- 1. (a) Show that there exists at least one solution to $x \cos(x) = 0$.
 - (b) $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $\lim_{x \to \infty} f(x) = M_+$ and $\lim_{x \to -\infty} f(x) = M_-$ for some $M_-, M_+ \in \mathbb{R} \cup \{\infty, -\infty\}$. Then for any $L \in (M_-, M_+)$ there exists $x \in \mathbb{R}$ with f(x) = L.
- 2. Prove the following statements
 - (a) If $f: D \to \mathbb{R}$ is uniformly continuous, then f is continuous.
 - (b) The converse is false (give a counterexample)
- 3. We showed in the lecture that continuous functions on closed finite intervals [a, b] are continuous.

Repeat the the proof from the lecture to show that any continuous map $f: D \to \mathbb{R}$ is actually uniformly continuous, if D is a compact set.

A set $A \subset \mathbb{R}$ is (sequentially) compact if any sequence $(x_n)_{n \in \mathbb{N}} \subset A$ has a converging subsequence $(x_{n_i})_{i \in \mathbb{N}}$ with $\lim_{i \to \infty} x_{n_i} = x \in A$.

- 4. Let $f:[a,b]\to\mathbb{R}$ be continuous and assume that f has a local maximum at $c\in[a,b]$. Assume that f is differentiable at c. Show that
 - (a) If $c \in (a, b)$ then f'(c) = 0
 - (b) If c = a then $f'(c) \le 0$
 - (c) If c = b then $f'(c) \ge 0$
 - (d) What can we say about the derivatives if f has a local minimum at c?
- 5. Let

$$f(x) = \begin{cases} 0 & |x| \ge 1\\ e^{\frac{1}{x^2 - 1}} & |x| < 1. \end{cases}$$

- (a) Show that f is a differentiable function in \mathbb{R}
- (b) Show that $f^{(k)}$, the k-th derivative of f, is still differentiable for any $k \in \mathbb{N}$.

Hint: You can use without proof that any function $g:[a,b]\to\mathbb{R}$ which is continuous on [a,b] and differentiable on $[a,b]\setminus\{c\}$ but whose derivative has a limit $\lim_{x\to c}g'(x)=L$ is actually differentiable.