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In Analysis
there are no theorems

only proofs
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These lecture notes take great inspiration from the lecture notes by Michael Struwe (Anal-
ysis III, German), as well as by Piotr Haj lasz (Analysis I). We will also follow the presenta-
tions in Evans-Gariepy [Evans and Gariepy, 2015] (measure theory), Grafakos [Grafakos, 2014]
(Fourier Analysis) and wikipedia. Further sources are Piotr Hajlasz’ Functional Analysis,
Clasons [Clason, 2020] and everything available on the internet. Sometimes we follow those
sources verbatim.

Pictures that were not taken from sources mentioned above (or wikipedia) are usually made
with geogebra.
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Part 1. Analysis I: Measure Theory

1. Measures, σ-Algebras

What would be a reasonable notion of volume in Rn? How do we determine the measure
of the circle?

The basic, most natural idea is to somehow cut our set into pieces, of which we know the
volume, and sum up. But what if the set is not the nice circle, but a point? Or a Cantor
set? So how do we cut it into pieces?

Maybe we need to do this axiomatically...

1.1. First attempt, and the problems begin. A measure is a way to measure (hence
the name!) volumes. So for some set X it should be a map

µ : 2X → [0, ∞]
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A B

Figure 1.1. If µ is a reasonable volume (later: Lebesgue measure), the two
sets A and B should have the same value, µ(A) = µ(B).

that to a subset A ⊂ X assigns the volume µ(A). Here 2X denotes the power set of X, i.e.
the collection of subsets of X.

2X = {A : A ⊂ X}.

It seems to be a reasonable assumption to axiomatically assume the following properties

Definition 1.1 (First attempt to define a volume for all sets). We want1 to find µ : 2Rn →
[0, ∞) such that

• For any A ⊂ Rn we have µ(A) ∈ [0, ∞]
• (Invariance under translation and rotation)2 For any set A ⊂ Rn, any rotation

P ∈ O(n) and any vector x ∈ Rn we have µ(x + OA) = µ(A) where we denote
x + OA := {x + Oa ∈ Rn : a ∈ A}

Cf. Figure 1.1.
• For any A, B ⊂ Rn disjoint we have µ(A ∪ B) = µ(A) + µ(B)

And then, if we moreover insist that µ([a1, b1] × . . . × [an, bn]) = Qn
i=1 |bi − ai| then we

should have defined a volume for all sets of Rn... right?

As reasonable as that sounds, Definition 1.1 is sadly non-sensical. Indeed, Banach showed
the following:

1µ is called a Banach measure (although it probably should be called a Banach content)
2i.e. invariance under congruence relation!
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Figure 1.2. A ball can be decomposed into a finite number of disjoint sets
and then reassembled into two balls identical to the original.

Theorem 1.2 ([Banach, 1923]). For n = 1, 2 the map µ as in Definition 1.1 is not uniquely
defined. For n ≥ 3 there is no such map.

The non-existence in dimension n ≥ 3 is the famous Banach-Tarski-Paradoxon (1924):

Theorem 1.3 (Banach-Tarski). Let n ≥ 3, A and B be bounded sets with int(A) and
int(B) ̸= ∅. Then there exist finitely many (xi)N

i=1 ⊂ Rn, (Oi)N
i=1 ⊂ O(n) and pairwise

disjoint sets (Ci)N
i=1 so that (xi + OiCi)N

i=1 are pairwise disjoint and

(1.1) A =
N[

i=1
Ci, and B =

N[

i=1
(xi + OiCi) .

That is we can deconstruct any set A in Rn into disjoint sets, move them around (without
any scaling!) and obtain another completely different set B - see Figure 1.2.

The proof of Theorem 1.3 relies on group theory, see e.g. Terry Tao’s notes.

Banach-Tarski destroys any hope for a (three-dimensional) reasonable notion of volume
such as in Definition 1.1, indeed we have

Corollary 1.4. Let n = 3. If we have µ as in Definition 1.1 and B3 is the unit ball in R3

then either µ(B3) = ∞ or µ(B3) = 0.

Proof. Indeed denote A := B3 and B := B3 ∪ (5 + B3). Since B3 is the disjoint union of
two balls (same size) and µ is translation invariant we have
(1.2) µ(B) = 2µ(A).
But now apply Theorem 1.3: then we have

A =
N[

i=1
Ci, B =

N[

i=1
(xi + OiCi).

Each representation is disjoint, so we have

µ(A) =
NX

i=1
µ(Ci) =

NX

i=1
µ(xi + OiCi) = µ(B) (1.2)= 2µ(A).
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Thus we have µ(A) = 2µ(A) which implies that either µ(A) = 0 or µ(A) = ∞. Since
A = B3 we can conclude. □

So how do we fix this notion of measure?

We change our notion of a measure. For one (to deal with the non-uniqueness issue in
dimension n = 1, 2) we need to assume an additional condition on our map µ: it should
be monotone in the following way (it is important to allow ∞ many sets on the right-hand
side!)

• µ(A) ≤ P∞
k=1 µ(Ak) whenever A, Ak ⊂ X, k ∈ N and A ⊂ S

k∈N Ak

But it turns out that then even for n = 1 there are no reasonable maps µ

Theorem 1.5 (Vitali). Let µ : 2R → [0, ∞] satisfy

• µ(∅) = 0,
• for any A, B ⊂ Rn disjoint we have µ(A ∪ B) = µ(A) + µ(B), and
• (countable subadditivity) µ(A) ≤ P∞

k=1 µ(Ak) whenever A, Ak ⊂ X, k ∈ N and
A ⊂ S

k∈N Ak.

If µ is moreover translation invariant, i.e.
µ(x + A) = µ(A) ∀x ∈ R, A ⊂ R.

then µ([0, 1]) is either 0 or ∞.

Proof. The idea of the proof is the construction of the so-called Vitali-set which relies on
the axiom of choice.

Construction (Vitali) Define the equivalence relation
x ∼ y ⇔ x − y ∈ Q

For x ∈ R denote by [x] the set
[x] := {y ∈ R : x − y ∈ Q}.

Let V ⊂ R be a set such that for each class [x] there exists exactly one element y ∈ V ∩ [x].
The set V exists by the axiom of choice: if we set

X := {[x] ⊂ R : x ∈ R}
then the axiom of choice says there exists a choice function f : X → R such that f([x]) ∈ [x]
for all [x] ∈ X. Then V := f(X).

Without loss of generality, V ⊂ [0, 1]. Indeed if we can adapt the choice function f above
such that

f̃([x]) := f([x]) − k,

where k ∈ Z is chosen such that f([x]) ∈ [k, k + 1).
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Now if q1, q2 ∈ Q, q1 ̸= q2 then
(q1 + V ) ∩ (q2 + V ) = ∅

Indeed if for v1, v2 ∈ V

q1 + v1 = q2 + v2

⇔v2 − v1 = q1 − q2 ∈ Q \ {0}
⇒[v2] = [v1]

Since V contains exactly one representative of [v2] = [v1] we conclude that v1 = v2 which
implies q1 = q2.

Take now
q1, q2, q3, . . . ⊂ Q ∩ [−1, 1]

and enumeration of Q ∩ [−1, 1] and set
Vk := qk + V.

Then Vk ∩ Vj = 0 for k ̸= j. Moreover by translation invariance we have
µ(Vk) = µ(V ).

Notice that we also have
(1.3) [0, 1) ⊂

[

k

Vk

Indeed, any x ∈ [0, 1) belongs to some equivalence class [x] = [v] for some v ∈ V . That is
for some v ∈ V we have x − v ∈ Q. Since x ∈ [0, 1) and v ∈ [0, 1] we have x − v ∈ [−1, 1),
thus there exists k such that qk = x − v, i.e. x ∈ Vk.

Set S := S
k Vk.

We have for any N ∈ N using finite additivitiy of measurable sets, Theorem 1.51,

µ(S) = µ(
N[

k=1
Vk +

∞[

k=N+1
Vk) = µ(

N[

k=1
Vk) + µ(

∞[

k=N+1
Vk) ≥ µ(

N[

k=1
Vk) = Nµ(Vk) = Nµ(V ).

On the other hand Vk ⊂ [−1, 2], so
µ(S) = µ([−1, 2]) − µ(S \ [−1, 2]) ≤ µ([−1, 2]) ≤ 3µ([0, 1]).

The last inequality is by translation invariance.

So
Nµ(V ) ≤ 3µ([0, 1]) ∀N ∈ N

If µ([0, 1]) < ∞ we find µ(V ) = 0 (otherwise we let N → ∞ to arrive at a contradiction).

On the other hand, by countable subadditivity

µ([0, 1))
(1.3)
≤

X

k∈N
µ(Vk) =

X

k∈N
µ(V )
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So if µ(V ) = 0 we must have µ([0, 1)) = 0.

So either µ([0, 1)) = 0 (which by translation invariance and monotonicity means µ([0, 1]) =
0), or µ([0, 1]) = ∞. □

This is all crazy. We have to fix this.

Option 1: Not only Vitali, but also Banach-Tarski’s argument relies on the axiom of
choice: we could become constructivists and just abandon the axiom of choice. (some
people, Brouwer for one, did)

Option 2: We relax the notion of a measure. We accept, that the assumptions in The-
orem 1.5 are too strong (because there is no reasonable object that satisfies them). The
problem is the assumption

µ(A ∪ B) = µ(A) + µ(B) whenever A ∩ B = ∅.

It is just not a good assumption. The solution is require the above not for all sets A, B,
but only for a subclass of sets, the measurable sets. So the big conceptual achievement
obtained in the 1920s is the acceptance of “non-measurable sets”, i.e. sets whose “volume”
just doesn’t make any sense. As we shall see, the sets in Theorem 1.3 are examples of
non-measurable sets (for the Lebesgue measure), and the existence of non-measurable sets
(for the Lebesgue measure) is closely tied to the axiom of choice, again see Theorem 1.105).

So, let us start again. We have to lower our expectiations on a reasonable volume.

Alfred Tarski (14 January 1901–26 October 1983) was a
Polish-born American mathematician and logician whose
work on model theory, metamathematics, and the seman-
tic theory of truth reshaped modern logic. Educated at the
University of Warsaw (Ph.D., 1924), he taught in Poland un-
til 1939, then joined the University of California, Berkeley
in 1942 and remained there until his death. His landmark
contributions include Tarski’s undefinability theorem, Con-
vention T for truth, and foundational results in model theory
and algebraic logic: To illustrate Convention T, he offered
the famous schema “‘Snow is white’ is true if and only

if snow is white”. He was born Alfred Teitelbaum to a Polish-Jewish family and in 1923 he
and his brother formally adopted the surname “Tarski”. On the eve of World War II, he travelled
to the United States (August 1939) to give lectures at Harvard and Chicago – just weeks before
the German and Soviet invasions of Poland – and never returned.
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Giuseppe Vitali (26 August 1875–29 February 1932) was an
Italian mathematician whose pioneering work in measure the-
ory gave us the first example of a non-Lebesgue-measurable
set, now known as the Vitali set. Born in Ravenna to
Domenico Vitali and Zenobia Casadio, he studied at the
Scuola Normale Superiore in Pisa, graduating in 1899, and
then earned a teaching diploma. From 1904 until 1923 he
taught in various Italian secondary schools; it was during
this period—as a high-school teacher rather than a university
academic—that he published his landmark 1905 paper Sul
problema della misura dei gruppi di punti di una retta, giving
rise to the Vitali set via a local printer, Tipografia Gamberini
e Parmeggiani. After 1923 Vitali held professorships at the
Universities of Modena (1923–1925), Padua (1925–1930), and
Bologna (from 1930), and he proved the Vitali covering the-
orem along with key convergence theorems for measurable
and holomorphic functions. In the mid-1920s he developed a
paralysis in his writing arm that left him unable to write by

hand, yet remarkably about half of his research output appeared in the last four years of his life.
An active member of the Italian Socialist Party until its forced dissolution by Mussolini’s regime
in 1922, he endured increasing social isolation under fascist rule. On 29 February 1932, shortly
after delivering a lecture at the University of Bologna, Vitali collapsed in conversation with his
colleague Ettore Bortolotti and died suddenly. Despite the deep paradox his non-measurable set
embodied, Vitali was known among friends for his wry amusement at how a simple choice-based
construction could upend the very notion of “length.” He would quip that in mathematics, as in
life, sometimes “the smallest freedom can lead to the most astonishing contradictions.”

1.2. The real definition: (outer) measures. Instead of defining a volume in Rn ax-
iomatically, let us generally define what a reasonable notion of a volume should satisfy.
Later we will then construct the Lebesgue measure that has most of the desired properties
on Rn (and coincides with the notion of volumes for easy shapes).

Clearly µ(∅) = 0 is a reasonable assumption. Ideally we would also like µ(A ∪ B) =
µ(A) + µ(B) – but as we have seen this is tricky, confusing, and paradox assumption (the
above examples are a warning). We settle for the following notion
Definition 1.6. Let X be any set and 2X the potential set of X. A map µ : 2X → [0, ∞]
is a measure on X if we have

(1) µ(∅) = 0
(2) µ(A) ≤ P∞

k=1 µ(Ak) whenever A, Ak ⊂ X, k ∈ N and A ⊂ S
k∈N Ak (σ-subadditivity)

Exercise 1.7. Show that condition (1) and (2) of Definition 1.6 imply monotonicity, i.e.
we have

µ(A) ≤ µ(B) ∀A ⊂ B.
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Exercise 1.8. Let X be any set and 2X the potential set of X. Show that a map µ : 2X →
[0, ∞] is a measure on X (in the sense of Definition 1.6) if and only if we have

(1) µ(∅) = 0
(2) µ(S∞

k=1 Ak) ≤ P∞
k=1 µ(Ak) for all Ak ⊂ X

Remark 1.9. • A word of warning: we will use here the notion of an outer measure
that is defined on all of 2X , not just on some σ-Algebra. Other textbooks might
use a different notion of measure, only defined on its σ-algebra of measurable sets
(see below).

• Definition 1.6 implies in particular that µ(A ∪ B) ≤ µ(A) + µ(B) for any set
A, B ⊂ X. However, in general, we do not assume (at all) µ(A ∪ B) = µ(A) + µ(B)
for disjoint sets A and B. Again, this will lead to the notion of measurable sets and
non-measurable sets.

Example 1.10 (Jordan content). • The outer Jordan content J∗(E) of a set E ⊂ Rn

is defined as follows.
For a product of bounded cubes C = [a1, b1) × [a2, b2) × . . . × [an, bn) we set

vol(C) := (b1 − a1) · (b2 − a2) · . . . (bn − an).

J∗(E) := inf
( NX

i=1
vol(Ci) for some N ∈ N, and cubes (Ci)N

i=1 such that E ⊂
N[

i=1
Ci

)

Here we follow the convention that inf ∅ = +∞.
J∗(·) is not a measure – take any enumeratotion of Q ∩ [0, 1] = {q1, . . . , qn, . . .}.

Set Ak := {qk} and A := S∞
k=1 Ak = [0, 1]∩Q. If (Ci)N

i=1 is a finite cover of [0, 1]∩Q
then3 S

i Ci ⊃ [0, 1], so J∗(A) = 1. However J∗(Ak) = 0 for each k, we violate the
subadditivity assumption of measures, Definition 1.6,

J∗(A) ̸≤
∞X

k=1
J∗(Ak).

However J∗ satisfies finite subadditivity,

J∗(A ∪ B) ≤ J∗(A) + J∗(B),

so, by induction,

J∗(A) ≤
NX

k=1
J∗(Ak) whenever A, Ak ⊂ X, k ∈ {1, . . . , N}, N ∈ N, and A ⊂

[

k∈N
Ak.

Such a map J∗ : 2X → [0, ∞) is called a content.

3Indeed, take r ∈ [0, 1] then there exists qk converging to r, qk belongs infinitely often to the same
interval, so r ∈ Ci for some i
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• The countable version of the outer Jordan content, is called the Lebesgue outer
measure

(1.4) m∗(E) := inf
( ∞X

i=1
vol(Ci) for some , and cubes (Ci)∞

i=1 such that E ⊂
∞[

i=1
Ci

)

It is again clear that m∗(∅) = 0. Let now A ⊂ Sn
k=1 Ak. We may assume that

m∗(Ak) < ∞ otherwise there is nothing to show. Fix ε > 0. For each k we can pick
(Ck;i)∞

i=1 such that S∞
i=1 Ck;i ⊃ Ak and

∞X

i=1
vol(Ck,i) ≤ m∗(Ak) + ε

2k
.

Now S
k,i∈N Ck,i ⊃ A and thus (since (1.4) allows for infinite covers)

m∗(A) ≤
X

k,i∈N
vol(Ck,i) ≤

∞X

k=1
m∗(Ak) +

∞X

k=1

ε

2k

That is, we have shown that for any ε > 0,

m∗(A) ≤
∞X

k=1
m∗(Ak) + ε

Taking ε → 0 we conclude that m∗(A) ≤ P∞
k=1 m∗(Ak) – that is m∗(A) is indeed a

measure.
Later the Lebesgue measure L n will coincide with m∗(A).
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Henri Léon Lebesgue (28 June 1875–26 July 1941) was a
French mathematician whose work laid the foundations of
modern analysis. Born in Beauvais, Oise, to a typesetter fa-
ther and schoolteacher mother, Lebesgue showed early math-
ematical talent. He entered the École Normale Supérieure
in Paris in 1894, graduating in 1897, then pursued graduate
studies at the Sorbonne under Émile Borel. In 1902 he com-
pleted his doctoral thesis Intégrale, longueur, aire (“Integral,
Length, Area”), which introduced the concepts of measure
and integration that bear his name. After earning his doc-
torate, Lebesgue lectured at the University of Rennes (1902–
1906) and the University of Poitiers (1906–1910). In 1910
he joined the Sorbonne as maitre de conférences, became full
professor in 1919, and in 1921 was appointed to the Collège de
France, where he remained until his death. Lebesgue’s theory
of measure and the Lebesgue integral generalized the clas-
sical Riemann integral, providing a rigorous framework for
convergence theorems and underpinning modern real analy-
sis, probability, and functional analysis. He was elected to
the Académie des Sciences in 1922 and awarded the Poncelet

Prize in 1914. He died in Paris on 26 July 1941. Lebesgue once quipped, “Réduites à des théories
générales, les mathématiques seraient une belle forme sans contenu.” (“Reduced to general theo-
ries, mathematics would be a beautiful form without content.”)

• The inner Jordan content,

J∗(E) := sup
(

NX

i=1
vol(Ci) for some N ∈ N, and cubes (Ci)N

i=1 such that
N[

i=1
Ci ⊂ E

)

Here we follow the convention that sup ∅ = 0.
Still J∗(·) is not a measure. Take A1 := [0, 1]\Q and for i ≥ 2 we set Ai = {qi}

for {q2, . . . , } = Q∩ [0, 1] any enumeration of Q∩ [0, 1]. Since A1 has empty interior
we have J∗(A1) = 0. Similarly, J∗(Ai) = 0 for i ≥ 2. However A := S∞

i=1 Ai = [0, 1]
satisfies J∗([0, 1]) = 1. So we have J∗(A) ̸≤ Pn

i=1 J∗(Ai).
• If we simply make the innter Jordan content countable, i.e. if we set

J̃∗(E) := sup
( ∞X

i=1
vol(Ci) for cubes (Ci)N

i=1 such that
∞[

i=1
Ci ⊂ E

)

we run into the same problem as for J∗, namely J∗([0, 1]\Q) = 0. So J̃∗(E) is still
not a measure.
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Count von Count is a fictional character from the children’s
television show Sesame Street, known for his love of count-
ing just about anything. Modeled as a friendly parody of
a vampire in the style of Bela Lugosi’s Dracula, the Count
first appeared in 1972 and quickly became one of the most
recognizable and beloved Muppet characters on the show.
With his monocle, goatee, cape, and thick Eastern European
accent, the Count adds a spooky but comical flair to the task
of learning numbers. His main role on Sesame Street is to
teach children how to count, often breaking into maniacal
laughter (”Ah ah ah!”) after finishing a sequence. This laugh
is typically accompanied by thunder and lightning, which ap-
pears magically even on sunny days.
Created by Norman Stiles and voiced originally by Jerry Nel-
son (and later by Matt Vogel), the Count was designed to
make early math engaging and memorable for children. His

obsession with counting is presented as humorous and charming rather than scary, turning a
potentially intimidating subject into fun.
The idea that vampires compulsively count things comes from real folklore in parts of Eastern
Europe, which may have inspired the character’s shtick. According to legend, one way to distract
a vampire was to scatter grains or seeds–because the vampire would feel compelled to count them
all. He is not at all related to the counting measure of Exercise 1.11

Exercise 1.11 (Counting measure). Let X be any set. Show that # : 2X → N ∪ {0}
defined by

#A := number of elements in A,

is a measure. It is called the counting measure.

Exercise 1.12 (Dirac measure). Let X be any set and a ∈ X. Show that δa : 2X → {0, 1}
defined by

δaA =




1 if a ∈ A

0 if a ̸∈ A

is a measure. It is called the Dirac measure.

Exercise 1.13. Let X be a metric space and µ : 2X → [0, ∞] a measure. Let A ⊂ X and
define µ⌞A: 2X → [0, ∞] by

(µ⌞A)(B) := µ(A ∩ B).

Show that µ⌞A is a measure.
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Paul Adrien Maurice Dirac (1902–1984) was a British theo-
retical physicist and mathematician, widely regarded as one
of the founding figures of quantum mechanics and quantum
field theory. Born in Bristol, England, he studied electri-
cal engineering and then mathematics, eventually earning a
PhD in theoretical physics under Ralph Fowler at Cambridge.
Dirac’s work was marked by extraordinary mathematical el-
egance and depth, often anticipating entire fields of later de-
velopment.
Dirac is best known for the Dirac equation, which describes
the behavior of relativistic electrons and predicted the exis-
tence of antimatter. This equation combined quantum me-
chanics and special relativity and became a cornerstone of
quantum field theory.
In mathematics and physics, Dirac introduced what is now
called the Dirac delta function and the Dirac measure. The
Dirac delta is not a function in the classical sense but rather a
generalized function or distribution, defined to be zero every-
where except at one point where it is ”infinite” in such a way
that its integral is one. It is used to model point charges,

impulses, and localized sources in physical systems. The Dirac measure is the corresponding
measure-theoretic object: it assigns all the measure to a single point and zero elsewhere, playing
a crucial role in probability theory, functional analysis, and the theory of distributions.
Dirac believed deeply in the aesthetic principle that “it is more important to have beauty in one’s
equations than to have them fit experiment.” His pursuit of mathematical beauty often led to
physical insights, including the prediction of the positron and foundational ideas in gauge theory
and quantum statistics.
Despite his revolutionary impact, Dirac was known for his terse and reclusive nature. An oft-
repeated anecdote is that Niels Bohr once said, ”Dirac is the strangest man who ever visited my
institute,” and colleagues joked that a unit of silence could be measured in ”one Dirac.”
Dirac received many honors, including the Nobel Prize in Physics in 1933 (shared with Erwin
Schrödinger), and he held positions at Cambridge and later at Florida State University.
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Camille Jordan (1838–1922) was a French mathematician
whose work helped shape modern analysis, topology, and al-
gebra. Born in Lyon, he studied at the École Polytechnique
and later became a professor in Paris. Jordan is especially
associated with the concept of Jordan content (or Jordan
measure), an early attempt to assign a ”size” to subsets of
Euclidean space by approximating them from inside and out-
side with finite unions of rectangles. Though later superseded
in generality by Lebesgue measure, Jordan’s approach was
influential in the rigorous development of integration theory
and is still introduced in elementary analysis as a bridge to
more advanced measure theory.
Jordan also made major contributions to group theory and
linear algebra. His Traité des substitutions et des équations
algébriques was foundational in the development of permuta-
tion group theory. In linear algebra, the Jordan normal form
(Jordan canonical form) bears his name and provides a struc-
tural classification of linear operators up to similarity, central

in both theory and applications. In topology and complex analysis, the Jordan curve theorem
(that a simple closed curve in the plane divides the plane into an inside and an outside) is another
landmark associated with his name, though its complete proof required later refinement.

1.3. Example: Hausdorff measure. Let (X, d) be a metric space.

Definition 1.14. The s-dimensional Hausdorff measure, s > 0 is defined as follows.

Let δ ∈ (0, ∞], then for any A ⊂ X we define

H s
δ (A) := α(s) inf

( ∞X

k=1
rs

k : A ⊂
∞[

k=1
B(xk, rk), rk ∈ (0, δ)

)
.

Here B(xk, rk) are open balls with radius r centered at xk, i.e.

B(xk, rk) := {y ∈ X : d(xk, y) < rk}.
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Moreover4

α(s) := π
s
2

Γ( s
2 + 1) .

where Γ is the Γ-function.

Now observe that δ 7→ Hs
δ(A) is monotonce decreasing. So we can write

H s(A) := lim
δ→0+

H s
δ (A) ≡ sup

δ>0
H s

δ (A) ∈ [0, ∞].

Often one writes H 0(A) := #A, the counting measure.

H s
∞ is called the Hausdorff content

Remark 1.15. • Observe that while H s
δ (A) < ∞ whenever s > 0, δ > 0 and A is

any bounded set, as δ → 0 H s(A) will be infinite whenever s is smaller than the
“dimension of A” (a notion we will define more carefully below).

Exercise 1.16. Show that

(1) For δ > 0 the map H s
δ defines a measure

(2) The map H s
∞ defines a measure

Lemma 1.17. For any s ∈ [0, ∞), H s is a measure in Rn.

Proof. H s
δ (·) is a measure for each δ > 0, Exercise 1.16.

We clearly have H s(∅) = 0. Moreover, since H s
δ is a measure for any δ > 0, we have for

any A ⊂ S∞
k=1 Ak,

Hs
δ(A) ≤

∞X

k=1
H s

δ (Ak) ≤
∞X

k=1
H s(Ak).

Taking the supremum over δ in this inequality we have σ-additivity for H s.

H s(A) ≤
∞X

k=1
H s(Ak).

□
Exercise 1.18. Show that

H 0
δ (Q) δ→0−−→ ∞.

If k ∈ N it is conceivable that H k measures something of “dimension k”. For example
assume that C = [0, 1]2 × {0} ⊂ R3 is a 2D-square of sidelength 1.

We need ≈ 1
δ2 many balls of radius δ to cover C. Then

H s
δ (C) ≤ α(s) 1

δ2 δs.

4Warning: Some authors set α(s) := 1. The main reason to not do that is so that H n = L n in Rn
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Figure 1.3. To cover a square of sidelength one with balls of radius δ, we
need roughly 1

δ2 many balls

So if s > 2 we see that H s(C) ≤ limδ→0 δs−2 = 0. That is C has no s-volume for s > 2.

For s = 2 one can argue that covering uniformly by balls of radius δ is optimal and thus
we have

0 < H 2(C) < ∞.

In particular H s(C) = ∞ for any s < 2. We want to investigate this more, but first let
us gather some more properties

Remark 1.19. One can, and we will in Corollary 1.97, show that the n-dimensional
Hausdorff measure in Rn coincides with the Lebesgue measure L n, i.e.

L n(A) = H n(A).

Exercise 1.20. Let U ⊂ Rn be any non-empty open set. Then H s(U) = ∞ for all s < n.

Exercise 1.21 (translation and rotation invariant). Let A ⊂ Rn and s ∈ (0, ∞). Show
the following

(1) If p ∈ Rn then H s(p + A) = H s(A).
(2) If O ∈ O(n) (i.e. O ∈ Rn×n and OtO = I) then H s(OA) = H s(A).
(3) If A ⊂ Rℓ × {0} for 0 < ℓ < n and π : (x1, . . . , xn) := (x1, . . . , xℓ) is the projection

from Rn = Rℓ × Rn−ℓ to Rℓ, then H s
Rn(A) = H s

Rℓ(π(A)).

Exercise 1.22. Let for 1 < k ≤ n

K := {0}n−k × Rk ⊂ Rn

Show that

H s(K) =




∞ if s ≤ k

0 if s > k

Exercise 1.23. Let M ⊂ Rn be a compact k-dimensional submanifold. Show that

H s(M) =





∞ if s < k

< ∞ if s = k

0 if s ≥ k
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We want to investigate more this “dimension” of the Hausdorff measure. For this we
observe that for any set A there is exactly one threshhold s where s 7→ Hs(A) changes
from ∞ to 0. More precisely we have

Lemma 1.24. Let 0 ≤ s < t < ∞.

(1) If H s(A) < ∞ then H t(A) = 0
(2) If H t(A) > 0 then H s(A) = ∞.

Proof. Indeed, whenever rk ≤ δ and (B(xk, rk))k∈N cover A we have

H t
δ (A) ≤ α(t)

∞X

k=1
rt

k ≤ α(t)δt−s
∞X

k=1
rs

k.

Taking the infimum over any such covering B(xk, rk) of A we find

H t
δ (A) ≤ α(t)

α(s)δt−sH s
δ (A).

Taking limδ→0 on both sides we obtain

H t(A) ≤ α(t)
α(s) 0 · H s(A).

This implies that if H t(A) > 0 then necessarily H s(A) = ∞, and if H s(A) < ∞ then
H t(A) = 0. □

Indeed, with the Hausdorff measure we can define a dimension

Definition 1.25. The Hausdorff dimension is defined as
dimH A := inf {s ≥ 0 : H s(A) = 0} .

If H s(A) > 0 for all s > 0 then dimH (E) := ∞.

Lemma 1.26. Let C be a set in a metric space (X, d) and let s ≥ 0

(1) If H s(C) = 0 then dimH (E) ≤ s.
(2) If H s(C) > 0 then dimH (E) ≥ s.
(3) If 0 < H s(C) < ∞ then dimH (E) = s.
(4) If H s

∞(C) > 0 and H s(C) < ∞ then dimH (E) = s.

Proof. This follows from Lemma 1.24 and the definition of Hausdorff measure.

(1) follows from the definition of the Hausdorff measure as infimum. then dimH (E) ≤
s.

(2) If H s(C) > 0 then by Lemma 1.24 H t(C) = ∞ for all t < s. Again from the
definition it is clear that dimH (E) ≥ s.

(3) This is a consequence of the two above statements.
(4) Follows from the statement before since H s

∞(C) ≤ H s(C)
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Figure 1.4. The Hilbert curve from is often described as a limit of a se-
quence of curves. It can, however, also be descriped by a fixed-point argu-
ment, Exercise 1.29

□
Exercise 1.27. Let C ⊂ X where X is a metric space (X, d).

(1) Show that dimH C ≤ dimH X
(2) Conclude that if X = Rn with euclidean metric, then dimH C ≤ n.

Exercise 1.28 (Hausdorff dimension under Lipschitz and Hölder maps). Let (X, dx) and
(Y, dY ) be two metric spaces and let f : X → Y . Assume that A ⊂ X has Hausdorff-
dimension dimH (A) = s.

(1) If f is uniformly Lipschitz continuous, i.e. for some L > 0,
dY (f(x), f(y)) ≤ L d(x, y) ∀x, y ∈ X

then dimH (f(A)) ≤ s.
(2) Give an example where dimH (A) < s
(3) Assume f is uniformly Hölder continuous, i.e. for some L > 0 and α > 0

dY (f(x), f(y)) ≤ L d(x, y)α ∀x, y ∈ X

Show that dimH (f(A)) ≤ s
α
.

Exercise 1.29 (Hilbert curve). The Hilbert curve f : [0, 1] → [0, 1]2, cf. Exercise 1.29, is
a so-called spacefilling curve.

It is an example of a C1/2-map from [0, 1] (Hausdorff dimension 1) onto [0, 1]2 (Hausdorff
dimension 2), showing that the estimates from Exercise 1.28 are really sharp. Prove this:
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Consider the following four affine transformations fi:

f0(x, y) =
�

y

2 ,
x

2

�

f1(x, y) =
�

x

2 ,
y

2 + 1
2

�

f2(x, y) =
�

x

2 + 1
2 ,

y

2 + 1
2

�

f3(x, y) =
�

1 − y

2 ,
1 − x

2

�

Each fi maps [0, 1]2 to a subquadrant pi + [0, 1
2 ]2.

Consider the operator T : C0([0, 1], [0, 1]2) 7→ C0([0, 1], [0, 1]2) such that

(T γ)(t) =





f0(γ(4t)) if t ∈ [0, 1/4]
f1(γ(4t − 1)) if t ∈ [1/4, 2/4]
f2(γ(4t − 2)) if t ∈ [2/4, 3/4]
f3(γ(4t − 3)) if t ∈ [3/4, 1]

The Hilbert curve is defined as the unique continuous map H ∈ C0([0, 1], [0, 1]2) such that
T H = H.

(1) Show that there is a unique continuous map H such that T (H) = H.
For this let C be the space of all continuous functions from the interval [0, 1] to

the unit square [0, 1]2, i.e. C = C([0, 1], [0, 1]2), equipped with the L∞-norm. We
know this space is a complete metric space. Show that T : C → C is a contraction.

(2) Show that H is Hölder continuous of order 1
2 . For this assume that s, t ∈ [0, 1] such

that 4−n ≤ |s − t| < 4−n+1 for some n ∈ N. Partition [0, 1] into 4n-subintervals
such that [k/4n, (k +1)/4n]. Then t, s can lie either in the same, or in two adjacent
of these intervals. So H must map into two subsquares of sidelength 2−n within the
unit square [0, 1]2. Observe that by the Hilbert curve construction these two squares
are adjacent. That is, the points H(s) and H(t) lie within the union of at most two
adjacent squares of side length 2−n, compute the size of this rectangle, and estimate
|H(s) − H(t)| ≤

√
52−n.

(3) Show that H is surjective. For this consider a point p ∈ [0, 1]2. Take a sequence of
subquadrants Qn of sidelength 2−n such that p ∈ Qn. Show that there is a sequence
of points tn ∈ [0, 1] with H(tn) ∈ Qn, and conclude the existence of t ∈ [0, 1] such
that H(t) = p.

(4) How does this show that the results in Exercise 1.28 are sharp?
(5) Is H injective?

Example 1.30. The Cantor set is defined as follows.
C0 := [0, 1]
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Figure 1.5. The Cantor set

Let C0 := [0, 1]. In the k-th step we construct Ck by removing of each interval the open
middle interval of size 3−n. For exmaple

C1 := [0,
1
3] ∪ [13 , 1].

See Figure 1.5.

Set C := T∞
k=1 Ck. Observe that C is closed and bounded, so compact.

Lemma 1.31. dimH (C) = log 2
log 3 .

Proof. For each k ∈ N we have C ⊂ Ck. Observe that Ck consists of 2k disjoint intervals
each of diameter 3−k (i.e. radius 1

23−k). Thus for any δ > 0 and for any k ≫ 1 so that
1
23−k < δ we have

H s
δ (C)≤α(s)

2kX

ℓ=1
(1
23−k)s = 2−s

� 2
3s

�k
k→∞−−−→ α(s)





2−s s = α(s) log 2
log 3

0 s > log 2
log 3

∞ s < log 2
log 3

In particular we have

H s(C) = 0 ∀s >
log 2
log 3 .

So from the definition of the Hausdorff dimension we get

dimH C ≤ log 2
log 3 .

Now we need to show the other direction. From now on set s := log 2
log 3 . Let (B(xi, ri))∞

i=1 be
any covering of C. We claim that

(1.5)
∞X

i=1
rs

i ≥ 1
2s4 .

Once we have (1.5) we are done, because (1.5) implies

H s
∞(C) ≥ 1

2s4 .

In particular (recall that s = log 2
log 3) we have ∞ > H s(C) ≥ H s

∞(C) > 0.
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Figure 1.6. If a ball intersects three intervals of AKi
its diameter is at

least 5 · 3−Ki

Let us make some notation. Denote by Ak the intervals of Ck, i.e. Ak consists of pairwise
disjoint, closed intervals in R such that Ck = S

I∈Ak
I. E.g.

C1 = [0,
1
3] ∪ [23 , 1], A1 = {[0,

1
3], [23 , 1]}.

Proof of (1.5) Since C is compact, we may assume that there finitely many, w.l.o.g. the
first N balls (B(xi, ri))N

i=1 already cover C. We may assume that each ri < 1
2 , otherwise

(1.5) is obvious.

Fix i ∈ {1, . . . , N}.

Let Ki ∈ N ∪ {0} so that
2ri ∈ [3−Ki−1, 3−Ki).

Now we consider the construction step CKi
. Each ball B(xi, ri) has nonempty intersection

with at most 2 intervals of CKi
. Indeed, otherwise its diameter would be at least 5 · 3−Ki ,

see Figure 1.6.

But then B(xi, ri) has nonempty intersection with at most 2 · 2j−Ki intervals of Cj for any
j ≥ Ki. Since s = log 2

log 3 we have

2 · 2j−Ki = 2j+12−Ki = 2j+13−Kis ≤ 2j+13s(2ri)s = 2j+2(2ri)s.

Set now K := max{i=1,...,N} Ki.

Then for any i ∈ {1, . . . , N} each of the balls B(xi, ri) has nonempty intersection with at
most 2K+2(2ri)s many intervals of AK .

So if we set Γi to be the number of intervals in AK that intersect Bri
(xi) we have Γi ≤

2K+2(2ri)s and thus
NX

i=1
Γi(3−K)s ≤

NX

i=1
(3−K)s

| {z }
=2−K

2K+2(2ri)s

=4 2s
NX

i=1
(ri)s

(1.6)
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Figure 1.7. The fat cantor set for a = 1
4 , see Example 1.32

Now for each x ∈ C there is exactly one interval I in AK such that x ∈ I. Since (Bri
(xi))N

i=1
covers all of C we have the following: for each interval I in AK there exists some i ∈
{1, . . . , N} such that Bri

(xi) ∩ I ̸= ∅. That is,
NX

i=1
Γi ≥ number of intervals in AK = 2K .

Thus,

(1.7)
NX

i=1
Γi3−Ks ≥ 2K3−Ks = 1.

Together, (1.6) and (1.7) imply (1.5). □

Example 1.32. The Smith–Volterra–Cantor set, aka fat Cantor set is defined as follows.

Let C0 := [0, 1]. In the k-th step we construct Ck by removing of each interval the open
middle interval of size an. That is

C1 = [0,
1 − a

2 ] ∪ [1 + a

2 , 1].

C2 = [0,
1 − a

4 − a2

2 ] ∪ [1 − a

4 + a2

2 ,
1 − a

2 ] ∪ [1 + a

2 ,
1 + 1+a

2
2 − a2

2 ] ∪ [
1 + 1+a

2
2 + a2

2 , 1].

Cf. Figure 1.7.

Set C := T∞
k=1 Ck. For a = 1

3 this is the typical Cantor set. For a = 1
4 this is the Fat

Cantor set.

Exercise 1.33. The fat Cantor above set has positive H 1-measure.

Exercise 1.34. Let M ⊂ Rn be a smooth k-dimensional submanifold. Show that the
Hausdorff-dimension of M is k.

Exercise 1.35. We construct the classical Sierpiński triangle S by the following iterative
process:

(1) Start with an equilateral triangle of side length 1. Denote this set by S0.
(2) To obtain Sn+1 from Sn, divide each equilateral triangle in Sn into four congruent

equilateral triangles of one-quarter the area (scaled by 1
2 in side length), and remove

the open middle triangle.
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Figure 1.8. The construction step of the Cantor Dust, Exercise 1.36

(3) Define the Sierpiński triangle as the limit set:

S =
∞\

n=0
Sn.

Compute the Hausdorff dimension of the Sierpiński triangle S.

Exercise 1.36 (Cantor Dust). Let
A0 = [0, 1]2 ⊂ R2.

Subdivide A0 by an axis-parallel grid of mesh size 1/4 into 16 congruent subsquares. Let
A1 be the union of those 4 subsquares which meet the two horizontal line segments

{(x, y) ∈ A0 : y = x + 1
2} and {(x, y) ∈ A0 : y = x − 1

2}.

Cf. Figure 1.8. Inductively, having defined Ak, form Ak+1 by subdividing each subsquare of
Ak by the same 1/4-grid and again keeping just those subsquares meeting the two diagonal
lines within that square. Finally set

A =
∞\

k=1
Ak.

Show that the Hausdorff dimension of A is 1

Exercise 1.37 (Hausdorff dimension of the Koch snowflake). The Koch snowflake is con-
structed as follows:
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0 1 2

3 4 5

Figure 1.9. The Koch Snowflake Iterations

• Start with an equilateral triangle S0 of side length 1.
• Given the n-th iteration Sn, replace each line segment of length 3−n by four segments

of length 3−(n+1) obtained by erecting on its middle third a new equilateral bump.
• Let S = limn→∞ Sn be the limit set in the Hausdorff metric, i.e.

S =
n

x ∈ R2 : ∃ xn ∈ Sn, xn → x as n → ∞
o
.

Cf. Figure 1.9

(1) Show that there exists a homeomorphism f : S1 → S, where S1 is the unit circle.
(2) Show that the Hausdorff dimension of S is ln 4

ln 3
(3) Compute the Hausdorff d-measure, is it true that 0 < H d(S) < ∞?

The following is a special case of the Moran–Hutchinson formula

Exercise 1.38. Show that for a self-similar set as Sierpiński triangle, Cantor set, etc.
formed by N copies each scaled by a factor r, the Hausdorff dimension is the unique solution
d of the equation:

Nrd = 1.
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Helge von Koch (1870–1924) was a Swedish mathematician
best known for the Koch snowflake, one of the earliest de-
scribed fractal curves. Born in Stockholm, he studied in
Uppsala and Lund, and held academic positions at sev-
eral Swedish institutions, eventually becoming a professor at
Stockholm University.
Koch introduced the Koch curve in a 1904 paper titled “On
a continuous curve without tangents, constructible from ele-
mentary geometry.” The curve is built by recursively replac-
ing each line segment with a triangular “bump,” resulting in
a figure that is continuous everywhere but nowhere differen-
tiable. When applied to the sides of an equilateral triangle,
it forms the famous Koch snowflake–a closed curve of infinite
length enclosing a finite area.
Koch’s construction was groundbreaking because it chal-
lenged the prevailing intuition of geometry and calculus,
showing that a curve could be smooth in appearance but defy
classical notions of tangents and arc length. His work prefig-
ured the modern theory of fractals, developed much later by
Benoit Mandelbrot.

Although Koch made contributions to number theory and other areas, he is most remembered
for this single striking geometric construction. The Koch curve became a classic example in
real analysis, topology, and mathematical visualization, and remains a favorite in mathematical
education and computer graphics.
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Felix Hausdorff (8 November 1868–26 January 1942) was
a German mathematician, philosopher, and music theorist,
widely regarded as one of the founders of modern topology
and set theory. Born in Breslau (now Wroc law, Poland),
he studied mathematics and astronomy at the University of
Leipzig and the University of Berlin, earning his doctorate
in 1891 under Karl Weierstrass. After teaching at several
Gymnasien, Hausdorff completed his habilitation in 1901 at
the University of Bonn, where he remained a Privatdozent
until 1909. He then accepted a professorship at the Univer-
sity of Greifswald and in 1910 moved to the University of
Bonn, later joining the University of Leipzig. His landmark
1914 book Grundzüge der Mengenlehre (“Fundamentals of
Set Theory”) systematized set theory and introduced many
concepts—among them, the notion of a “Hausdorff space”
(a topological space where any two distinct points have dis-
joint neighborhoods) and what would become known as the
“Hausdorff dimension” in fractal geometry. Hausdorff’s work
extended into measure theory, descriptive set theory, and
philosophical foundations of mathematics. Despite growing
anti-Semitic pressure in Nazi Germany (he was of Jewish de-

scent), he continued teaching and writing until 1941. Faced with imminent deportation and
certain murder, he tragically took his own life on 26 January 1942.
“At the basis of the distance concept lies, for example, the concept of a convergent
point sequence and their defined limits, and one can, choosing these ideas as those
fundamental to point set theory, eliminate the notions of distance . . .” This reflection,
from Grundzüge der Mengenlehre, captures Hausdorff’s insight that topology can be built purely
on notions of convergence and nearness, without presupposing any numerical metric.
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Rudolf Lipschitz (1832–1903) was a German mathemati-
cian best known for the Lipschitz condition, a foundational
concept in analysis and differential equations. Born in
Königsberg, he studied at the universities of Königsberg and
Berlin and later held academic positions at the University
of Bonn and the University of Leipzig. He was a student of
Dirichlet and was deeply influenced by the rigorous analytical
tradition of 19th-century German mathematics.
Lipschitz is most famously associated with Lipschitz conti-
nuity, a strong form of uniform continuity. Lipschitz’s work
extended beyond analysis. He contributed significantly to
number theory, mechanics, and the theory of quadratic forms.
He also worked on generalizations of Dirichlet’s principles in
potential theory and on early formulations of what would be-
come ideas in functional analysis.
Lipschitz also introduced a concept equivalent to the Clifford
algebra, which would later become a major structure in mod-

ern geometry and physics–especially in the study of spinors and quantum mechanics–although
this aspect of his work was not fully recognized until much later.
Although not as widely known as some of his contemporaries, Lipschitz’s name is now permanently
etched in mathematical vocabulary. The Lipschitz condition is a standard concept in every
analysis course. Sometimes you got to be lucky...
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Georg Cantor (1845–1918) was a German mathematician best
known as the founder of set theory and the concept of differ-
ent sizes of infinity. He was born in St. Petersburg, Russia,
but spent most of his life in Germany. Cantor introduced
the idea that not all infinities are equal—some are bigger
than others—a groundbreaking notion that deeply influenced
modern mathematics, particularly analysis and logic.
He is also the creator of the famous Cantor set, a simple yet
paradoxical construction formed by repeatedly removing the
middle third of a line segment. Despite having zero length,
the Cantor set contains uncountably many points. It became
one of the first examples of a fractal-like set and is central to
modern topology and measure theory.
His most famous achievement is the rigorous definition of
cardinality and the proof that the set of real numbers is un-
countably infinite, while the set of natural numbers is count-
ably infinite. This led to the development of the continuum
hypothesis, one of the major problems in mathematical logic.
Cantor’s work was controversial in his time and met strong

opposition from some of his contemporaries, notably Leopold Kronecker, who rejected the notion
of actual infinity. Despite the resistance, Cantor persisted, though the struggle took a toll on his
mental health, and he spent periods in psychiatric clinics later in life.
Cantor once wrote to a friend, “The essence of mathematics lies in its freedom,” expressing his
deep belief that mathematics should not be constrained by dogma—a statement that inspired
generations of mathematicians.
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Wac law Sierpiński (1882–1969) was a Polish mathematician
renowned for his contributions to set theory, number theory,
topology, and mathematical logic. Born in Warsaw, he stud-
ied at the University of Warsaw and later taught at Lwów
and the University of Warsaw, where he played a leading role
in the development of the Polish school of mathematics.
Sierpiński was one of the early and enthusiastic adopters of
set theory and a close collaborator of Zermelo and others in
formalizing foundational mathematics. He made important
advances in the theory of cardinal and ordinal numbers, de-
scriptive set theory, and the axiom of choice.
He is especially known for a number of self-similar and frac-
tal constructions that now bear his name, including the
Sierpiński triangle, carpet, and curve, and the Sierpiński
numbers. These constructions are now fundamental in fractal
geometry, computer graphics, and dynamical systems.
Sierpiński was a prolific author, writing over 700 papers and
more than 50 books, including widely used monographs on
set theory, number theory, and topology. He was also deeply

committed to mathematical education and helped mentor a generation of Polish mathematicians.
Sierpiński continued to publish actively even during World War II, including clandestine teach-
ing under Nazi occupation, when higher education was forbidden for Poles. His dedication to
mathematics under such extreme conditions became a symbol of intellectual resistance.

1.4. Measurable sets. As we have discussed, our definition of measure does not include
the “natural” condition that µ(B) = µ(B ∩ A) + µ(B\A) for all A, B ⊂ X – because this
“natural” condition leads to incompatibility such as the Banach-Tarski Paradoxon.

So we will denote the class of sets A ⊂ 2X where we have the above “natural” condition
as the σ-algebra of measurable sets.

Definition 1.39 (Carathéodory). Let µ be a measure on X.

A ⊂ X is called µ-measurable if
µ(B) = µ(A ∩ B) + µ(B\A) for any B ⊂ X

Remark 1.40. By additivity of the measure, we always have
µ(B)≤µ(A ∩ B) + µ(B\A) for any B ⊂ X

So a set A is µ-measurable if and only if
µ(B)≥µ(A ∩ B) + µ(B\A) for any B ⊂ X

Exercise 1.41. Let X be a set and µ : 2X → [0, ∞] a measure. Show that ∅ and X are
measurable sets.
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Exercise 1.42. Let X ̸= ∅ be any set. Show the following.

• Assume µ(∅) = 0 and µ(A) = 1 for any A ̸= ∅. Then A is µ-measurable if and only
if A = ∅ or A = X.

• Assume ν = # is the counting measure. Then any set A is ν-measurable.
• Assume µ = δa the Dirac measure for some a ∈ X. Then any set A is ν-measurable.

Exercise 1.43. Let X be a finite set and µ : 2X → [0, ∞] is a measure. Is any subset
A ⊂ X necessarily measurable?
Exercise 1.44. Assume µ : 2Rn → [0, ∞] is a measure which is translation invariant, i.e.

µ(x + A) = µ(A) ∀A ⊂ Rn, x ∈ Rn

Let A ⊂ Rn. Show that the following are equivalent

• A is measurable
• x + A is measurable for some x ∈ Rn

• x + A is measurable for all x ∈ Rn

Lemma 1.45. Finite union of measurable sets are measurable, i.e.

(Ai)N
i=1 are measurable ⇒

N[

i=1
Ai is measurable

Proof. We proof this by induction. Clearly this holds for N = 1. So to conclude, we only
need to show:

If A1, A2 are µ-measurable, then so is A1 ∪ A2.

So assume A1 and A2 are µ-measurable and B ⊂ X.
µ(B) =µ(B \ A1) + µ(B ∩ A1)

=µ ((B \ A1 ) ∩ A2 ) + µ ((B \ A1) \ A2)
+ µ ((B ∩ A1 ) ∩ A2 ) + µ ((B ∩ A1 ) \ A2 )

Observe that
(B \ A1) \ A2 = B \ (A1 ∪ A2).

Moreover
B ∩ (A1 ∪ A2) = ((B \ A1) ∩ A2) ∪ ((B ∩ A1) ∩ A2) ∪ ((B ∩ A1) \ A2) .

Thus, by sublinearity
µ ((B \ A1) ∩ A2) + µ ((B ∩ A1) ∩ A2) + µ ((B ∩ A1) \ A2) ≥ µ (B ∩ (A1 ∪ A2)) ,

So we have
µ(B) =µ ((B \ A1 ) ∩ A2 ) + µ ((B \ A1) \ A2)

+ µ ((B ∩ A1 ) ∩ A2 ) + µ ((B ∩ A1 ) \ A2 )
≥µ (B \ (A1 ∪ A2)) + µ(B ∩ (A1 ∪ A2))

By Remark 1.40 we have that (A1 ∪ A2) is also measurable. □
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Indeed, the collection of measurable sets is closed under countable operations:

Proposition 1.46. Let X be a set and µ be a measure on X.

The collection A ⊂ 2X of µ-measurable functions
A := {A ⊂ X : A is µ-measurable}

is a σ-algebra, that is

(1) X ∈ A
(2) A ∈ A implies that X\A ∈ A
(3) If (Ai)∞

i=1 ⊂ A then S∞
i=1 Ai ∈ A.5

In particular

• ∅ ∈ A
• if (Ai)∞

i=1 ⊂ A then T∞
i=1 Ai ∈ A

Proof. (1) For any B ⊂ X: since B ∩ X = B and B\X = ∅ we have
µ(B) = µ(B) + µ(∅) = µ(B ∩ X) + µ(B \ X).

(2) Assume that A ∈ A. Set Ã := X\A. For any B ⊂ X we have

Ã ∩ B = (X\A) ∩ B = B\A,

and
B \ Ã = B \ (X\A) = B ∩ A.

Since A is measurable we then have
µ(B ∩ Ã) + µ(B \ Ã) = µ(B \ A) + µ(B ∩ A) = µ(B).

(3) Let (Ai)i∈N ⊂ A. Set A := S∞
i=1 Ai.

Without loss of generality we have that Ai ∩ Aj = ∅ for i ̸= j. Indeed, otherwise
we set Ã1 := A1 and Ãk := Ak\Sk−1

i=1 Ai. By the previously proven properties and
Lemma 1.45 each Ãk belongs to A and we have A = S∞

k=1 Ãk – so we could work
with Ãk instead of Ak.

We have by measurability of each Ak and since AN and SN−1
k=1 Ak are disjoint,

µ(B ∩
N[

k=1
Ak) =µ(B ∩

 
N[

k=1
Ak

!
∩ AN) + µ(

 
B ∩

N[

k=1
Ak

!
\ AN)

=µ(B ∩ AN) + µ(B ∩
N−1[

k=1
Ak)

5This is the σ in σ-algebra, σ means for countably many. If we only had for any N ∈ N: (Ai)N
i=1 ⊂ A

then
SN

i=1 Ai ∈ A, A would be merely an Algebra (no σ!)



ANALYSIS I & II & III VERSION: August 28, 2025 43

Repeating this computation N − 1 times we obtain

(1.8) µ(B ∩
N[

k=1
Ak) =

NX

k=1
µ(B ∩ Ak).

By Lemma 1.45 and the monotonicity of µ, Exercise 1.7, we then have

µ(B) = µ(B ∩
N[

k=1
Ak) + µ(B \

N[

k=1
Ak) ≥

NX

k=1
µ(B ∩ Ak) + µ(B\

∞[

k=1
Ak)

This holds for any N , so we obtain

µ(B) ≥
∞X

k=1
µ(B ∩ Ak) + µ(B\

∞[

k=1
Ak)

By the σ-subadditivity of µ we then have

µ(B) ≥ µ(B ∩
∞[

k=1
Ak) + µ(B\

∞[

k=1
Ak)

In view of Remark 1.40 this implies measurability of S∞
k=1 Ak.

□
Definition 1.47. Let C ⊂ 2X any nonempty family of subsets of X, then

σ(C)
denotes the σ-Algebra generated by C, namely the smallest σ-algebra containing C.

Exercise 1.48. • {∅, X} is a σ-algebra of X
• 2X is a σ-algebra of X
• Let (X, d) be a metric space. Denote O ⊂ 2X the family of all open sets.

Let F be the family of σ-Algebras that contain all open sets. That is, A ⊂ 2X

belongs to F if and only if A is a σ-Algebra, and any open set O ∈ O belongs to
A, i.e. O ∈ A.

Define
B :=

\
{A : A ∈ F}.

Show that (a) F is nonempty, (b) B is a σ-algebra and (c) B is the smallest σ-
Algebra containing all open sets, i.e. show that B = σ(O).

B is called the Borel σ-Algebra and a set B ∈ B is called a Borel set.

Definition 1.49. If µ : 2X → [0, ∞] is a measure on X, and Σ is the σ-algebra of µ-
measurable sets, then one calls (X, Σ, µ) a measure space.

Remark 1.50 (Warning: Measure vs Outer Measure). Some author choose to define
measures only on their σ-algebra Σ of measurable sets. This makes sense in particular
in probability (when you don’t care what the value of the measure is on non-measurable
sets). In those author’s terminology our definition of a measure (defined on all subsets in
X, not just on elements of Σ) is called an outer measure. For most purposes those two


