Exercise Sheet 2 on Jan 18, 2018 Calculus of Variations

Exercise 4 [Some vector calculus]

Let $v, w \in \mathbb{R}^N$ given by

$$v = (v_1, \ldots, v_N), \quad w = (w_1, \ldots, w_N).$$

Recall that the scalar product of two vectors is given as

$$v \cdot w = \sum_{i=1}^{N} v_i w_i.$$

Show that if $v \in \mathbb{R}^N$ so that

$$v \cdot w = 0 \quad \forall w \in \mathbb{R}^N$$

Then v = 0, i.e. $v_1 = 0$, $v_2 = 0$, ... $v_N = 0$.

Exercise 5 [Fundamental Lemma, k-th iteration] Fix some interval I = (a, b) some $f \in L^1_{loc}(I)$ and some $k \in \{1, 2, \ldots\}$. Assume that

$$\int_{I} f(x) \, \eta^{(k)}(x) \, dx = 0 \quad \forall \eta \in C_{c}^{\infty}(I),$$

where $\eta^{(k)}$ denotes the k-th derivative of η . Prove that f is a polynomial of degree (k-1).

Exercise 6 [Diffeomorphism] For an interval I = (a, b) let $\lambda \in C_c^{\infty}(I)$, and set

$$\xi(t,\varepsilon) := t + \varepsilon \, \lambda(t).$$

Show that there exists $\varepsilon_0 > 0$ so that ξ is an admissible parameter variation on I, that is

- (i) $\xi(t,\varepsilon) \in C^2(\overline{I} \times (-\varepsilon_0,\varepsilon_0))$
- (ii) $\xi(\cdot, \varepsilon): I \to I$ for any $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$,
- (iii) $\xi(a, \varepsilon) = a, \xi(b, \varepsilon) = b$ and $\xi(t, 0) = t$.
- (iv) Show that there is (for ε_0 small enough) some $\tau(\cdot, \varepsilon) = \xi(\cdot, \varepsilon)^{-1}$ i.e. so that

$$\xi(\tau(t,\varepsilon),\varepsilon)=t \quad \forall t\in I.$$

(v) Show that $\tau \in C^2(I \times (-\varepsilon_0, \varepsilon_0))$.