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The winding number is a special case of a
more general concept called the mapping
degree

A

A continuous map f from S; (left) to S,
(right) can be drawn as a curve on Ss. To
better visualize the behavior of curve f we
visually “fatten” S;. Observe the
orientation: when we walk around 7 € S;
clockwise, we have a direction of the curve
in Sz. This is indicated by the arrow signs.
Observe that we don’t really need to draw
the left circle S; to understand what f
does, so in later pictures we won’t draw Sj.

winding number 1

winding number 2

Stirring coffee.
A real-life application of Topology in Analysis
Armin SCHIKORRA*

Have you ever pondered, after gently swirling a spoon through your steaming cup
of coffee, whether, despite your meticulous stirring efforts, a solitary coffee
molecule might have ended up exactly at the position where it was before stirring?
Legend has it that Dutch mathematician Luitzen Egbertus Jan Brouwer
(1881-1966) engaged in precisely such an experiment, ultimately establishing what
is now celebrated as the Brouwer Fixed Point theorem — a beautiful result
combining Topology with Analysis.

Let us describe the actual statement of the theorem we are going to discuss below.
Take any continuous map F' from the unit disk D to the unit disk D. For example,
the position of each coffee-molecule p' € D, before steering, gets mapped into the
position F(p) € D after steering — where ID denotes the coffee-mug. The theorem
states that there must be at least one point ¢ that has not changed at all:

F(7) = ¢ — i.e. one molecule of coffee has not moved.

Topology: Winding Number

We start by introducing our main tool, which is the winding number. For this,
take a continuous map from a circle into a circle. Essentially, the circle represents
the boundary of our (for simplicity: 2-dimensional) coffee mug. In order to
distinguish between the domain (circle before stirring) and the target (after
stirring), we will denote them by S; and S, respectively, where S stands for sphere.
A map f from S; to Sy (denoted as f: S; — Sg) is simply any rule that to each
point ¥ in S; assigns some point f(7) in So.

Continuous means that if we change a little bit the points in the domain, say I
wiggle ¥ into a 4@ which is very close to U, then f() is not too far away from f (7).
Equivalent, but more geometrically intuitive: I can draw the curve defined by f
(i.e. draw the corresponding values of f(¥) as ¥ traverses the circle) without ever
having to lift the pen. Since S; is a circle, it has no start point and no end point.
If T draw all the values f(¢) for all ¥ in Sy then the picture I obtain is that of a
curve inside of So. Maybe like a rubber band somehow fiddled onto Ss.

Let us assume we draw this rubber band clockwise (this fixes the orientation of
S1). Then we find a picture of an oriented rubber band on Ss. It is important to
identify each of the strands of the rubber band, so on the margin we draw the
rubber band on a “fattened” image of So — purely for visibility reasons.

We now define the winding number of the map f, we call it w(f). Assume you
stand on the top of the circle S3. The rubber band is possibly passing through the
point you are standing on several times. You count how many times the rubber
band passes through your position, but if it passes clockwise, you count +1. And
every time the rubber bands passes through your position counterclockwise you
count it as —1. Summing these numbers up you get the winding number w(f). See
the examples on the margin. Indeed, try and draw yourself some more pictures.

Exercise 1. Draw curves with winding number 0,+1, —1,+2,—2,.... Try to find
many different looking curves that have winding number 2. What do all the curves
that have winding number 2 have in common?

There are two pathological situations that you might have encountered when
trying the above exercise: if the rubber band never passes through you, the
winding number is simply zero. If a strand of the rubber band does not pass
through you, but it just touches you, we count that as a +0 (or rather a +1 and a
—1, which is effectively a +0.) Another subtlety I don’t really want to discuss in
detail here: who says the rubber band passes through us only finitely may times?
Indeed it could pass through us infinitely many times. But if that happens then all
but finitely many times the rubber band comes back again in the opposite
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Winding number 0

Example 2: The map f(¥) = ¢ has winding
number 1.

Example 3: Any constant map has winding
number 0.

Exercise 4: The winding number is the
same wherever Ada is.

Exercise 5: When we can change two
curves continuously into each other
(without rupture and without leaving Ss,
the winding number must be the same.
Fun fact: The converse is also true!

direction — so these infinitely many times cancel out. Indeed, for any continuous
map f the winding number is a finite number.

With the notion of winding number at hand let us look at two important examples:

Example 2. Assume the map f is simply f(¢) = ¢. That is, each point on S; gets
mapped to its exact corresponding point on So. Then the corresponding rubber
band goes around the circle Ss, in clockwise direction, exactly once. So the
winding number of this particular configuration is w(f) = 1.

Example 3. Fix any vector @ € S. Denote h(¥) = @. That is the rubber band is
not going around S; at all, it is collapsed onto a single point. Then the winding
number is w(h) = 0.

It is also good to know the following, although it will not be used here:

Exercise 4. Justify that in our definition of winding number, it does not matter
where exactly the person is standing. That is, changing the position of the person
does not change the winding number.

Now the most important property: the winding number does not change under
continuous changes of the curve. Continuous changes are called homotopies. If we
can continuously transform the rubber band that f forms into a rubber band that
g forms (without rupture and without leaving S;), we say that f and g are
homotopic to each other.

Exercise 5. Convince yourself that if we continuously can transform a rubber
band f into another rubber band g, so that during that transformation the rubber
band always stays inside So, then the winding number does not change.

Let us reformulate this last observation in more analytic terms, which will be
useful later.

Corollary 6. Assume f:S1 — Sy and g : S; — So are continuous maps and there
exists another continuous map, called a homotopy,

H(t,¥) €Sy for 0 <t <1 and the circular variable U € Sy

such that:
o H(0,7) = f(?) for all ¥ € Sy, and
o H(1,7)=g(?) for all ¥ € S;.

Then, the winding number of f and the winding number of g are the same.

This is indeed a restatement of Exercise 5. For fixed “time” ¢t € [0, 1] one can treat
the function H(t,-): S; — Sy as describing a curve. When changing ¢, this curve
continuously changes, so we see that the map H describes how we continuously
transform the curve of f (at time ¢ = 0) to the curve of g (at time ¢ = 1).

Analysis: Brouwer Fixed Point Theorem

First, some definitions: for a vector 7 = (z,y) € R? we denote its length by
|p] := /22 4+ y2. The closed unit disk is denoted by

D := {all vectors p'= (z,y) € R2 : such that |p] < 1}.
The boundary of the unit disk D is the circle, denoted by
S = {all vectors 7 = (x,y) € R? : such that |7] = 1}.

We will also denote the origin as 0 = (0,0). Now we are ready to formulate the
precise statement of the Brouwer fixed point theorem.
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Theorem 7. Take any continuous map F from D into D. There exists at least
one point p € D such that F(p) = p. Such a point p is called a fixed point of F.

If we think about our cup of coffee example from the beginning, then we may
assume for simplicity that the mug is two-dimensional and moreover in the shape
of a disk D — e.g. by looking on it from above like in the picture at the beginning.
Then we could think of F': D — D as the map that describes the position of a
drop of coffee that originally is at the position p'€ D and, after stirring, ends up at
the position F'(p). Of course that position is still inside the mug D (no spills!). The
Brouwer Fixed Point theorem says that one drop p’ has not changed position.

Proof of the Theorem. The logical strategy is to show that if we assume the
claimed statement was false, then we find a logical contradiction — so the
statement must have been true! The main observation to obtain this contradiction
is: If the statement of the theorem was false, then we can divide by quantities like
|F(p) —p] # 0 for all p € D; And we can use this to continuously transform the
rubber band from Example 2 to the rubber band from Example 3 without rupture
— contradicting Corollary 6.

So assume the claim of our theorem is false. That is, we assume there is no fixed
point. In other words we assume |F(p) — p| # 0 for all 7€ D. We will reach a
contradiction by inspecting the winding number of the map g: S; — Sy given by
g(v) = % First, observe that each ¢ in the circle is also a point in the disk,
so it makes sense to apply F to it. Second, we are not dividing by zero, which

means ¢ is indeed well defined.

In fact, we will consider three maps:

—.

o . F@®) -7 . F(0)
f(0) =7, 9(0) = —=—— h(9) = =
|F(7) — 7] [F(0)]
as in Example 2, as above constant as in Example 3
w(f)=1 w(h)=0 pes

We are going to show that f is homotopic to g, and ¢ is homotopic to k. Thus, by
Corollary 6 the winding numbers of f, g, and h are the same — but the winding
number of f is 1, the winding number of A is 0. This just cannot be true, it is a
logical contradiction. Thus, somewhere along our argument there is a logical
mistake. Since every step was a logical deduction, we conclude that it is the
assumption “there is no fixed point” which must be false. But if it is not true that
there is no fixed point, then logically there must be at least one fixed point. And
that is what we wanted to prove!

In conclusion, we are done once we show that f, g, and h are homotopic: see
below. ]

Proof that f and g are homotopic. Consider the homotopy

H“ﬁ*:ﬁigiz% FeS, 0<t<l1.
For each t and each ¢ € S; this is a well-defined and continuous map with values
in Sy because we never divide by zero: |tF(¥) — U] # 0 for any ¢ € D and ¢ € [0, 1].
Indeed, for ¢t =1 this is a consequence of our assumption F(U) # ¥, whereas for
t < 1 the point tF(¥) lies strictly inside the circle (note that |F(¢)| < 1), which in
particular means that tF(v) # .

Moreover, H(0,7) = f(?¥) (recall that |¢] = 1) and H(1,¥) = g(v). Thus, we see
that H(t,?) is a homotopy in the sense of Corollary 6. O
Proof that g and h are homotopic. This time we set

HT,1) F(tv) — tv

=2 eSS, 0<t<l1.
Fo) —to] - 0v T=tS

Then we see
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e H is well-defined because we never divide by zero
« H(v,1) = g(v)
o H(¥,0) = h(?)

Thus H is a continuous transformation of the rubber bands of g and h. O

Concluding remarks

We restricted our attention to the two-dimensional disk D because its boundary is
the one-dimensional circle — and the winding number is relatively easy to define on
the circle. The same argument works in dimensions 3 and higher — but one needs
to replace the winding number by the degree. Actually, there are even versions of
the Brouwer Fixed Point theorem in infinite dimensions. The theory of mapping
degree, and more generally homotopy groups, are the fundamental topics of a
mathematical discipline called Algebraic Topology.

Let us also remark that one major property of the Brouwer fixed point theorem:
We have absolutely no idea where the fixed point is, the proof is not constructive
at all and gives us no hint on how to find this fixed point. We just know it exists.
Also, the fixed point might not be unique, there might be many fixed points.
Lastly, as a final exercise, I invite the reader to think about how to prove this
result in one dimension.



