 n→∞−−−→ 0 which is what we wanted to show
(whenever a ≥ 1).

□
Example 4.48. Find the limit limn→∞

n
√

3n + 5n

Proof. Observe that

n
√

5n + 3n = n

s
5n(1 +

�3
5

�n

= 5 n

s
1 +

�3
5

�n

.

Now by Example 4.47,

1 n→∞←−−− n
√

1 ≤ n

s
1 +

�3
5

�n

≤ n
√

2 n→∞−−−→ 1

So again by the squeeze theorem Theorem 4.46,

lim
n→∞

n
√

1 ≤ n

s
1 +

�3
5

�n

= 1
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and thus

lim
n→∞

n

s
5n(1 +

�3
5

�n

= 5.

□
Example 4.49. If p > 0 then limn→∞

1
np = 0.

Solution. Given ε > 0 let N ∈ N with N > ( 1
ε
)p. □

Example 4.50. Show that limn→∞ n
√

n = 1. (No L’Hopital!)

Solution. If we do Bernoulli again, we don’t get far:
n =

�
1 + ( n

√
n− 1)

�n ≥ 1 + n( n
√

n− 1)

merely implies n
√

n is bounded.

We instead apply the binomial formula16

(a + b)n =
nX

i=0

 
n

i

!
aibn−i.

In particular, if a and b are nonnegative,

(a + b)n ≥ bn +
 

n

2

!
an−2b2 = bn + n(n− 1)

2 an−2b2.

Notice how similar this looks to the Bernoulli, but the asymptotics in n are different.

Then (observe n
√

n− 1 ≥ 0))

n =
�
1 + ( n

√
n− 1)

�n ≥ 1 + n(n− 1)
2 ( n

√
n− 1)2

which implies
0 n→∞←−−− 2(n− 1)

(n− 1)n ≥ ( n
√

n− 1)2.

By the squeeze theorem we conclude ( n
√

n−1)2 n→∞−−−→ 0 which readily implies the claim. □

Lastly, we like to say what is meant by
lim

n→∞ xn = +∞

Definition 4.51. We say that the sequence (xn)n∈N diverges to +∞ if
∀M∃N = N(M) : xn ≥ M ∀n ≥ N.

We write
lim

n→∞ an = +∞.

16if you forgot it, prove it by induction!
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Similarly we define divergence to −∞ and

lim
n→∞ bn = −∞.

For simplicity we will write R := R ∪ {−∞, +∞}.

Observe that e.g. oscilating sequences xn may not have limits in R.

Exercise 4.52. Let (xn)n∈N be a sequence in R

Is the following statement true17?

If lim
n→∞ xn = ∞ is not true, then lim

n→∞ xn < ∞

4.8. Cesaro Mean. Recall that R := R ∪ {−∞, +∞}.

Proposition 4.53 (Cesaro Mean (1)). If limn→∞ an = g ∈ R then

lim
n→∞

1
n

nX

i=1
ai = g.

Proposition 4.54 (Cesaro Mean (2)). If limn→∞ an = g ∈ R, g > 0, then

lim
n→∞

n
√

a1 · . . . an = g.

Exercise 4.55. Prove Proposition 4.54. Hint: Proof of Proposition 4.53 below.

Proof of Proposition 4.53. The idea of Proposition 4.53 is relatively easy. “Eventually”
an ≈ g (say for all n ≥ N) meaning that for n ≫ N),

1
n

nX

i=1
ai ≈

1
n

NX

i=1
ai + 1

n
(n−N − 1)g

Since PN
i=1 ai is finite, 1

n

PN
i=1 ai

n→∞−−−→ 0. On the other hand 1
n
(n−N − 1)g n→∞−−−→ g.

For practice let us make this proof precise. For simplicity let us assume that g ∈ R
(g ∈ {±∞} follows the same idea).

Since limn→∞ an = g we have that M := sup{|an|, n ∈ N} < ∞ (Lemma 4.15).

17seen on the prelim
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Let ε > 0 then there exists N1 such that |ai− g| < 1
2ε for all i ≥ N1. We then have for any

n ≥ N1,
�����
1
n

nX

i=1
ai − g

�����

=
�����
1
n

nX

i=1
(ai − g)

�����

≤
������
1
n

N1−1X

i=1
(ai − g)

������
+

������
1
n

nX

i=N1

(ai − g)
������

≤N1 − 1
n

2M + 1
2ε

n + 1−N1

n

=ε

2 +
�

N1 − 1
n

2M + 1
2ε

1−N1

n

�

Now we can choose N2 ∈ N (depending on M and ε) such that
�

N1 − 1
n

2M + 1
2ε

1−N1

n

�
<

ε

2 ∀n ≥ N2.

So if we set N := max{N1, N2} we find
�����
1
n

nX

i=1
ai − g

����� < ε ∀n ≥ N.

□

Example 4.56. limn→∞
n
√

n! = ∞ since
n
√

n! = n
√

1 · 2 · . . . · n,

and limn→∞ n = ∞.

Exercise 4.57. Show that limn→∞
1+

√
2+ 3√3+...+ n√n

n
= 1.

Theorem 4.58. If an > 0 and all n and limn→∞ an+1/an = a ∈ R̄, then limn→∞ n
√

an = a.

Proof. Since an+1/an → a we see that also the the following sequence converges to a

1,
a2

a1
,

a3

a2
, . . . ,

an

an−1
, . . . −→ a.

Therefore
n
√

an

n
√

a1
= n

s
1 · a2

a1
· a3

a2
· an

an−1
→ a .

Since n
√

a1 → 1, we conclude that n
√

an → a from Proposition 4.54. □
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4.9. e and the exponential function.

Definition 4.59. The Euler number e is defined as

e := lim
n→∞

�
1 + 1

n

�n

.

To make sense of this definition we first need to prove

Lemma 4.60. The sequence an =
�
1 + 1

n

�n
is strictly increasing, bn =

�
1 + 1

n

�n+1
is

strictly decreasing. Both converge to the same limit.

Proof. Since 1 + 1
n

> 1 we have
an ≤ bn ∀n ∈ N.

We first show that an is strictly increasing by showing that an+1
an

> 1. Indeed

an+1

an

=

�
1 + 1

n+1

�n+1

�
1 + 1

n

�n =

�
n+2
n+1

�n+1

�
n+1

n

�n

=
 

(n + 2)n
(n + 1)2

!n
n + 2
n + 1

=
 

n2 + 2n

n2 + 2n + 1

!n
n + 2
n + 1

=
�

1− 1
n2 + 2n + 1

�n n + 2
n + 1

≥
�

1− n
n2 + 2n + 1

�
n + 2
n + 1 (Bernoulli)

= n3 + 3n2 + 3n + 2
n3 + 3n2 + 3n + 1 > 1.

Similarly we can show that the sequence bn is decreasing (we leave it as an exercise). Since
an ≤ bn for every n we have

2 = a1 < a2 < a3 < . . . < an < . . . < bn < bn−1 < . . . < b1 = 4.

Hence an is increasing and bounded from above, so convergent (Lemma 4.25 and com-
pleteness of R). Also bn is decreasing and bounded from above, so convergent. Clearly
limn→∞ an ∈ (2, 4), so limn→∞ an ̸= 0 and hence

limn→∞ bn

limn→∞ an

= lim
n→∞

bn

an

= lim
n→∞ 1 + 1

n
= 1, lim

n→∞ bn = lim
n→∞ an.

□
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One more proof that an is increasing. A clever application of the Arithmetic-Geometric
mean inequality, Theorem 3.7, gives

��
1 + 1

n

�n

· 1
�1/(n+1)

= n+1

s�
1 + 1

n

�
· · ·

�
1 + 1

n

�
· 1

≤
�
1 + 1

n

�
+ . . . +

�
1 + 1

n

�
+ 1

n + 1 = 1 + 1
n + 1 .

Hence
�

1 + 1
n

�n

· 1 ≤
�

1 + 1
n + 1

�n+1
,

�
1 + 1

n

�n

≤
�

1 + 1
n + 1

�n+1
.

□

Remark 4.61. Since
�
1 + 1

n

�n
is increasing and

�
1 + 1

n

�n+1
is decreasing and e is their

common limit, we have that
�

1 + 1
n

�n

< e <
�

1 + 1
n

�n+1

for every n. Taking n large we obtain lower and upper estimate for e. One can prove that18

e = 2.718281828 . . .

Definition 4.62 (Series). Let (an)n∈N be a sequence. We say that for g ∈ R

g =
∞X

n=1
an

if the partial sum sℓ := Pℓ
n=1 an satisfies limℓ→∞ sℓ = g.

Theorem 4.63. e =
∞X

n=0

1
n! .

Proof. Let

xn =
�

1 + 1
n

�n

, yn = 1 + 1
1! + 1

2! + . . . + 1
n! .

18As a funny side-note, during the space race the Sowjet space program worked with e with precision up
to 9 digits, which their engineers rememberd as 2.7 and twice Tolstoi (who was born in 1828). Side-note
of a side-note, NASA supposedly only uses 15 digits of π for interplanetary travel (nowadays), https:
//www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need
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Thus (yn)n∈N is the sequence of the partial sums of the above series. The binomial formula
yields

xn = 1n +
 

n

1

!
1n−1 1

n
+
 

n

2

!
1n−2 1

n2 + . . . +
 

n

n− 1

!
11 1

nn−1 +
 

n

n

!
10 1

nn

= 1 + 1 + n(n− 1)
2!

1
n2 + n(n− 1)(n− 2)

3!
1
n3 + . . .

+ n(n− 1)(n− 2) · · · (n− k + 1)
k!

1
nk

+ . . . + n(n− 1)(n− 2) · · · 1
n!

1
nn

= 1 + 1 + 1
2!

�
n− 1

n

�
+ 1

3!

�
n− 1

n

� �
n− 2

n

�
+ . . . + 1

n!

�
n− 1

n

� �
n− 2

n

�
· · ·

� 1
n

�
.

Therefore xn ≤ yn. On the other hand the coefficients at 1/k! converge to 1 as n → ∞
so we should expect that the limit of xn will be as large as that of yn which together with
the inequality xn ≤ yn should give equality of the limits. To turn this observation into a
rigorous argument, fix k. Then for n ≥ k we have

xn ≥ xk = 1 + 1 + 1
2!

�
n− 1

n

�
+ . . . + 1

k!

�
n− 1

n

� �
n− 2

n

�
· · ·

 
n− k + 1

n

!
.

With that fixed k, letting n →∞ on both sides of the above inequality yields

e = lim
n→∞ xn ≥ 1 + 1 + 1

2! + 1
3! + . . . + 1

k! = yk.

This and the inequality xn ≤ yn gives e ← xn ≤ yn ≤ e and hence

∞X

n=0

1
n! = lim

n→∞ yn = e.

□

Theorem 4.64. e is irrational.

Proof. Let

xn = 1 + 1
1! + 1

2! + . . . + 1
n! .



ADVANCED CALCULUS I & II VERSION: September 19, 2024 53

In particular observe that xnn! ∈ N. Then

e− xn = 1
(n + 1)! + 1

(n + 2)! + 1
(n + 3)! + . . .

= 1
(n + 1)!

 
1 + 1

n + 2 + 1
(n + 2)(n + 3) + 1

(n + 2)(n + 3)(n + 4) + . . .

!

<
1

(n + 1)!

�
1 + 1

n + 1 + 1
(n + 1)2 + 1

(n + 1)3 + . . .

| {z }
geometric series

�

= 1
(n + 1)!

1
1− 1

n+1
= 1

n! n
.

Hence
0 < e− xn <

1
n! n

.

Suppose that e is a rational number i.e., e = p/q for some p, q ∈ N. Then

0 < e− xq <
1

q! q
,

0 < eq!|{z}
integer

− xqq!
|{z}

integer

<
1
q

.

Since there are no integers between 0 and 1/q we arrived a contradiction. This proves that
e cannot be a rational number. □

For any x ∈ R the value ex is well-defined, and we have ex > 0, cf. Exercise 4.41.

Definition 4.65. It is relatively easy19 to show that for any r ∈ (0,∞) there exists exactly
one x ∈ R such that ex = r.

The natural logarithm is defined by
ln r = log r = loge r = x if ex = r.

Observe that differently than in high school, log x is with base e instead of 10.

We will assume all the logarithm rules from calculus (that we can derive from power laws).

It is not clear at this point why the base e is more important than any other base. It
will be transparent later when we will study derivatives, but even now the following result
shows a nice and important inequality that is true for the natural logarithm.

Lemma 4.66. 1
n + 1 < ln

�
1 + 1

n

�
<

1
n

for n = 1, 2, 3, . . ..

19this is an easy consequence of the intermediate value theorem, Theorem 8.12 , so we don’t do this
here
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Proof. The inequality
�

1 + 1
n

�n

< e <
�

1 + 1
n

�n+1

implies

n ln
�

1 + 1
n

�
< 1 < (n + 1) ln

�
1 + 1

n

�
.

The left inequality gives

ln
�

1 + 1
n

�
<

1
n

and the right inequality gives
1

n + 1 < ln
�

1 + 1
n

�
.

□

Theorem 4.67. The sequence

an = 1 + 1
2 + 1

3 + . . . + 1
n
− ln n

is convergent to a finite limit

γ := lim
n→∞

�
1 + 1

2 + 1
3 + . . . + 1

n
− ln n

�
.

Remark 4.68. The limit γ = 0.5772156649 . . . is called the Euler constant. It is not
known if γ is rational or not.

Proof. We will prove that the sequence is decreasing. To this end it suffices to show that
an+1 − an < 0. We have

an+1 − an =
�

1 + 1
2 + . . . + 1

n
+ 1

n + 1

�
− ln(n + 1)−

�
1 + 1

2 + . . . + 1
n

�
+ ln n

= 1
n + 1 − ln(n + 1) + ln n

= 1
n + 1 − ln

�
n + 1

n

�

= 1
n + 1 − ln

�
1 + 1

n

�
< 0 ,

where the last inequality follows from Lemma 4.66. Therefore the sequence (an) is decreas-
ing. Applying the lemma one more time we have

1 > ln(1 + 1), 1
2 > ln

�
1 + 1

2

�
, . . . ,

1
n

> ln
�

1 + 1
n

�
,
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and hence

an = 1 + 1
2 + . . . + 1

n
− ln n

> ln(1 + 1) + ln
�

1 + 1
2

�
+ . . . + ln

�
1 + 1

n

�
− ln n

= ln 2 + ln 3
2 + . . . + ln n + 1

n
− ln n

= ln
�

2 · 3
2 · 4

3 · 5
4 · · · n + 1

n

�
− ln n

= ln(n + 1)− ln n > 0.

Thus the sequence is decreasing and bounded from below by 0. Hence it is convergent, as
it is a Cauchy sequence in a complete metric space Lemma 4.25. □

As a corollary we obtain another proof that
∞X

n=1

1
n

= +∞.

Indeed, since the sequence of partial sums

sn = 1 + 1
2 + 1

3 + . . . + 1
n

is increasing it suffices to show that it is not convergent. Suppose it is convergent. Since
the sequence in Theorem 4.67 is also convergent, the difference of two sequences i.e., the
sequence sn − an = ln n is also convergent, but it is not, since limn→∞ ln n = +∞.

Exercise 4.69. Find the limit lim
n→∞

n

e1+ 1
2 +···+ 1

n

.

4.10. Examples.

Example 4.70. Prove that the sequence n
√

n is decreasing starting from n = 3.

Solution. We have

n1/n > (n + 1)1/(n+1) ⇔ nn+1 > (n + 1)n ⇔ n >
(n + 1)n

nn
=

�
1 + 1

n

�n

.

The last inequality is true for n ≥ 3, because n ≥ 3 > e > (1 + 1/n)n and hence the first
inequality is true for n ≥ 3 as equivalent. □

Example 4.71. Find the following limits

(1) limn→∞
�

n!
nne−n

�1/n
,

(2) limn→∞
�

(n!)3

n3ne−n

�1/n
.
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Solution. (1) Let an = n!
nne−n

. Then

an+1

an

= (n + 1)!
(n + 1)n+1e−(n+1)

nne−n

n! = n!(n + 1)
(n + 1)(n + 1)ne−ne−1

nne−n

n!

= nne

(n + 1)n
= e�

1 + 1
n

�n → 1

and hence Theorem 4.58 gives

n
√

an =
 

n!
nne−n

!1/n

→ 1.

(2) Let an = (n!)3

n3ne−n
. Then

an+1

an

=

�
(n + 1)!

�3

�
(n + 1)n+1

�3
e−(n+1)

n3ne−n

(n!)3 = (n!)3(n + 1)3

(n + 1)3(n + 1)3ne−ne−1
n3ne−n

(n!)3

= n3ne

(n + 1)3n
= e

��
1 + 1

n

�n�3 →
e

e3 = e−2

and hence Theorem 4.58 gives

n
√

an =
 

(n!)3

n3ne−n

!1/n

→ e−2

□

4.11. subsequences in Rn – Bolzano Weierstrass. Let (X, d) be a metric space.

If (xn)n∈N is a sequence and
n1 < n2 < n3 < . . .

are positive integers then the sequence
(yk)k∈N, yk := xnk

is called a subsequence.

It is easy to prove

Lemma 4.72. Let (X, d) be any metric space. For any (xk)k∈N ⊂ X sequence and any
x ∈ X the following are equivalent

• limk→∞ xk = x
• limk→∞ xki

= x for all subsequences (xki
)i∈N of (xk)k∈N.
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• Let ((ni;ℓ)ℓ∈N)i∈I ⊂ N be a collection of strictly increasing sequence in N which cover
all but finitely many elements of N. I.e. assume that for any i ∈ I, (ni;ℓ)ℓ∈N is a
strictly increasing sequence in N and that


 [

i∈I,ℓ∈N
ni;ℓ


 \Nis a finite set.

and (xni;ℓ)ℓ∈N is convergent to x for each i ∈ I.

It is a special property of R (more generally finite dimensional spaces) that bounded
sequences have convergent subsequences (we will later say that bounded sets in R, Rn

etc. are precompact). This is called the Bolzano-Weierstrass theorem

Theorem 4.73 (Bolzano-Weierstrass). Every bounded sequence (xn)n∈N ⊂ Rn has a con-
vergent subsequence.

It is worth recalling the proof.

Proof. Since (xn)n∈N is bounded, there exists M > 0 such that (xn)n∈N ⊂ [−M, M ]n =: C1.

For simplicity assume that M = 1. We can divide the cube C1 into 2n cubes of sidelength
1. Each of these cubes can be subdivided into 2n cubes of sidelenght 2−1, and so on20. This
division into small cubes is called dyadic decomposition.

Since xn is an infinte sequence, for each subsequence and each κ ∈ N, infinitely elements
of that subsequence must belong to one of the cubes of sidelength 22−k.

We can construct a subsequence now as follows:

Let n1 := 1 and C1 = [−1, 1]n. In the i + 1st step, fix any dyadic cube Ci+1 of sidelength
21−i, which is contained in Ci such that there are infinitely many sequence elements n > ni

in Ci+1. Take ni+1 > ni so that xni+1 ∈ Ci+1.

We thus obtain a subsequence (xni
)i∈N such that
xnk

⊂ Ci ∀k ≥ i.

In particular, because of the sidelenght of Ci being 22−i,
|xnk

− xnℓ
| <

√
n22−i ∀k, ℓ ≥ i.

In particular xnk
is a Cauchy sequence, and since Rn is complete xnk

converges. □
Exercise 4.74. Let (xn)∞

n=1 be a sequence of points in R3 such that |xn+1−xn| ≤ 1/(n2+n),
n ≥ 1. Show that (xn)n converges.

20Here the dimension comes into play: we can split the interval [a, b] into two intervals of half the
diameter. In R2 we can split the square [a, b]2 into four intervals of half the diameter. In infinite dimensions
we would have to split a bounded set into infinitely many sets of smaller diameter – so this argument would
fail there
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Exercise 4.75. Give an example of a sequence (xn)n∈N ⊂ R such that
∀ε > 0 ∃N = N(ε) : |xn − xn+1| < ε

but (xn)n∈N is not convergent.

Exercise 4.76. Assume we have a sequence (xn)n∈N ⊂ (X, d) where (X, d) is a metric
space. Assume for some λ ∈ (0, 1) we have

d(xn, xn+1) ≤ λd(xn−1, xn−2) ∀n ≥ 3.

Show that (xn)n∈N is a Cauchy sequence.

Hint: You can freely use the formula (for λ ̸= 1)

1 + λ + λ2 + · · · + λn = 1− λn+1

1− λ
.

Exercise 4.77. Let f : R → R be continuous21 and assume that for some λ ∈ (0, 1) we
have

|f(x)− f(y)| ≤ λ|x− y| for all x, y ∈ R
Show that there exists x̄ such that f(x̄) = x̄.

Hint: Take any x ∈ R. Set xn := f(xn). Then use Exercise 4.76. Then think about what
happens to

xn = f(xn) as n →∞.

Do not use a Fixed point theorem. Prove the Fixed Point theorem!

4.12. The upper and the lower limits. Sequences can be subdivided into subsequences.
The limit superior, lim sup is the largest possible limit (or +∞) of any subsequence, the
limit inferior, lim inf is the smallest possible limit of any subsequence. More precisely,

Definition 4.78. Let (xn)n∈N ⊂ R be a sequence.

• If (xn)n∈N is bounded from above we set
lim sup

n→∞
xn := inf

n∈N
sup
k≥n

xk.

(observe that this number exists since (xn)n∈N is bounded from above)
• If (xn)n∈N is not bounded from above we set lim supn→∞ xn := +∞
• If (xn)n∈N is bounded from below we set

lim inf
n→∞ xn := sup

n∈N
inf
k≥n

xk.

(observe that this number exists since (xn)n∈N is bounded from below)
• If (xn)n∈N is not bounded from below we set lim infn→∞ xn := −∞

21Lets all agree that we already know what this means: if limn→∞ xn = x for some sequence (xn)n∈N
then limn→∞ f(xn) = f(x)
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Figure 4.3. An illustration of limit superior and limit inferior. The se-
quence xn is shown in blue. The two red curves approach the limit superior
and limit inferior of xn, shown as dashed black lines. In this case, the se-
quence accumulates around the two limits. The superior limit is the larger
of the two, and the inferior limit is the smaller of the two. The inferior and
superior limits agree if and only if the sequence is convergent (i.e., when
there is a single limit). (text and image: Eigenjohnson, Wikipedia)

Cf. Figure 4.3.

Example 4.79. Let

xn :=




1
n

n even
−n n odd

then
lim sup

n→∞
xn = 0

and
lim inf

n→∞ xn = −∞.

To coincide limsup and liminf with our intuition observe

Lemma 4.80. Let (xn)n∈N ⊂ R be a sequence.

(1) Set an := supk≥n xk, then, if the right-hand side exists,
lim sup

n→∞
x = lim

n→∞ an
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(2) Set bn := infk≥n xk, then, if the right-hand side exists,
lim inf

n→∞ xn = lim
n→∞ bn

(3) Let (xni
)i∈N be any convergent subsequence. Then

lim inf
n→∞ xn ≤ lim

i→∞
xni

≤ lim sup
n→∞

xn.

(4) If lim supn→∞ xn ∈ (−∞,∞) then there exists a convergent subsequence (xni
)i∈N

with
lim
i→∞

xni
= lim sup

n→∞
xn.

(5) If lim infn→∞ xn ∈ (−∞,∞) then there exists a convergent subsequence (xni
)i∈N

with
lim
i→∞

xni
= lim inf

n→∞ xn.

(6) If lim supn→∞ xn = ∞ then there exists a subsequence (xni
)i∈N with limi→∞ xni

=
∞. If lim supn→∞ xn = −∞ then all subsequences (xni

)i∈N satisfy limi→∞ xni
=

−∞.
(7) If lim infn→∞ xn = −∞ then there exists a subsequence (xni

)i∈N with limi→∞ xni
=

−∞. If lim infn→∞ xn = +∞ then all subsequences (xni
)i∈N satisfy limi→∞ xni

=
+∞.

Proof. (1) If (an)n∈N is not bounded from above, (xn)n∈N is not bounded from above,
and so limn→∞ an = lim supn→∞ xn = ∞.

If an is bounded from above then it is a monotonce decreasing, bounded, sequence.
Thus we have convergence, by Definition 4.16 and the completeness of R, we find
that an is convergent and

lim
n→∞ an = inf

n
sup
k≥n

xk = lim sup
n→∞

xn.

(2) exercise! (almost the same argument as as above)
(3) We only show

lim
i→∞

xni
≤ lim sup

n→∞
xn.(4.8)

The other inequality follows the same way.
If lim supn xn = ∞ then (4.8) is trivially satisfied. So let us assume lim supn xn <

∞. Then
xni

≤ sup
k≥ni

xk =: ai ∀i ∈ N.

We observe that (ai)i∈N is a monotone increasing sequence. Since lim supn xn < ∞
we have that ai is bounded from above. So by Definition 4.16 and completeness of
R, ai is convergent and

lim
i→∞

ai = inf
i

sup
k≥ni

xk ≤ inf
n

sup
k≥n

xk = lim sup
n→∞

xn.
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By monotonicity of the limit,
lim
i→∞

xni
≤ lim

i→∞
ai = lim sup

n→∞
xn.

(4) Set
an := sup

k≥n
xk.

Since lim supn→∞ xn < ∞, by the definition of supremum as lowest upper bound,
for any n ∈ N there must be a number K = K(n) ≥ n such that

an −
1
n
≤ xK ≤ an.

Now we build our subsequence as follows. n1 := K(1), n2 := K(n1 + 1), ni :=
K(ni−1 + 1). This is an strictly increasing sequence, and we have ni ≥ i, so that
(together with the monotonicity we can ensure that

ani−1+1 −
1
i
≤ xni

≤ ani−1+1.

Observe that (ani−1+1)i is a subsequence of the convergent sequence an, and as such
convergent itself. By the squeeze theorem, Theorem 4.46, we have that

lim
i→∞

xni
= lim

i→∞
ani−1+1 = lim sup

n→∞
xn.

(5) same as above
(6) If lim supn→∞ xn = ∞ then infn∈N an = ∞ where an = supk≥n xk. That means that

for any M ∈ N and for any n ∈ N there exists k = k(n) ≥ n with xk > M . From
this we can build a subsequence. Take xn1 := xk(1), xn2 := xk(k(1)+1) etc. This
subsequence goes to infinity.

Assume now that lim supn→∞ xn = −∞ and take (xni
)i∈N any subsequence.

Then infn∈N an = −∞ where an = supk≥n xk. That is, for any M > 0 there
must be some N ∈ N such that aN < −M . But since aN = supk≥N xk, this implies
xk ≤ −M for all k ≥ N . That is, for all M > 0 we have that xn < −M for all but
finitely many n ∈ N. In particular, for all M > 0 we have that xni

< −M for all
but finitely many i ∈ N. This means that limi→∞ xni

= −∞.
(7) analogue argument to above.

□
Lemma 4.81. Let (xn)n∈N be a sequence in R

(1) lim infn→∞ xn ≤ lim supn→∞ xn

(2) For any subsequence (xni
),

lim inf
n→∞ xn ≤ lim inf

i→∞
xni

≤ lim sup
i→∞

xni
≤ lim sup

n→∞
xn

(3) If limn→∞ xn = x then lim infn→∞ xn = lim supn→∞ xn = x.
(4) lim infn→∞ xn = lim supn→∞ xn then limn→∞ xn = lim infn→∞ xn = lim supn→∞ xn.
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Proof. (1) obvious from the definition
(2) Obvious from the definition of lim sup, and monotonicity of the supremum/infimum.
(3) From Lemma 4.80 we have that there exists a subsequence (xni

)i∈N such that
lim
i→∞

xni
= lim sup

n→∞
xn.

On the other hand, since xn converges, so does any of its subsequences, so
lim
i→∞

xni
= lim

n→∞ xn.

Together we find
lim sup

n→∞
xn = lim

n→∞ xn.

The same argument works for the lim inf.
(4) Let an := infk≥n xk and bn := supk≥n xk. Then

an ≤ xn ≤ bn ∀n ∈ N.

Since by assumption and Lemma 4.80,
lim inf

n→∞ xn = lim
n→∞ an = lim

n→∞ bn = lim sup
n→∞

xn

We conclude by the squeeze theorem, Theorem 4.46 that
lim

n→∞ xn = lim inf
n→∞ xn = lim

n→∞ an = lim
n→∞ bn = lim sup

n→∞
xn

□

5. Series

Recall from Definition 4.16 the notion of Cauchy sequence. Also recall that R is defined
as the metric completion of (Q, | · |) (Definition 4.20), and thus Cauchy-sequence and
converging sequence are the same (in R, not in Q).

Recall

Definition 5.1. We say that for a sequence (ai)i∈N and g ∈ R the series is conver-
gent/divergent to g,

∞X

i=1
ai = g ∈ R,

iff the sequence (partial sum)

sn :=
nX

i=1
ai

n→∞−−−→ g.

We say that the series P∞
i=1 ai is an absolutely convergent series if P∞

i=1 |ai| < ∞, i.e. the
sequence

tn :=
nX

i=1
|ai| n→∞−−−→ g̃ < ∞
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Equivalently (since (tn) is monotone increasing sequence in R) one could require that tn is
a bounded sequence, supn tn < ∞).

Since (sn)n∈N is a Cauchy sequence in R if and only if it is convergent, one obtains the
Cauchy criterion for sequences

Theorem 5.2. The series P∞
i=1 ai is convergent if and only if

∀ε > 0 ∃N = N(ε) ∈ N ∀n ≥ N : ∀m ∈ N
�����
n+mX

i=n

ai

����� < ε.

Corollary 5.3. If22 P∞
i=1 ai ∈ R then limn→∞ ai = 0.

Proof. It follows directly from Theorem 5.2, but one can also argue directly. For sn =Pn
i=1 ai we have

an = sn − sn+1.

Since by assumption

R ∋
∞X

i=1
ai = lim

n→∞ sn = lim
n→∞ sn+1

we get from the limit rules, Theorem 4.43, that limn→∞ an = 0. □
Theorem 5.4 (Comparison test). (1) Suppose there is N ∈ N such that |an| ≤ bn for

all n ≥ N and P∞
n=1 bn converges, then P∞

n=1 an converges absolutely.
(2) Suppose there is N ∈ N such that an ≥ bn ≥ 0 for all n ≥ N and P∞

n=1 bn diverges
(i.e. goes to +∞), then P∞

n=1 an diverges (to +∞).

Proof. (1) We establish the Cauchy Criterion in Theorem 5.2 for P∞
n=1 an. Let ε > 0

then since P∞
n=1 bn is convergent in view of Theorem 5.2 there must be N1 ∈ N

(w.l.o.g. N1 ≥ N where N is from the assumption) such that

∀m ∈ N :
������

N1+mX

n=N1

bi

������
< ε

Observe that by assumption
������

N1+mX

n=N1

ai

������
≤

N1+mX

n=N1

bi = |
N1+mX

n=N1

bi|,

so we get the Cauchy criterion for P ai.
(2) obvious.

□
Corollary 5.5. If P∞

n=1 an is absolutely convergent, then P∞
n=1 an is convergent.

22i.e.
P∞

i=1 ai is convergent to a number in R
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Proof. Use bn := |an| in Theorem 5.4(1). □
Theorem 5.6 (Alternating sequences). Suppose that (an)n∈N is a sequence with the fol-
lowing properties

(1) |a1| ≥ |a2| ≥ |a3| ≥ . . .
(2) a1 ≥ 0, a2 ≤ 0, a3 ≥ 0, etc. (alternating)
(3) limn→∞ cn = 0

Then P∞
n=1 an is convergent.23

Proof. Let

sℓ :=
ℓX

n=1
an.

Since an alternate and their absolute value decrease sℓ we observe the following (prove by
induction!)

s2 ≤ s4 ≤ s6 . . . ≤ s7 ≤ s5 ≤ s3 ≤ s1

So (s2k)k∈N and (s2k−1)k∈N are montone, bounded sequences, and thus convergent. More-
over,

|s2k+1 − s2k| = |a2k+1| k→∞−−−→ 0,

we find that s2k+1 and s2k must converge to the same limit g ∈ R. But then by Lemma 4.72
sk converges. □
Theorem 5.7. If |q| < 1 then

∞X

n=0
qn = 1 + q + q2 + . . . = 1

1− q
.

If |q| ≥ 1
∞X

n=0
qndoes not converge.

Proof. If |q| ≥ 1 then qn does not converge to zero as n →∞, so the series cannot converge
by Corollary 5.3.

So let |q| < 1. By induction one proves
ℓX

n=0
qn = 1− qℓ+1

1− q
.

Now observe that
1− qℓ+1

1− q
ℓ→∞−−−→= 1

1− q
.

23but maybe not absolutely convergent. The sequence
P∞

n=1(−1)n 1
n is thus convergent, but it is cer-

tainly not absolutely convergent.
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□
Theorem 5.8 (Cauchy Condensation test). Suppose a1 ≥ a2 ≥ a3 ≥ . . . ≥ 0. ThenP∞

n=1 an converges if and only if P∞
n=0 2na2n converges.

Proof. This is a consequence of the comparison test and a little bit of combinatorics.

If P∞
n=0 2na2n converges then P∞

n=1 an converges:

Let
sn :=

nX

i=1
ai

and

tk :=
kX

ℓ=0
2ℓaℓ.

For n < 2k we have because of the nonegativity and monotonicy of the sequence (an),
sn ≤a1 + (a2 + a3)

| {z }
≤2a2

+ (a4 + a5 + a6 + a7)
| {z }

≤4a4

+ (a8 + . . . + a15)
| {z }

≤8a8

+ . . . + (a2k + . . . + a2k+1−1)
| {z }

≤2ka2k

≤tk

So if tk is bounded then sn is bounded, and since all sequence elements are nonnegative
this is equivalent to saying that if P∞

n=0 2na2n then P∞
n=1 an converges.

If P∞
n=1 an converges then P∞

n=0 2na2n converges:

We argue with a similar idea. For n > 2k we have
sn ≥a1 + a2 + (a3 + a4)

| {z }
≥2a4

+ (a5 + . . . + a8)
| {z }

≥4a8

+ . . . + (a2k−1+1 + . . . + a2k)
| {z }

≥2k−1a2k

≥1
2tk

We argue as above: if P∞
n=1 an converges, then (sn)n∈N is bounded, so the inequality implies

that (tk)k is bounded. Since all sequence elements are nonnegative this is equivalent to
saying P∞

n=0 2na2n converges. □

Theorem 5.8 allows to prove elegantly the following theorem (which, of course, we could
also prove by an integral comparison test).

Theorem 5.9. P∞
n=1

1
np converges for p > and diverges for p ≤ 1.

Proof. If p ≤ 1 then
∞X

n=1

1
np
≥

∞X

n=1

1
n

= +∞

so we have divergence for p ≤ 1, Theorem 5.4.
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Assume now p > 1 and set an := 1
np . Then 2na2n = 2n 1

(2n)p = (21−p)n. Observe that then
∞X

n=0
2na2n =

∞X

n=0
2na2n =

∞X

n=0
(21−p)n.

This is the geometric series with q = 21−p ∈ (0, 1), so it is convergent. By Theorem 5.8 we
obtain that P∞

n=1
1

np < ∞. □

Theorem 5.10.
∞X

n=2

1
n(log n)p

converges for p > 1 and diverges for 0 < p ≤ 1.

Proof. Let an = 1/(n(log n)p). Then

2na2n = 2n 1
2n(log 2n)p

=
 

1
log 2

!p 1
np

.

Hence the previous result yields that
∞X

n=1
2na2n =

 
1

log 2

!p ∞X

n=2

1
np

converges if and only if p > 1 and the theorem follows from the Cauchy condensation
test. □

Theorem 5.11 (Ratio Test (d’Alambert Test)). (a) If lim
n→∞

����
an+1

an

���� < 1, then the series
P∞

n=1 an converges absolutely.
(b) If lim

n→∞

����
an+1

an

���� > 1, then P∞
n=1 an diverges.

Theorem 5.12 (Root Test (Cauchy Test)). (a) If limn→∞ n

q
|an| < 1, then the seriesP∞

n=1 an converges absolutely.
(b) If limn→∞ n

q
|an| > 1, then P∞

n=1 an diverges.

Remark 5.13. If
lim

n→∞

����
an+1

an

���� = 1 or lim
n→∞

n

q
|an| = 1,

then we cannot conclude convergence or divergence of the series. For example, if an = 1/n,
then the above limits are equal 1 and the series P∞

n=1 an diverges. If an = 1/n2, then still
the above limits are equal 1, but this time the series P∞

n=1 an converges.
Exercise 5.14. Provide an example of a convergent series a1 +a2 +a3 + . . ., where an > 0,
n = 1, 2, 3, . . . such that the limit limn→∞

an+1
an

does not exist.

Exercise 5.15. Let a1, a2, a3, . . . > 0. Prove that if

lim
n→∞ n

�
an

an+1
− 1

�
> 1 ,

then the series a1 + a2 + a3 + . . . converges.
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Exercise 5.16. Prove that there is a sequence of positive integers n1 < n2 < n3 < . . . such
that the sequence ak = sin nk converges.

We will prove the d’Alambert test only; the proof for the Cauchy test is similar and left as
an exercise.

Proof of Theorem 5.11. If limn→∞ |an+1/an| < 1, then there is 0 < q < 1 and n0 such that
����
an+1

an

���� < q for n ≥ n0.

For n ≥ n0 we have
|an+1| < q|an| < q2|an−1| < . . . < qn+1−n0 |an0 | ,

|an+1| <
�
q−n0 |an0 |

�
qn+1

Replacing n + 1 by n in this formula we have
|an| <

�
q−n0 |an0 |

�
qn for n > n0.

Since the series ∞X

n=1

�
q−n0 |an0 |

�
qn =

�
q−n0 |an0 |

� ∞X

n=1
qn

converges, the series P∞
n=1 an converges absolutely by the comparison test.

If limn→∞ |an+1/an| > 1, there are n0 and q > 1 such that |an+1/an| > q for n ≥ n0 and
it easily follows that an does not converge to zero. Hence the series P∞

n=1 an diverges (see
Theorem 5.4). □
Example 5.17. For every x ∈ R the series P∞

n=0 xn/n! converges absolutely. It is obvious
if x = 0, so we can assume that x ̸= 0. If an = xn/n!, then |an+1/an| = |x|/(n + 1) → 0,
so the absolute convergence follows from the d’Alambert test.

Example 5.18. Investigate convergence of the series
∞X

n=1

�
n

n + 1

�(n+1)n
.

Solution. Let an =
�

n

n + 1

�(n+1)n
. Then

n
√

an =
�

n

n + 1

�n+1
= 1

�
n+1

n

�n+1 = 1�
1 + 1

n

�n
1

1 + 1
n

→ 1
e

< 1

and hence the series converges. □
Theorem 5.19. Assume that an > 0, bn > 0 and

an+1

an

≤ bn+1

bn

for all n ≥ n0.

If the series P∞
n=1 bn converges the series P∞

n=1 an converges, too.
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Remark 5.20. If limn→∞ bn+1/bn < 1, then convergence of the series P∞
n=1 an follows from

the d’Alambert test. However, if

lim
n→∞

an+1

an

= lim
n→∞

bn+1

bn

= 1

and we know that the series P∞
n=1 bn converges, we still can conclude convergence of P∞

n=1 an

even if d’Alambert’s test does not apply. We will see examples after we prove the theorem.

Proof of Theorem 5.19. Let cn = an/bn. Then

cn+1 = an+1

bn+1
≤ an

bn

= cn for n ≥ n0,

so cn is decreasing starting from n = n0. Hence cn is bounded, say cn ≤ M for all n.
Therefore

an = cnbn ≤ Mbn

and convergence of the series P∞
n=1 Mbn = M

P∞
n=1 bn implies convergence of P∞

n=1 an. □

Now we will show two applications of the above result.

Example 5.21. Investigate convergence of the series
∞X

n=1

nn−2

enn! .

Solution. Let an = nn−2

enn! . Then

an+1

an

= (n + 1)n−1

en+1(n + 1)!
enn!
nn−2 = (n + 1)n−2(n + 1)enn!

e en(n + 1)n!nn−2

=

�
1 + 1

n

�n−2

e
=

�
1 + 1

n

�n

e| {z }
<1

�
1 + 1

n

�−2

<
�

n

n + 1

�2
=

1
(n+1)2

1
n2

.

Hence
an+1

an

<

1
(n+1)2

1
n2

.

Since the series P∞
n=1 1/n2 converges, the series P∞

n=1 an converges, too. □

Example 5.22. Investigate convergence of the series
∞X

n=1

nn

enn! .
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Solution. Let an = nn

enn! . Then

an+1

an

= (n + 1)n+1

en+1(n + 1)!
enn!
nn

= (n + 1)n(n + 1)enn!
enen!(n + 1)nn

=

�
1 + 1

n

�n

e
>

�
1 + 1

n

�n

�
1 + 1

n

�n+1 = 1
1 + 1

n

= n

n + 1 =
1

n+1
1
n

.

Hence
1

n+1
1
n

≤ an+1

an

.

Suppose that the series P∞
n=1 an converges. The the theorem would give convergence of

the series P∞
n=1 1/n which is a contradiction. Therefore P∞

n=1 an diverges. □

5.1. Multiplication of Series. Formally we would like to multiply two series as follows
(a1 + a2 + a3 + . . .)(b1 + b2 + b3 + . . .) = a1b1 + (a1b2 + a2b1) + (a1b3 + a2b2 + a3b1) + . . .

In the first group a1b1 we collect all terms with indices that add up to 2. In the second group
a1b2 + a2b1 we collect terms with indices that add up to 3. Then terms with indices that
add up to 4 and so on. Since we deal with infinite sums we have to rigorously investigate
when the above formula is correct. We have

Theorem 5.23 (Cauchy Multiplication Formula). If the series P∞
n=1 an converges abso-

lutely and the series P∞
n=1 bn converges, then

 ∞X

n=1
an

! ∞X

n=1
bn

!
=

∞X

n=1
cn ,

where
c1 = a1b1

c2 = a1b2 + a2b1

· · ·
cn = a1bn + a2bn−1 + . . . + anb1

· · ·

Proof. See [Haj lasz, 2020]. □
Exercise 5.24. Use the Cauchy multiplication formula to find the sum of the series

∞X

n=1
nxn−1, |x| < 1.
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Solution. The series P∞
n=0 xn converges absolutely for |x| < 1. Hence

� 1
1− x

�2
=
 ∞X

n=0
xn

! ∞X

n=0
xn

!
= (1 + x + x2 + . . .)(1 + x + x2 + . . .)

= 1 + (1 · x + x · 1) + (1 · x2 + x · x + x2 · 1) + (1 · x3 + x · x2 + x2 · x + x3 · 1) + . . .

+ (1 · xn + x · xn−1 + x2 · xn−2 + . . . + xn · 1) + . . .

= 1 + 2x + 3x2 + 4x3 + . . . + (n + 1)xn + . . .

=
∞X

n=0
(n + 1)xn =

∞X

n=1
nxn−1 .

Thus
∞X

n=1
nxn−1 =

� 1
1− x

�2
.

□

5.2. Changing the order in a series. Let P∞
n=1 an be a series and let φ : N → N be

a bijection. Then a series P∞
n=1 aφ(n) is obtained from P∞

n=1 an by rearrangement of the
elements: we add exactly the same numbers, but in a different order.

Theorem 5.25. If P∞
n=1 an converges absolutely and φ : N → N is a bijection, thenP∞

n=1 aφ(n) converges and
∞X

n=1
aφ(n) =

∞X

n=1
an.

Proof. Suppose that P∞
n=1 an converges absolutely and let φ : N→ N be a bijection. Then

from the Cauchy condition for series we have

(5.1) ∀ε > 0 ∃n0 ∀m |an0 | + |an0+1| + . . . + |an0+m| < ε.

Denote partial sums of P∞
n=1 an and P∞

n=1 aφ(n) by sn and tn respectively. Choose p so large
that

{1, 2, . . . , n0 − 1} ⊂ {φ(1), φ(2), . . . , φ(p)}.

If n > p, then the numbers a1, a2, . . . , an0−1 will cancel out in the difference of partial sums

sn−tn = (a1+a2+. . .+an0−1+an0 +. . .+an)−(aφ(1)+aφ(2)+. . .+aφ(p)+aφ(p+1)+. . .+aφ(n)).

The remaining terms will be ai’s with i ≥ n0 and signs + or −. The + sign will be
associated with terms in the partial sum sn and the − sign will be associated with the
terms in the partial sum tn. No index i will be repeated twice as elements with the same
index will show once with sign + and once with sign − so they will cancel out. Therefore


