1. Let \(f, g : [a, b] \to \mathbb{R} \) be Riemann integrable and \(\lambda, \mu \in \mathbb{R} \). Show that \(\lambda f + \mu g \) is Riemann integrable and we have
\[
\int_{[a,b]} (\lambda f + \mu g) = \lambda \int_{[a,b]} f + \mu \int_{[a,b]} g
\]

2. Let \(f : [a, b] \to \mathbb{R} \) be a bounded function, which is continuous in \([a, b]\backslash \Sigma\). Assume that \(\Sigma \) is a countable set \(\Sigma = \{c_1, c_2, \ldots\} \). Without using Riemann-Lebesgue theorem, show that \(f \) is Riemann integrable.

3. Let \(f : [a, b] \to \mathbb{R} \) be Riemann-integrable and let \(g : [a, b] \to \mathbb{R} \) such that \(f(x) = g(x) \) for all \(x \in [a, b]\backslash \Sigma \) where \(\Sigma = \{x_1, \ldots, x_n\} \). Show that then \(g \) is Riemann integrable in \([a, b]\) and we have
\[
\int_{[a,b]} f = \int_{[a,b]} g.
\]

4. (bonus question) Prove the positive part of the Riemann-Lebesgue theorem:

Let \(f : [a, b] \to \mathbb{R} \) be bounded and assume that \(f : [a, b] \to \mathbb{R} \) is continuous in \([a, b]\backslash \Sigma\) for some \(\Sigma \subset \mathbb{R} \) with Lebesgue measure zero. Show that \(f \) is Riemann-integrable.