1. Exercises 5.3.8, 6.1.1, 6.1.2, 6.1.5, 6.1.6 of the book.

all further questions (below) are fun, but due to the current situation they optional

2. (optional) For $f: D \to \mathbb{R}$ denote the L^{∞} -norm as follows

$$\|\cdot\|_{L^{\infty}(D)} := \sup_{D} |f|.$$

(a) Show that if D=[a,b] is a closed interval, then any continuous function $f:[a,b]\to\mathbb{R}$ has finite L^{∞} -norm, i.e. show that

$$||f||_{L^{\infty}([a,b])} < \infty.$$

- (b) Given an example for D = [0,1] of a discontinuous function $f: [0,1] \to \mathbb{R}$ with finite L^{∞} -norm.
- (c) For $D \subset \mathbb{R}$ a nonempty set denote the set

$$C^0(D) := \{ f : D \to \mathbb{R}; f \text{ is continuous on } D \}$$

Show that $C^0(D)$ is a linear vector space. Namely show: If $f, g \in C^0(D)$ and $\lambda, \mu \in \mathbb{R}$ then $\lambda f + \mu g \in C^0(D)$.

(d) For $D \subset \mathbb{R}$ a nonempty set denote the set

$$L^{\infty}(D) := \left\{ f : D \to \mathbb{R}; \quad \|f\|_{L^{\infty}(\mathbb{R})} < \infty \right\}$$

Show that $L^{\infty}(D)$ is a linear vector space. Namely show: If $f, g \in L^{\infty}(D)$ and $\lambda, \mu \in \mathbb{R}$ then $\lambda f + \mu g \in L^{\infty}(D)$.

- (e) Show $\|\cdot\|_{L^{\infty}(D)}$ defines a *norm* on the space $L^{\infty}(D)$ (making $(L^{\infty}(D), \|\cdot\|_{L^{\infty}(D)})$ a normed vector space). Namely for any $f, g \in L^{\infty}(D)$ and $\lambda \in \mathbb{R}$ we have
 - $||f+g||_{L^{\infty}(D)} \le ||f||_{L^{\infty}(D)} + ||g||_{L^{\infty}(D)}$ (triangle inequality)
 - $\|\lambda f\|_{L^{\infty}(D)} = |\lambda| \|f\|_{L^{\infty}(D)}$ (positive homogeneity)
 - $||f||_{L^{\infty}(D)} \geq 0$. Moreover, if $||f||_{L^{\infty}(D)} = 0$ then $f \equiv 0$.
- 3. (optional) Let $L^{\infty}(D)$ be the normed vector space from above. We say that a map $T: L^{\infty}(D) \to \mathbb{R}$, $T: f \mapsto Tf$, is continuous

$$\forall f \in L^{\infty}(D) \, \forall \varepsilon > 0 \quad \exists \delta = \delta(f, \varepsilon) > 0 \quad |Tf - Tg| < \varepsilon \quad \forall g \in L^{\infty}(D) : \|f - g\|_{L^{\infty}(D)} < \delta.$$

Show that

(a) T_1 is a continuous map, where

$$T_1 f := ||f||_{L^{\infty}(D)}$$

(b) Fix $x_0 \in D$. Show that T_2 is a continuous map, where

$$T_2f := f(x_0)$$

4. (optional) A vector space V is called finite dimensional, if there exists a finite basis, i.e. finitely many vectors $v_1, \ldots, v_n \in V$ such that for any $v \in V$ we have some $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that $v = \lambda_1 v_1 + \ldots \lambda_n v_n$.

Show that $L^{\infty}([0,1])$ and $C^{0}([0,1])$ defined above are not finite dimensional Vector spaces. You can argue by contradiction and use that

$$f = \lambda_1 f_1 + \dots \lambda_n f_n$$

is equivalent to saying

$$f(x)\lambda_1 f_1(x) + \dots \lambda_n f_n(x)$$

(how many points x do you have?)