A NOTE ON ZERO SETS OF FRACTIONAL SOBOLEV
FUNCTIONS WITH NEGATIVE POWER OF
INTEGRABILITY

ARMIN SCHIKORRA

ABSTRACT. We extend a Poincaré-type inequality for functions with
large zero-sets by Jiang and Lin to fractional Sobolev spaces. As a con-
sequence, we obtain a Hausdorff dimension estimate on the size of zero
sets for fractional Sobolev functions whose inverse is integrable. Also,
for a suboptimal Hausdorff dimension estimate, we give a completely
elementary proof based on a pointwise Poincaré-style inequality.

1. INTRODUCTION

Let © C R™ be an open set. For functions u : 0 — R™ we are interested in
the size of the zero set X,

N {zcQ: ;5%][ 1] = 0},
By (z)

under the condition that for some a > 0,

(11) /Q I < oo

Here and henceforth, for a measurable set A C R™ we denote the mean value

integral
7[ =(f)a:=|AI"! f.
f=0a Al /

In [3] Jiang and Lin showed that if f € WP(Q), then

H*(X) =0 where s = max{0,n — z%}'

They were motivated by the analysis of rupture sets of thin films, which is
described by a singular elliptic equation. We do not go into the details of
this and instead, for applications we refer to, e.g., [3, 6, 2, 7].
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In this note, we extend Jiang and Lin’s result to fractional Sobolev spaces
and obtain

Theorem 1.1. For o € (0,1] and for any f € WPP(Q) satisfying (1.1),

H*(X) = 0, where s = max{0, n—apjf‘a}

Here, we use the following definitions for the (fractional) Sobolev space. For

more on these we refer to, e.g., [4, 1, 10].

Definition 1.2. The homogeneous W P-norms are defined as follows:
[f]v'vl,p(g) = vaHLP(Q)

For o € (0,1) we define the Slobodeckij-norm,

1
. P g » :
(”<|f (=100 lg_ﬁ) it p e [1,00),

[f]v'va,p(g) =
sup |f (@)= f()l

T if p = 0.
vty lz—yl

The respective Sobolev space WP, o € (0,1], p € [1,00] is then the collec-
tion of functions f : 2 — R with finite Sobolev norms || f{|yya.r(q),

[fllwer@) == [fllLe) + [fies -

To prove Theorem 1.1, the case p < n/o is the relevant one, since for the
other cases we can use the embedding into the Holder spaces, see [3]. We
have the following extension to fractional Sobolev spaces of a Poincaré-type
inequality from [8].

Theorem 1.3. Forany 0 >0, o € (0,1], p € (1,n/0], s € (n—op,n|, there
is a constant C' > 0 such that the following holds for any R > 0:

Let Br be any ball in R™ with radius R, f € W?P(Bg) and assume that
there is a closed set T' C Bgr such that

T C{x€Bpg: hmsup][ |f| =0},

(1.2) HT) > 5 R,
and for any ball B, with some radius r > 0,
(1.3) H (T N B,) <6r’.
Then,

IfllzeBr) < C B [flon(pp-
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In [%] this was proven for the classical Sobolev space WP, using an argument
based on the p-Laplace equation with measures and the Wolff potential.
Our argument, on the other hand, is completely elementary and adapts the
classical blow-up proof of the Poincaré inequality, see Section 2.

Once Theorem 1.3 is established, one can follow the arguments in [3] to
obtain Theorem 1.1. These rely heavily on the theory of Sousslin sets, [9], to
find the closed set T' C ¥ with the condition (1.2) and (1.3) satisfied. Those
arguments are by no means elementary, but we were unable to remove them
in order to show that H*(X) = 0. However, if one is satisfied in showing that
H!(X) = 0 for any t > s, then there is a completely elementary argument, the
details of which we will present in Section 3. There, we prove the following
“pointwise” Poincaré-style inequality, from which the suboptimal Hausdorff
dimension estimate easily follows, see Corollary 3.1.

Lemma 1.4. For any e > 0, p € [1,00), there exists C > 0, such that the
following holds. Let f € LY . and assume x € R™, such that

loc’

(1.4) lim lfl=0
r—0
B (x)

then for any R > 0, there exists p € (0, R) such that

[r<e (B) [ un-dsmar.

By () Bp(x)

Acknowledgments. The author thanks P. Hajlasz for introducing him to
Jiang and Lin’s paper [3].

2. POINCARE INEQUALITY: PROOF OF THEOREM 1.3

By a scaling argument, Theorem 1.3 follows from the following

Lemma 2.1. For any 6 >0, 0 € (0,1], p € (1,n/0], s € (n — op,n], there
is a constant C' > 0 such that the following holds:

Let f € WPP(B1,[0,00)) and assume that there is a closed set T C By such
that

r—0

T C{zxeB;: limsupff:()}7
By

and .
S T -
as well as

H (TN B,) <6r® for any ball B, with radius r > 0.
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Then,
||f||LP(Bl) <C [f]Wa,p(Bl)-

Proof. We proceed by the usual blow-up proof of the Poincaré inequality:
Assume the claim is false, and that for fixed 0, p, s,o for any k € N there
are f, € WPP(By,[0,00)) such that

T, C{z e B;: hmsup][ fr =0},

HS(Tk) > HS(Tk N BT) < 0r° VvB,,

1
07
and

1 fellLesry > & [felvons,)-

Replacing fi by ”.}(kaHp (note that this does not change the definition and size
of Ty), we can assume w.l.o.g.

[frlle = 1,

and
k—o0

[fk]Wo,p(Bl) — 0.
In particular, fr is uniformly bounded in W9P and by the Rellich-
Kondrachov theorem, up to taking a subsequence, fi converges strongly in
LP, and weakly in WP to some f € WP, with [f]yj o5, =0, [|fllzr = 1.
Thus,

=|B1| 7,
and setting g := |Bﬂ% fx, we have found a sequence such that
gr — 1 in WoP(By),
H(Ty) > %,
and
H¥ (T N By) < 60r® for any ball B,.
This is a contradiction to Lemma 2.2. O

We used the following lemma, which essentially quantifies the intuition, that
a function approximating 1 in WP cannot be zero on a large set.

Lemma 2.2. Let 0 € (0,1], s € (n — op,n], fr € WP(By,[0,00)), and

assume that i
%
I fe — Uwen(p) — 0.

Then, for any T, C By closed and

T C {x € By : hmsup][ fr =0},



ZERO-SETS OF FRACTIONAL SOBOLEV SPACES 5
as well as for some 6 > 0,
(2.1) H* (T N By) < 0r®  for any By, for all k

we have

lim H*(T}) = 0.

k—o00

Proof. By the subsequence principle, it suffices to show
lim inf H*(T}) = 0.
k—o0

By extension, we also can assume that fy —1 — 0 in W?P(R"), and f, =1
on R™\ By.

On the one hand, we have

k—o0
[fk]Wo,p(Rn) 0.

On the other hand, up to picking a subsequence, we can assume the existence
of Ry, € (0,1), for k € N, and limy_, R = 0, such that

9

inf >

Lt g
By ()

Since for any point z € Tj, we have that lim;_,o f B. fr(z) = 0, we expect the
the average (fractional) gradient around x to be fairly large. More precisely,
we have the following

Claim. There is a uniform constant ¢, 5, > 0, such that the following holds:
For any z € Ty, there exists p = py » € (0, Ry) such that

22 e s <0 [ 1R (0m P < C Al

P

Of course, we only have to show the first inequality, the second inequality
is the classical Poincaré inequality.

For the proof let us write f instead of fr. Then, since for x € T,
lim ][ f=0,
l—o0

Bz*lfle(z)
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we have that

=0 Brle(x) Ba-1-1p (2
<C ) ((Q_ZRk)_"/ If = (f)BQle|> :
=0 Bz—le

Consequently, for any € > 0, there has to be some ¢. > 0 and some [ € N

such that
—lR -n _ - —lR E’
((2 o s (f)leRk|> > e (27'Ry)

2—lR,,
because if the opposite inequality was true for all [ € N we would have

—<C’c€ Py 2 <Cey 277

leN leN

which is false for c. small enough.

Thus, for p:=27'R; € (0, Ry),

D=

Ot < Cup© /B f— (sl < C. (p—f"’ /B . <f>Bp|p> 3

that is
prTPTE < C, p“’p/ 1f = ()B,I7,
BP
Setting ¢ = s=(nop) 0, we have shown for any x € T the existence of
some p € (0, Ry) satisfying (2.2), and the claim is proven.

For any k we cover T}, by the family

Fi :=A{By(x), x €T, B,(x) satisfies (2.2)}.
Since T' C By is closed and bounded, i.e. compact, we can find a finite
subfamily still covering all of T}, and then using Vitali’s (finite) covering
theorem, we find a subfamily Fj, C F, of disjoint balls B,(z), so that the

union of the Bs, covers all of T},. We use this Fj as a cover for an estimate
of the Hausdorff measure:

(2.1)
> H(Bs,NTi) < 05 > pf
Bpéﬁk BpG]Ek

(2.2) k—o0
< C@,s Z [fk]%/g,p(B )y = <Cy ] [fk]wap (Rm) _>—> 0.
Bpéﬁk
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3. AN ELEMENTARY PROOF FOR THE SUBOPTIMAL CASE
We start with the proof of the pointwise inequality, Lemma 1.4.
Proof. First, let us show the claim for p = 1:
Fix R,e >0, f € Llloc and assume x = 0. W.Lo.g., f > 0. Set
0 71
(3.1) r=2""1 ( > 2EZ> RF,
l=—00
and C. := R™%77". Assume by contradiction that the claim was false, i.e.

assume that for any p € (0, R),

(3.2) f\f N, <7 0° ][f

Then for any K € N,

][If Nl <7 p° Z][f—][f+rp /s

B, K -1,
2°7 pF Z ][ ~ Ny, |+ 767 ][ f
=K, B, ks,

Setting now for [ € Z,

e A
Byg
by = B]Q[lRf,

the above equation applied to p = 2'R reads as

0
a; < 2"RE T 2° Z Qg+ T (QIR)E b_g4i—1 forany K e N, e —N.
k=—K
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In particular for any L € N,

Zal<2nR5T 2281 ZW@—H"‘TR ZQSbK—Hl

I=—L I=—L I=—L
0
<2"Rf T 2281 Z ar +7 R ( supb 22”
I=—L  k=—K+l I=—00
k+K 0
<2"R° T Z ak Z2EZ+TR Sup b;) ZQEI
k=—L-K  I=—L l=—00
3.1 0
(S); Z ak+;]iup bj.
k=—L—K

Under the additional assumption that

(3.3) D < oo,

letting L, K — oo, using that by (1.4) we have lim;_, o, by = 0, the above es-
timates implies that ay = 0 for all £ < 0. This means that f is a constant on
Bpg, and in particular by (1.4), f is constantly zero in Bg. This contradicts
the strict inequality (3.2).

To see (3.3), fix K € N such that sup;<_x b; < 2. Then for

0
CL = Z ap,

I=—L
the above estimate becomes

1
cr, < 50L+K +1 for any L € N.
In particular, for any i € N,
K3
crik <27 + Z 277,
§=0

Since ¢; is monotonically increasing,

sup CZSCL+Z2 J < o0.
i> L+ K =0

This proves Lemma 1.4 for p = 1.

If p > 1, we apply this to fP, and obtain

(3.4) /fpsc <}§>E / /P = (f")B,|
B, ()

p(m)
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We now need the following estimate, which holds for any p € [1,0), and
d€(0,1),

|la = bF — |af” — [b”| < 8|al” + %|b|p-
Since B, is fixed, let us write (f) for (f)p,. Firstly, for any ¢ € (0, 1),

2= N < 7= D+ = ()] + 21~ (DI + 807

Plugging this in (3.4), for § = §(R/p)~¢ small enough, we arrive at
(3.5)

(14+p)e R\ (1+p)e
[ e (%) /|f pree s () 1wr - o),
Bp(x)
Next,

[P = M < (P =1 <=/ )\p)+5fp+6p(|f (HIP).

Plugging this now for § = §(R/p)~(1*P) into (3.5), by absorbing we arrive

N O

Bp(l’)
Since this holds for € > 0 is arbitrarily small, th1s proves the Lemma 1.4. [J
Corollary 3.1. For o € (0,1] and for any f € W?P(Q) satisfying (1.1),

HU(X) =0, whenever t > s = max{0,n — ot

Proof. Let € >0, R >0, and « € . Pick p < R from Lemma 1.4, so that

[ e rer e i,
BP(I)

By Holder and Young inequality, as in [, Corollary 2.1],

pn+(25—0p)ﬁ <C p2a—ap / |f|p—|—0,06 / |f|—a

By(z) By ()
< 2e[£1P 3 —a
<C R flfy,, +C B[ 1]
Bﬂ(x)
Let now € > 0 such that ¢t > n+ (2e — Up)— then what we have shown is
that for any R > 0 and any x € ¥ there exists p € (0, R) such that
(36) p < C R +C [ U

Bﬁ(f’?)
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Let now

Vi :={B,(x): €, p<R,(3.6) holds}.

Any countable disjoint subclass Ur C Vg satisfies

Z lOt S C Ra[f];;i/o',p(ﬂ) + CRE / ‘f|_a
B,CUR Q

By the Besicovitch covering theorem, as in, e.g., [5, Theorem 18.1], we find
for any R a countable subclass Ur C Vg, such that any point of ¥ is covered
at least once, and at most a fixed number of times. Thus,

(1]

2]

3]

(4]

5]

(6]
(7l
(8]

(9]
(10]

HE) = lim HH(2) < C 1 t < Cflim R® = 0.
H () RliIlmHR( )_CRlintZCZ;p_CleinmR 0
P R
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