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Light diffraction from colloidal crystals with low dielectric constant modulation:
Simulations using single-scattering theory
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We theoretically characterized the diffraction properties of both closed-packed and non-closed-packed crys-
talline colloidal array (CCA) photonic crystals. A general theory based on single-scattering kinematic approach
was developed and used to calculate the diffraction efficiency of CCA of different sphere diameters at different
incident light angles. Our theory explicitly relates the scattering properties of individual spheres (calculated by
using Mie theory) comprising a CCA to the CCA diffraction efficiency. For a CCA with a lattice constant of
380 nm, we calculated the relative diffraction intensities of the fcc (111), (200), and (220) planes and deter-
mined which sphere diameter gives rise to the most efficiently diffracting CCA for each set of crystal planes.
The effective penetration depth of the light was calculated for several crystal planes of several CCAs of
different sphere diameters at different angles of incidence. The typical penetration depth for a CCA comprised
of polystyrene spheres was calculated to be in the range of 10-40 CCA layers. A one-dimensional (1D) model
of diffraction from the stack of (111) fcc crystal layers was developed and used to assess the role of multiple
scattering and to test our single-scattering approach. The role of disorder was studied by using this 1D
scattering model. Our methodology will be useful for the optimization of photonic crystal coating materials.
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I. INTRODUCTION

Recently, there has been considerable interest in the fab-
rication and the experimental and theoretical analysis of pho-
ton propagation in the periodic dielectric systems known as
photonic crystals.! These materials show promising applica-
tions in optical devices, which may prove useful in the cre-
ation of photonic logic chips, novel optical switches and op-
tical filters, chemical sensors, as well as in numerous other
optical technologies.?

A major class of photonic crystals is fabricated through
the self-organization of individual particles, typically spheri-
cal colloidal particles, organized in crystalline colloidal ar-
rays (CCAs). A CCA is comprised of a self-assembled peri-
odic array of colloidal particles immersed in a dielectric
medium. Various methods have been developed to fabricate
photonic crystals such as, for example, by utilizing close-
packing of spherical colloidal particles to create artificial
opals.?

An alternative approach to the closed-packed system are
CCAs where the colloidal particles self-assemble into non-
close-packed crystal structure in a low ionic strength aque-
ous solution.*?® This procedure involves self-organization of
negatively charged particles, which electrostatically repel
each other and adopt a minimum energy configuration, typi-
cally an fcc lattice structure. By altering the concentration of
colloidal particles in the solution, it is possible to manufac-
ture CCAs with any desired lattice constant. CCAs obtained
by this self-assembly method generally form an fcc lattice
when the (111) planes orient along the surfaces of the con-
tainer.

There are numerous theoretical approaches to calculating
the interaction of light with photonic crystals. Band structure
theory, originally developed for electrons moving in an infi-
nite periodic potential, has been used to solve the vector
Maxwell equations in periodic dielectric media.! Band struc-
ture calculations are most often implemented via the plane
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wave expansion method, which allows the calculation of the
photonic band structure based on the expansion of the inter-
nal electromagnetic field as a sum of many (typically hun-
dreds) of plane waves. The total (complex) band structure of
photonic crystals can be used to derive the boundary condi-
tions for the electromagnetic field at the interface of a finite
crystal in order to determine the transmission and diffraction
properties.’

A more efficient (and also more widely used) method for
calculating diffraction and transmission properties is based
on relating the electromagnetic field components at the op-
posite sides of a thin slab of dielectric material through a
so-called transfer matrix.%” This is done by dividing the
space in each slab into parallelepiped cells with a coupling
between these cells. Then, the whole system is represented as
a stack of slabs by using the multiple scattering formula
familiar in the theory of low-energy diffraction.” The transfer
matrix method is essentially a real-space finite-element
method of computational electrodynamics adopted for a sys-
tem with a periodic dielectric function.

In the special case of dielectric spheres periodically ar-
ranged within infinite slabs, the layer-multiple-scattering
method was developed.® In this method, spherical vector
basis functions were used to expand the electromagnetic
field around each particle, and these fields were summed
for periodically spaced spherical scatterers in an infinite
slab. Transfer matrices were then utilized to couple fields
between the different slabs. Recent extension of the method
enabled application to nonspherical particles, with scattering
properties of individual particles calculated through the
evaluation of the T matrix.® All of these approaches treat
multiple scattering processes inside the crystal but require
either a defined periodicity or infinite extent in some dimen-
sion. An approximate perturbative behavior of electromag-
netic wave packets was utilized in the envelope-function ap-
proximation method.'%!!

A number of computational techniques were developed to
calculate the light scattering properties of arbitrary shaped
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nonperiodic systems.'?"'* These include the multiple multi-

pole method,'? the finite difference time domain method,'®
and the generalized field propagator!” method utilized to cal-
culate transmission and reflection for photonic crystals con-
taining various defects. Unfortunately, these methods are nu-
merically expensive and are currently able only to treat
systems with relatively small numbers of scattering particles.

There are methods developed specifically for systems
consisting of arbitrary located spheres, such as the 7T-matrix
superposition method'® and the generalized multisphere-Mie
theory.!” The total field scattered by a collection of spheres is
represented as a superposition of individual sphere contribu-
tions, where each contribution is expanded in vector spheri-
cal harmonics. The multiple scattering between spheres is
taken into account by representing the total field incident at
each sphere as a sum of the initial incident wave and scat-
tering contributions from every other sphere of the system.
To perform the required summation, the method utilizes the
translation addition theorem, where a vector spherical wave
centered at one sphere is expressed through the spherical
waves centered at other spheres. Currently, these methods
only allow the analysis of hundreds of spheres,”’ and hence
cannot simulate realistic CCAs.

The interaction of light with a photonic crystal can be
understood as a scattering process, where the total amplitude
of the scattered light is the result of interference of all scat-
tering contributions from particles of the system. The total
scattering of incident light by a CCA can be represented as a
combination of single and multiple scattering. The single-
scattering approximation assumes that incident light interacts
only once with each scatterer. Multiple scattering, consisting
of scattering events resulting from secondary waves rescat-
tered by particles of the system, are disregarded.

The average distance that light travels between the con-
secutive scattering events is called the mean free path. Mul-
tiple scattering contributions are small when the mean free
path is much larger than the size of the whole system. The
mean free path depends on how efficiently the individual
particles scatter, and the smaller this efficiency, the larger the
mean free path. There are many factors responsible for a
magnitude of individual particle scattering efficiency, includ-
ing the value of the dielectric contrast between the particle
and the medium, the particle size and shape, and the direc-
tion of scattering. Single scattering is the dominant scattering
mechanism for a low contrast dielectric modulation.

The opposite limit is a strongly scattering medium, where
multiple scattering is important. For randomly and strongly
scattering media, setting aside the wave nature of light and
interference effects, the multiple scattering can be described
as a random walk; the light is said to be diffusely scattered
and is described by a diffusion equation.?' Interference in
multiple scattering of light in the random strongly scattering
media leads to such interesting effects as the localization of
light, speckles, enhanced backscattering, and Anderson local-
ization. In a realistic photonic crystal with disorder, where
multiple scattering is important, scattering of light results in
an interplay between diffuse and Bragg-type scattering.??

Many of the theoretical methods briefly described above,
such as the photonic band structure theory or transfer matrix
derived methods, focus on numerically computing the total
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scattered intensity by solving a master wave equation. This
conceptual framework does not distinguish between single
and multiple scattering or between Bragg interference effects
for collections of particles and the scattering phenomena
from individual particles. Thus, the physical picture of the
interplay between these different processes is largely lost,
and although the quantitative description is accurate, the
physical picture is unclear. Interpretation and prediction of
light interaction with photonic crystals is better described by
using a richer conceptual basis which describes the physical
processes involved. This description would benefit from the
extensive use of such concepts as single and multiple scat-
tering, Bragg interference, and individual particle scattering
form factors.

In this work, we developed a numerical method to analyze
the scattering of light and to numerically simulate the full
three-dimensional (3D) map of light intensities scattered by a
realistically sized macroscopic CCA. Our method does not
require the incident light to be a plane wave nor the distri-
bution of particles inside the CCA to be periodic. We start
with a realistic size macroscopic system and utilize a simple
single-scattering method, which treats a large system of ar-
bitrary located spherical particles in a dielectric medium. Our
method produces accurate results for the case of photonic
crystals with relatively low dielectric contrast modulation
where multiple scattering effects are small. It can be readily
employed to investigate the roles of irregularities in size and
disorder in these systems.

Our method treats the diffraction of light from a system of
periodically spaced scatterers in terms of the interplay be-
tween the scattering properties of the individual particles and
the Bragg interference. The advantage of this approach is
that it explicitly relates the individual particle scattering
properties to the CCA diffraction efficiency.

Our approach is inspired by the methods of x-ray diffrac-
tion of atomic and molecular crystals,”>?* where light is scat-
tered by the electrons of periodically spaced atoms in low
contrast dielectric media. The main emphasis of x-ray dif-
fraction theories is on the collective effects of constructive
and destructive interference from collection of scatterers.
There are two main methods to model diffraction, the kine-
matic theory, and dynamical diffraction theory (DDT).

The DDT theory?~2® approximates the total electromag-
netic field inside the crystal as the sum of a relatively small
number of plane waves. Multiple scattering effects are con-
sidered through the interaction between these plane waves,
each one propagating at the Bragg diffraction direction rela-
tive to other waves. This set of internal plane waves forms a
solution to Maxwell’s equations, and each plane wave
couples to other waves causing an energy exchange between
all internal waves. In the situation when only two strong
waves dominate in the crystal, one incident and one dif-
fracted, the DDT theory leads to just two equations describ-
ing the diffraction by a particular set of lattice planes. The
dielectric function variation along this specific set of lattice
planes is described by only one Fourier component of the
dielectric function. Thus, this model is essentially one di-
mensional. When we consider diffraction from the (111)
planes, the two-wave DDT model is very similar to a system
of periodic one-dimensional (1D) parallel slabs, with the
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main difference that in the case of DDT the refractive index
profile is sinusoidal in the direction normal to these lattice
planes. We choose to utilize a 1D slab model instead of DDT
because it allows us to analyze arbitrary sets of parallel slabs,
while DDT requires a periodic crystal structure.

Kinematic theory does not assume that the total scattered
light consists of just a single plane wave. Thus, it provides a
more realistic description of the scattered light distribution.
Also, kinematic theory can be used to model an arbitrary
distribution of scattering particles, not just the ideal crystals
to which DDT theory is restricted. Kinematic theory can
clearly relate the diffraction properties of a CCA to the prop-
erties (such as diameter and refractive index) of individual
scattering spheres.

The kinematic theory is based on two approximations.

(1) Single-scattering approximation, where the total dif-
fracted light consists of interference between incident plane
wave scattered by all individual particles. This approach dis-
regards multiple scattering.

(2) Neglecting extinction of the incident wave—all par-
ticles in the system are illuminated by an incident wave field
of constant amplitude.

An obvious flaw in the standard kinematic theory
(“KNM?” theory) is the assumption of a constant electric field
amplitude of incident light propagating through the CCA
crystal. This results in an unrealistically large value of the
diffracted intensity for geometrically large CCAs. We modi-
fied the kinematic theory to take into account extinction by
including attenuation of the incident wave. We call this as the
“extended kinematic” (“EXKNM”) theory. The incident
plane wave, after entering the crystal, gradually decays while
transferring energy into the scattered light.

A similar method based on the KNM theory was previ-
ously used?’ to analyze light diffraction by a system of
stacked infinite slabs. The main difference between that
method and ours is that we treat arbitrary shaped finite 3D
systems and take into account attenuation of the incident
light.

In a recent paper,”® we briefly applied our method to ex-
amine the differences in the integrated intensities of light
diffracted by different crystal planes of a CCA. We also ap-
plied the method to investigate the influence of stacking
faults on the scattering. In this work, we provide details of
the method and calculate diffraction from realistic CCAs.

Here, we examine the importance of multiple scattering
by constructing an effective 1D system consisting of many
dielectric slabs. We analyze diffraction from a stack of (111)
layers of an ideal fcc CCA. In Sec. II, we briefly describe
how to apply the kinematic method to calculate and interpret
the scattering intensities from a finite perfectly ordered CCA.
Extended kinematic theory is also presented. In Sec. III, an
effective 1D slab system is constructed and used to examine
the importance of multiple scattering. Section IV explores
how the integrated intensity of specific Bragg peaks depend
on factors, such as sphere size and the incident angle. We
also study the effective penetration depth for the incident
light.

II. METHODS

When light illuminates a collection of scattering particles,
the overall amplitude of scattered light at any point in space
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is simply the sum of contributions from individual particles.
In a single-scattering approximation, we ignore multiple
scattering between the particles by assuming that each par-
ticle is excited by only the external incident field, but not by
the secondary fields scattered by other particles. Assuming
the external incident light wave to be a plane monochromatic

wave, the total scattered amplitude E. at some distant point
7 in the far-field approximation is*}

E (D)= 2 E(P) = S AFPexplipl), (1)
J J

where E; is the amplitude of light at 7 scattered from indi-
vidual particle j with coordinates p; and the summation is
performed over all particles of the system. We can express
every individual contribution as a product of the absolute
value of the electric field amplitude of the incident propagat-

ing wave A}, a single sphere scattering form factor F j(F), and

a phase factor exp(iﬁjAak), where Ak is the difference be-
tween the wave vectors of the incident and scattered light.
We assume our colloidal particles to be spheres of uniform
dielectric constant embedded in a medium of another dielec-

tric constant. We can calculate the form factor F j(F) exactly
from Mie theory for scattering of a plane wave by a spherical
particle.”

In standard KNM theory, the amplitude of the incident
propagating wave is constant along the propagation direction
in a media, A;=const, and does not decay while propagating
through the crystal. This approximation assumes that the am-
plitude of the scattered light is much smaller than that of the
incident light.

In our EXKNM approach, we assume that the CCA me-
dium can be represented as a stack of layers with each layer
experiencing a defined amplitude of the electric field of the
incident light, which gradually attenuates while propagating.
We determine the internal propagating wave amplitude by
subtracting from the initial incident light the amount of light
scattered. Specifically, we calculate the amplitude of the light
which propagates forward from the condition that the inten-
sity of light after n layers equals the intensity of incident
light minus the intensity of light scattered by all previous n
layers. We determine amplitude A, after layer n from the
condition |A,,|?=]A¢|*~|R,|>, where A, is the amplitude of
the incident wave before entering the crystal and R, is the
total amplitude of light diffracted by the first n layers. We
calculate R, by calculating the integrated intensity of all light
scattered by the first n layers, then determine R, as the
square root of this integrated intensity. We assume that the
incident wave is completely attenuated with all energy trans-
ferred to the diffracted light when R, exceeds A, after layer
n=N,. The effective number of layers which diffract essen-
tially all light, N, determines the penetration depth for the
incident light. When this number is larger than the actual
number of layers in CCA sample, then some of the light
transmits through the CCA; otherwise, all incident light de-
cays inside the crystal over the effective number of layers
N,sr.

fThe calculation procedure assumes that the CCA is a fi-
nite crystal consisting of P layers. Unless specified other-
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(a) Incident light
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FIG. 1. (Color online) (a) Scattered light intensity from a CCA. The large red arrow indicates the direction of the incident light. Surface
logarithmic scale color map (yellow-green to orange indicates an intensity ratio of ~103). The crystal was rotated about the z axis to achieve
diffraction by the (220) planes. The corresponding diffraction spot is shown at the center. Two other diffraction spots are shown, which result
from Bragg diffraction from the (020) and (200) crystal planes. Diameter of the colloidal spheres is 270 nm, the lattice constant L
=805 nm, and the wavelength of incident light is 367 nm. (b) Reflection (Ewald) sphere in reciprocal space. Reciprocal lattice points are
shown by the blue dots, and the reciprocal points marked by the magenta circles are located near the surface of the reflection sphere where

the Bragg diffraction spots occur in (a).

wise, each layer has the shape of a parallelepiped and con-
tains MN spheres, where M and N are the number of spheres
along each parallelepiped side. These spheres are periodi-
cally arranged in - -*ABCABC- - - layers as the (111) planes of
an fcc crystal, although the method can be easily generalized
for any possible arrangement of spherical particles.

For a finite CCA consisting of a stack of ideal crystal
layers having the same shape and size, we can write the
coordinates of the CCA spheres as

p=M,+ma+nb,

where @ and b are the layer lattice vectors and M » 18 the
vector specifying the location of layer p. This vector speci-
fies that the crystal is fcc with the - -*ABCABC:- - - stacking of
(I111) layers. Integers m and n define the locations of indi-
vidual spheres inside the layer, and in the case of layers
shaped as an identical parallelepipeds MN, these indices run
through the set of integers m=0,...,M, n=0,...,N.

We calculate the total scattering amplitude by summing
contributions from all P layers stacked together to form the
CCA,

.
E.(7)= 2 EN (7). 2)
p=1

Assuming that all spheres are identical and the amplitude of
the incident wave A, is the same for all particles in each
layer, the scattering contribution from the individual layer p
is
M
EMV(RA)=A, Fo(f) - 2 expli-m-a-Ak)
m=1
N
> expli-n-b-Ak)-expli- M,-Ak). (3)

n=1

In this formula, both sums can be easily performed analyti-

cally, making calculations very fast for the case of layers
shaped as parallelograms.

This computational procedure simulates diffraction from
any stacking pattern of ideal (111) layers. In particular, it
allows the study of how stacking faults in finite CCAs affect
diffraction efficiencies, and it can be easily generalized to
investigate other disorder in the CCA.

In Fig. 1, we show the scattering intensities for an inci-
dent plane light wave diffracted by a perfect colloidal crystal
consisting of P=45 (111) layers with each layer containing
60X 50 spherical particles organized in a parallelogram
plane layer. Here, the stacking sequence of (111) planes is of
type *-*ABCABC: -+ corresponding to an fcc crystal.

We simulated the diffraction of an incident plane wave
[with direction shown by large magenta arrow in Fig. 1(a)]
with wavelength of 367 nm by the crystal rotated such that it
fulfills the Bragg condition for diffraction from the (200)
planes, shown by the red spot in the middle along the equator
of the scattering sphere. We define the Bragg angle as an
incident glancing angle satisfying the Bragg condition. There
are an infinite number of ways to orient the crystal such that
the Bragg diffraction condition is satisfied for a particular
crystal plane; all directions of incident light satisfying the
Bragg condition occupy the surface of a cone whose axis is
normal to the crystal planes. The diffracted intensity depends
on the specific direction chosen along this Bragg cone sur-
face, so one has to specify the exact orientation of the CCA
relative to the direction of incident light.

We choose a CCA orientation relative to the incident light
for this calculation via the following procedure. The direc-
tion of incident light occurs along the z coordinate lab axis.
Initially, we orient the CCA such that the z axis is parallel to
the [111] direction and the x lab axis is parallel to one of the
sides of the (111) layer parallelogram. Then, we perform two
rotations of the CCA. First, we rotate around the z lab axis
such that the normal to a particular diffracting plane occurs
in the (xz) plane. A second rotation is done along the y lab
axis until the glancing angle between the directions of inci-
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dent light and the normal to the crystal plane fulfills the
Bragg condition. The two rotation angles for the Fig. 1 (220)
calculation are /2 and 0.2546 rad, respectively.

Some incident light directions along the (220) Bragg cone
can also be diffracted by other crystal planes. For the specific
CCA orientation in Fig. 1, 367 nm incident light is simulta-
neously Bragg diffracted by the (220), (020), and (200)
planes. The corresponding diffraction maxima are shown by
the bright red spots and indicated by red arrows. This simul-
taneous diffraction by these crystal planes occurs only for
this specific wavelength and direction of incident light.?°

The Bragg scattering directions are typically found by us-
ing the Ewald sphere construction in reciprocal space [Fig.
1(b)]. The yellow parallelepiped denotes the shape and ori-
entation of the CCA crystal, while the blue dots are calcu-
lated points of reciprocal space labeled by their Miller indi-
ces. The gray cube indicates the cubic unit cell of the bcc
reciprocal lattice. The length of the red arrow along the ra-
dius of the Ewald reflection sphere is equal to the wave vec-
tor of the incident light. The magenta reciprocal lattice points
on the reflection sphere surface satisfy the Bragg diffraction
condition.

The red dots on the scattering sphere in Fig. 1(a) show the
values of the scattered intensities. Each point of the surface
denotes a specific 3D direction whose color represents the
logarithm of light intensity scattered into this direction by the
crystal. The intensity at each point of the scattering sphere
was calculated for a sphere of radius r=1.

We analyze the calculated CCA light scattering results
and identify Bragg bright spots on the scattering sphere by
plotting the scattering sphere together with the reflection
Ewald sphere in reciprocal space.

For a perfect or nearly perfect crystal, the diffraction pat-
tern consists of discrete “diffraction spots” that arise from
the Bragg diffraction conditions. Each Bragg diffraction spot
corresponds to constructive interference of light scattered by
all individual particles. A Bragg maximum corresponds to
the simultaneous fulfillment of the three Laue equations for

three lattice vectors a, l;, ¢ and any integer number ¢, m, n,
J'Aek=277q, 5-A7<=27Tm, ¢ Ak=2mn. 4)

However, when only one or two of these equations are
satisfied, only some of the colloidal particles in the crystal
scatter light in phase, resulting in partial constructive inter-
ference. For a finite crystal, this “partial constructive inter-
ference” is responsible for the appearance of bright lines and
circles on the scattering sphere in Fig. 1(a).

The CCA consists of stacked (111) crystal parallelogram
layers, and each layer is represented by two two-dimensional

(2D) lattice vectors @’ and b’ within the parallelogram layer
(these two vectors are not 3D fcc primitive translational lat-
tice vectors since not every lattice translation can be formed

using these vectors). When either condition a’-Ak=2wg or

b'-Ak=27m is met, we observe a bright circle on the surface
of the scattering sphere as a result of partial constructive
interference. When both of these conditions are simulta-
neously true, constructive interference occurs for every
sphere from the same layer and results in 2D diffraction
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spots formed at the intersection of both lines. The identical
(111) layers stacked together results in the appearance of the
“standard” 3D Bragg diffraction maximum.

The maximum intensity at the center of each Bragg peak
results from the condition that scattering from every particle
constructively interferes. Thus, the total amplitude in this
direction depends on the single-scattering form factor (calcu-
lated from Mie theory) and the total number of scattering
particles in the diffracting volume of the crystal. The total
integrated intensity over the diffraction spot depends not
only on the peak value in the center of the spot but also on
the Bragg peak angular width.

For ideal periodic large crystals, the diffraction spots are
very sharp peaks in specific Bragg directions, with very little
light outside of these regions. We define the “integrated in-
tensity of the diffraction from (nml) crystal planes” as the
integrated intensity calculated over a solid angle large
enough to contain the diffraction spot. The “intensity,” which
refers to the square of the amplitude of the electric field at a
point on the scattering sphere, is proportional to the power of
electromagnetic wave radiated into a specific direction.

We also define the “incident integrated intensity” as the
intensity of the incident electromagnetic wave integrated
over the area of the illuminated part of the CCA [single (111)
layer]. The ratio between the integrated intensity of the dif-
fraction from (nml) crystal planes and the incident integrated
intensity gives the “reflectance” by the (nml) planes.

III. VALIDITY OF THE METHOD: COMPARISON WITH
EXACT SOLUTION FOR A ONE-DIMENSIONAL
SLAB SYSTEM, ROLE OF MULTIPLE SCATTERING

We tested the validity of our EXKNM approach and the
importance of multiple scattering by utilizing a 1D slab
model. We compared the diffracted intensities calculated us-
ing EXKNM theory with the exact results. First, we modeled
our 3D CCA set of (111) layers as a 1D array of slabs. It is
generally accepted that the scattering efficiencies of light
Bragg diffracted by (111) CCA planes can be modeled by
scattering of light by 1D slabs.3! To exactly determine the
light transmission and diffraction (the diffracted wave is sim-
ply a reflected wave in case of 1D slabs) in the 1D system,
we used the transfer matrix method (Appendix B).

When the Bragg diffraction condition is approximately
satisfied for the (111) layers of a weak dielectric contrast fcc
CCA crystal, we can model the diffraction by replacing each
(111) CCA layer with two slabs of different dielectric con-
stant. The first slab with width L, and an effective refractive
index n; marked as 1 in Fig. 2(b) represents the CCA par-
ticles layer depicted as a layer of spheres in Fig. 2(a), while
the second “water” slab 2 has width L, and represents a
water layer of refractive index n,. The total width, the sum of
both slabs, equals the distance between (111) layers.

We define the parameters of the effective 1D slab system
by comparing a single 1D slab scattering efficiency with the
scattering efficiency of a single CCA (111) layer. The angular
distribution of the light scattered intensities by a single (111)
layer results from its 2D diffraction pattern, from its hexago-
nally ordered spheres. Most of the light is concentrated in the
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FIG. 2. (a) CCA colloidal particles in a single (111) fcc CCA
layer and the corresponding two slabs of the modeled 1D slab sys-
tem. Colloidal particles have a refractive index . and are located in
a water environment with a refractive index n,,. The 1D slab system
consists of a bilayer of slab 1 with refractive index n; and the slab
2 with the refractive index n,. The total thickness of the two 1D
slabs is the same as the distance between CCA (111) planes.
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narrow range of angles near the 2D Bragg maxima. Since we
are modeling the Bragg diffraction from CCA (111) planes,
we consider only the light specularly reflected from the (111)
planes at the zero order 2D maximum. It has previously been
shown?? that the scattering efficiencies in the specular direc-
tion by a single plane layer of spherical particles can be
approximated by the reflection from a single 1D slab.

We adjust the 1D slab system parameters, such as the
widths and refractive indices of the slabs, until the intensities
of light diffracted by a single (111) crystal layer were equal
to those of a single slab of the 1D system. Specifically, the
scattering by a CCA layer was calculated by using kinematic
theory and compared to the exact result calculated for a 1D
slab. The refractive indexes n; and n, were constrained by
the condition that the average refractive index of the 1D slab
system must be the same as the average refractive index of
the CCA, and the slab widths L; and L, were constrained by
the condition that the L,+L, was the same as the distance
between CCA (111) planes.

Figure 3 shows the dependence of the reflectance on the
wavelength of the incident light for a single (111) layer of a
CCA (blue line) obtained in the kinematic approximation and
by a corresponding slab of the effective 1D system (red
curve) obtained by exact calculation. Incident light normally
impinges on the (111) plane in Fig. 3(a) and at a 30° glancing
angle in Figs. 3(b) and 3(c). The electric vector is polarized
perpendicular to the scattering plane in Fig. 3(b) and parallel
to it in Fig. 3(c). The reflectance was obtained by integrating
over the diffraction spot and ratioed to the integrated incident
light intensity. The incident light energy flux is the intensity
of the incident light multiplied by the cross-sectional area of
the crystal which is illuminated.

The CCA crystal parameters used in calculations include
120 nm diameter colloidal particles with a 10% volume frac-
tion, giving an fcc lattice constant of 330.8 nm. The refrac-
tive index of the colloidal particles and the surrounding me-
dium (water) are n,.=1.6 and n,,=1.33, respectively.

We vary two parameters of the 1D slab system, the water
slab refractive index n, and width L;, until we obtain a good
fit between the curves corresponding to the 3D and 1D sys-
tems in the spectral region of the first order Bragg diffraction
from the (111) layers. The best match for a case of normal
incidence was obtained for the L;=86nm and n,
=1.3312 nm, which fixes two other parameters as L,
=105 nm and n;=1.3885 nm. For light incident at the glanc-
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FIG. 3. (Color online) (a) Reflectance for back-diffracted light
by a single (111) crystal plane of 500X 500 particles (blue solid
curve) and by the single slab of 1D system (red dotted curve) shown
as a function of the wavelength of normally incident light. For the
light incident from vacuum at glancing angle of 30° for (b) perpen-
dicular and (c) parallel polarizations.

ing angle of 30°, the best fit values for the perpendicular
polarization were L;=89 nm and n,=1.3305 (and, corre-
spondingly, L,=103 nm and n;=1.3880). For parallel polar-
ization, the best fit parameters were L;=115 nm and n,
=1.3275 (L,=76 nm and n,;=1.3765).

At the Bragg incident angle for diffraction from the (111)
planes, all particles in the plane scatter coherently in phase.
As a result, the single sphere scattering efficiency depen-
dence on the wavelength of light is the main factor contrib-
uting to the specific shape of the intensity curve in Fig. 3.
Thus, the maximum of the reflectance occurs at the maxi-
mum of the single particle scattering efficiency.

Figure 4 compares the reflectance by a CCA of 40 (111)
layers, each consisting of 500X 500 colloidal particles, cal-
culated by using the EXKNM theory. Light is incident nor-
mal to the crystal surface in Fig. 4(a), while Figs. 4(b) and
4(c) show the results for a 30° glancing angle of incidence
for perpendicular and parallel polarizations. The results ob-
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FIG. 4. (Color online) Reflectance from 500 X 500 X 40 particle
CCA (blue curve) calculated by using 3D EXKNM theory and from
a 1D system (red which completely overlaps the blue curve and
green curves) as a function of the wavelength of incident light. The
red dashed curve was calculated by using the 1D EXKNM theory,
while the green dotted curve is the 1D exact solution. (a) Normal
incidence, (b) 30° glancing angle of incidence with perpendicular
polarization, and (c) 30° glancing angle of incidence with parallel
polarization.

tained for the calculated 3D CCA are compared to the results
for the related 1D slab system. We examined the range of
wavelengths around the first order Bragg diffraction maxi-
mum.

The reflectance for the 1D system was calculated by the
ID exact and the 1D EXKNM methods (Appendix A). The
red dashed curves show the EXKINM theory result for the 1D
slab system, where attenuation of the incident light in the
crystal is taken into account. The 3D and 1D EXKNM cal-
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culations give almost identical results; the blue solid and the
red dashed curves completely overlap. Since the EXKNM
results for 3D and 1D case are so close, we can examine the
importance of multiple scattering and compare the exact and
EXKNM results only for the 1D slab system.

The exact solution for diffraction from the 1D slab system
calculated by using the transfer matrix method (Appendix B)
is shown in Fig. 4 (green dotted curves). Comparing the
exact and EXKNM approximations allows us to examine the
validity of kinematic theory and the relative importance of
multiple scattering. The diffraction efficiency in Fig. 4(b) is
much larger than that in Fig. 4(c) because the spheres scatter
perpendicular polarized incident light more efficiently, re-
sulting in a more efficient Bragg diffraction. The increase in
the single-scattering efficiency results in stronger multiple
scattering. The result is a decreased calculated diffraction
bandwidth, as compared to the exact calculations.

EXKNM works well when single spheres scatter rela-
tively weakly such that the total diffracted integrated inten-
sity is significantly less than the incident intensity. Thus,
good agreement between the exact and EXKNM results was
obtained in Fig. 4(c), especially in the wings of the main
Bragg diffraction peak, where the diffracted intensity is
small. The agreement shown in Fig. 4(a) is better than that in
Fig. 4(b) because EXKNM theory works best when single
spheres scatter relatively weakly.

EXKNM results in a value of the Bragg peak width two-
fold less than the exact result in the case of strong sphere
scattering [Fig. 4(b)]. In Figs. 4(a) and 4(c), the Bragg peak
widths are similar for both the exact and EXKNM calcula-
tions.

Disorder in the 1D slab system broadens the Bragg peaks
and increases the intensity of diffuse scattering (Fig. 5). The
Bragg diffraction peak becomes more diffuse and the inci-
dent wave is less attenuated. We compare the exact and
EXKNM calculations for a disordered 1D slab system in Fig.
5 for normally incident light. Disorder is modeled by varying
the thickness of the slabs comprising the system. However,
the refractive index of the slabs was maintained at the value
employed for the perfectly periodic system shown in Figs.
5(c) and 5(d). The thickness of the slabs comprising the dis-
ordered CCA was distributed according to the uniform ran-
dom variations of 10% magnitude in (a) and (c) and 20%
magnitude in (b) and (d).

Figures 5(a) and 5(b) show the reflectance of a single
configuration of a disordered 1D slab system. We see that the
Bragg peak subdivides into a series of narrow peaks which
are spread over a wider spectral region and narrow features
appear in the wings.

To simply model disorder, we calculated a random en-
semble of configurations of 1D slab systems with random
width slabs and averaged the diffracted intensities over this
ensemble. In Figs. 5(c) and 5(d), we averaged the reflectance
over 80 random disordered configurations plotting the exact
result in blue and the EXKNM result in red. As a reference,
the exact result for the perfectly periodic system is plotted in
blue. Averaging the disorder broadens the Bragg peak and
decreases its maximum value, and reflectance peaks in the
wings “smooth out.” The exact and EXKNM results are very
similar. The major effects are that the diffracted bandwidth
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FIG. 5. (Color online) Wavelength dependence of reflectance for 1D slab system consisting of 180 slabs. [(a) and (b)] Single disordered
system configuration. The blue solid curve is the exact result. The red dashed curve is the EXKNM result. [(c) and (d)] Reflectance for
perfectly ordered system and disordered system averaged over 40 random configurations. In (c) and (d), the exact result for a periodic system
(blue solid curve) is compared to the exact and EXKNM results averaged over the disordered system (red dashed and green dotted lines).

increases and the diffracted intensity decreases. For 10% dis-
order, this system of 180 slabs continues to diffract all light
at the center of the band while the width increases by 50%.
For 20% disorder, only 80% of light is diffracted in the cen-
ter and the bandwidth triples.

IV. DEPENDENCE OF CRYSTALLINE COLLOIDAL
ARRAY SCATTERING EFFICIENCY ON DIAMETER OF
COLLOIDAL SPHERES

The primary experimental quantity extracted is the inte-
grated intensity we obtained by integrating over the solid
angle containing the diffraction spot on the scattering sphere.
The factors that could affect the integrated intensity over a
diffraction spot include the magnitude of the single-
scattering form factor, the shape and the size of the diffrac-
tion spot, the effective number of crystal layers, and cross-
sectional intensity profile of the incident light

Generally, the size of CCA in experiments is larger than
the diameter of the incident beam. Upon changing the angle
of incidence, we change the area of the CCA illuminated by
the incident beam and consequently change the number of
colloidal particles participating in the scattering. However,
the ratio between the integrated diffracted intensity and this
area is constant for a large enough ideal crystal and will not

depend on the size of the illuminated CCA area.

In what follows, we assume that the diameter of the inci-
dent beam is larger than the CCA size, but since we calculate
the reflectance (the ratio between the diffracted and incident
integrated intensities over the relevant area), our calculations
are also valid for the case when the CCA is larger than the
incident beam. In our numerical simulations, we treat the
case of a macroscopic crystal; therefore, we choose the di-
mension of the calculated CCA by increasing the lateral size
of the CCA until the reflectance converges to a constant
value.

In this section, we examine how the scattering properties
of the CCA depend on the scattering properties of the indi-
vidual spheres. We examine how the CCA scattering effi-
ciency and N, depends on the diameter D of the colloidal
sphere. The EXKNM method is well suited to analyze how
the diffraction properties of a CCA depend on x, the size
parameter x=27Dn/\ (where n is the refractive index of the
surrounding media). In this section, we show how the inten-
sity of light Bragg diffracted by (111), (200), and (220) crys-
tal planes depend on the size parameter of the spheres.

Our model examines a perfect periodic fcc crystal consist-
ing of stacked (111) layers of a parallelogram shape and
dimensions of 500 X 500. This CCA is illuminated by a plane
wave monochromatic beam. We set the CCA fcc lattice con-
stant at 380 nm and calculate the diffraction for different
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FIG. 6. (Color online) Mie scattering efficiency from a single
spherical particle shown as a color map (linear in intensity). We
show the Bragg diffraction directions for several crystal planes la-
beled by their Miller indices. The incident wavelength is 337 nm
and the sphere diameter is 270 nm.

diameters of colloidal particles ranging from 150 nm to the
maximum diameter of 270 nm corresponding to a closed
packed system. We assume a colloidal particle refractive in-
dex of 1.6 and a water refractive index of 1.33.

The single sphere Mie scattering efficiency can be very
angular dependent, as shown in Fig. 6, which considers a
270 nm diameter sphere scattering 337 nm light. In this cal-
culation, we also indicate the Bragg diffraction angles for an
IR diffracting CCA with a lattice constant of 805 nm. For
this 337 nm wavelength, the CCA was oriented to meet the
Bragg diffraction condition for the (111), (222), (200), (220),
and (311) planes (Fig. 6).

The single-scattering contribution of the colloidal par-
ticles (the form factor in kinematic theory) depends on the
scattering angle and the polarization of the incident light and,
thus, will differ for diffraction from different crystal planes
with different Bragg diffraction angles at this single excita-
tion wavelength.

The 3D Mie scattering diagram (Fig. 6) for light scattered
by a single sphere indicates the scattering directions for
Bragg diffraction from specific crystal planes, for light po-
larized perpendicular to the incident plane. The crystal was
rotated about the z axis to achieve diffraction from the dif-
ferent crystal planes. Different colors on the scattering
sphere surface represent different scattered intensities, as la-
beled by the linear color map. Much more light is scattered
in the forward direction than in the backward direction. The
ratios of intensities scattered by a single sphere at the Bragg
angles for the (111), (200), (220), (311), and (222) CCA
planes have the relative intensities of 1, 0.75, 0.18, 0.04, and
0.02, respectively.

The ratio between the forward and backscattered intensi-
ties increases as the size parameter of the particle increases.
For convenience, we give the well known exact formulas for
Mie single sphere scattering in the far-field approximation in
Appendix C.

The diffraction efficiency of the CCA depends on the
form factor of the spheres, which is determined by the sphere
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FIG. 7. (Color online) (a) The single sphere scattering cross
section is plotted vs incident light wavelength (in vacuum) for three
sphere diameters of 150, 210, and 270 nm in a CCA. The sphere
refractive index is 1.6 and the water refractive index is 1.33. (b) The
backscattered light intensity from a single sphere is plotted for these
same three spheres. (c) The reflectance from a single (111) CCA
layer is plotted for these three spheres.

diameter, the wavelength of incident light within the CCA,
and the diffraction scattering angle. The form factor depen-
dence is shown in Fig. 7 where we specifically examine the
scattering of 599, 626, and 673 nm light from spheres with
diameters of 150, 210, and 270 nm and from a (111) CCA
single layer. These wavelengths (in vacuum) were chosen
because they meet the Bragg condition for 180° backscatter-
ing from the (111) planes of the considered three CCAs of
identical lattice constant, which utilized different sphere di-
ameters. The resulting diffraction condition occurs for differ-
ent wavelengths (in vacuum) of light because the CCA aver-
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age refractive index increases with the sphere diameter,
which decreases the actual wavelength of light propagating
within the CCA.

The scattering cross sections monotonically increase as
the size parameter increases as the wavelength decreases.
The cross section monitors how much light is removed from
the incident beam as a result of scattering in all directions.
The total amount of light scattering monotonically increases
with sphere diameter in the size parameter regime considered
here. The relative intensity of forward versus back diffraction
shows a more complex relationship [Figs. 7(b) and 7(c)].

In Fig. 7(b), we plot the wavelength dependence of the
scattered intensity, where we plot the differential dependence
on solid angle dI/d() in the exact backscattering direction
for sphere diameters of 150, 210, and 270 nm.

Although the Fig. 7(a) cross sections monotonically in-
crease with the sphere size, resulting in an increasing total
scattering over all directions as the sphere diameter in-
creases, the scattered intensity in specific directions does not
monotonically increase but oscillates as a function of wave-
length. For example, for 626 nm light, the most efficient
scattering with the largest form factor for back diffraction
occurs for the 210 nm sphere CCA. This backscattering ef-
ficiency is approximately 20% larger than for a larger
270 nm sphere.

We conclude that using smaller spheres in non-closed-
packed systems can increase the CCA diffraction efficiency
in the Bragg direction. This has the desired advantage of
considerably decreasing the single sphere extinction cross
section and thus decreasing the amount of diffuse scattering,
induced by disorder, for example. Diffuse scattering also oc-
curs for perfect crystals when there is significant multiple
scattering.?” In general, multiple scattering decreases as the
sphere diameter decreases.

Figure 7(c) shows the wavelength dependence of reflec-
tance by the single (111) CCA layer. Since the integrated
intensity is calculated by integrating the scattered intensities
over the diffraction spot, it depends on both the single sphere
form factor and the solid angle subtended by the diffraction
spot. The diffraction efficiency of the single (111) CCA layer
follows a similar dependence on the wavelength as we ob-
serve for the single sphere diffraction efficiency [Fig. 7(b)].
The backscattering diffraction efficiency of a single (111)
layer is largest for the CCA comprised of 210 nm diameter
spheres.

The effective depth of penetration of the incident light
[N, is defined as the number of (111) layers] into the CCA
is related to the diffraction efficiency of a single (111) layer.
The higher the efficiency, the more the attenuation of the
incident light within the CCA, and the smaller N, We cal-
culate N to be 30, 19, and 20 layers for CCA with sphere
diameters of 150, 210, and 270 nm, respectively.

Figure 8 shows the light differential intensity backscat-
tered by a single sphere as a function of the wavelength of
incident light divided by the average refractive index of the
CCA prepared with different diameter spheres. The CCA lat-
tice constant is 380 nm for all cases. The wavelength meet-
ing the Bragg condition for normal incidence from the (111),
(200), and (220) planes in the CCA are indicated. Higher
Miller index crystal planes have smaller spacings and, thus,
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FIG. 8. (Color online) Differential backscattered intensity of
light from single spheres in a CCA for five sphere diameters. The
arrows show the wavelengths corresponding to Bragg diffraction at
normal incidence to the (111), (200), and (220) planes. The abscissa
indicates the wavelength within the CCA (\/n,,)

smaller Bragg wavelengths. The sphere diameter providing
the largest CCA diffraction efficiency will differ for different
Miller index crystal planes. Obviously, the CCA diffraction
properties can be controlled by controlling the sphere diam-
eter.

Since the single sphere scattering efficiency into a specific
direction is an oscillating function of wavelength and sphere
diameter, the Bragg diffraction efficiency can sometimes be
much larger for a CCA with smaller sphere sizes. For ex-
ample, the largest sphere diameter of 270 nm shows the
smallest back diffraction for the (200) planes [Fig. 9(b)],
while spheres of 180 nm diameter diffract five times more
intensity into the Bragg direction.

The diffraction of light by photonic crystals is typically
described in two related ways, each of which stresses differ-
ent aspects of the physics involved. One is the photon band
dispersion relations which rely on considering appropriate
Bloch waves. This approach is well suited to describe the
multiple scattering of electromagnetic waves in infinite sized
periodically modulated dielectric structures.

Another approach considers the scattering of light by pho-
tonic crystals as the interplay between the single-particle
scattering from individual colloidal particles comprising the
CCA coupled with the macroscopic Bragg interference be-
tween the scattering from all particles of the system. In an
ideal crystal, the particles are periodically arranged, and the
scattering of plane waves by the crystal results in Bragg-type
diffraction maxima. This approach, upon which we based our
EXKNM method, has the advantage of explicitly relating the
scattering properties of single spheres to the CCA diffraction
properties. The stronger the single sphere scattering effi-
ciency in the Bragg direction, the stronger the scattering ef-
ficiency of each CCA (111) layer [Fig. 7(c)], and, hence, the
smaller the effective depth of penetration of incident light,
Nesr In the thick crystal limit, this translates into a larger
width of the diffraction peak and larger band gap for the
corresponding direction.

In Fig. 9, we examine the integrated intensity of light
normally incident diffracted by a CCA consisting of 25 (111)
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FIG. 9. (Color online) Wavelength (in vacuum) dependence of
the integrated intensity of light specularly diffracted by 25 (111)
CCA layers each containing 500 X 500 particles. The incident light
is normal to the (a) (111), (b) (200), and (c) (220) planes. The CCA
consist of spheres with diameters of 150 nm (blue), 210 nm (red),
and 270 nm (green).

layers. In Fig. 9(a), the light is incident normal to the (111)
planes, in Fig. 9(b), the light is incident normal to the (200)
planes, while in Fig. 9(c), the light is incident normal to the
(220) planes. The effective number of layers N, involved in
diffracting essentially 100% of the incident light and the
backscattering intensity F' from the single sphere are pre-
sented in Table I. Comparing Fig. 8 to Table I, we see that
N, is related to the single sphere scattering efficiency at the
diffracted direction. Strong scattering translates to the larger
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total diffraction efficiency and stronger attenuation of inci-
dent light and a smaller N,

For 150 nm diameter particles, N,;=30 from the (111)
planes. Since in Fig. 9(a) the CCA consists only of 25 layers,
some of the incident light is transmitted while ~90% of the
light is diffracted. For the 210 nm diameter spheres, N,
=19, and for the 270 nm spheres, N,;=20. Since N, <25,
all incident light is diffracted. Increasing the number of lay-
ers above N, results in diffracting a broader range of wave-
lengths; the Bragg peak broadens. Figure 9(a) shows similar
intensity diffracting peaks for the 210 and 270 nm CCA,
which results from their similar single sphere scattering effi-
ciencies (Fig. 8).

Figure 10 shows the incident glancing angular depen-
dence of Nosr for three CCA containing 150, 210, and
270 nm diameter particles diffracted by (111) crystal planes
at the different Bragg wavelengths. The dotted curve shows
the intensity of single sphere scattering dI/d() at the angle of
the Bragg diffracted light. In general, an increasingly effi-
cient single sphere scattering translates into a smaller N, .
For perpendicular polarization, the single sphere scattering
efficiency monotonically increases with the incident angle,
and N, correspondingly decreases. For parallel polarization,
the single sphere scattering efficiency dips at an intermediate
scattering angle, where almost no light is scattered by the
spheres in the Bragg direction and the CCA becomes trans-
parent.

Figure 11 shows the dependence of N, for Bragg diffrac-
tion from the (200) planes. The glancing angle here is de-
fined relative to the (111) CCA surface. The integrated inten-
sity and N, are calculated only for specular diffracted light
from the (200) planes, and we do not take into account any
Bragg diffraction from other crystal planes, which might also
fortuitously occur. The angular dependence of the single
sphere scattering efficiency from the (200) planes is shown
by a dotted line. These calculations show that in addition to
the single-scattering efficiency, there are other factors affect-
ing N,z For perpendicular polarization, the single-scattering
efficiency decreases with the glancing angle. However, N,
first decreases (and correspondingly CCA diffraction effi-
ciency increases) reaching a minimum at 73°. At this specific
angle, light is most efficiently diffracted and propagates
within the (111) plane. We will discuss this phenomenon in a
subsequent paper.

Figure 12 shows the dependence of N, on angle for dif-
fraction by the (220) planes. We see that N, has a compli-
cated dependence on the angle of incidence and essentially
follows the shape of single sphere scattering efficiency.

V. CONCLUSION

We used the single-scattering approach to investigate light
diffraction by a CCA photonic crystal with a small dielectric
constant mismatch between the spheres and the medium. We
extended standard kinematic theory by including attenuation
of the incident light intensity during propagation through the
crystal. Our method (EXKNM) can be used to predict light
diffraction from large but finite CCAs consisting of many
particles. As the first step toward this aim, we model light
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TABLE I. EXKNM results for three different diameters D of colloidal particles in an fcc CCA with
500X 500 X 100 particles and lattice constant of 380 nm. Effective number of layers N, was calculated for
the light normally incident to the specified set of crystal planes. The Bragg wavelength of light inside the
CCA is twice the lattice spacing, as indicated in the table. Backscattered intensity of the single sphere F is
normalized relative to the value obtained for the sphere diameter D=150 nm scattering from the [111] plane.

500X 500X 100,

L=380 nm D=150 nm D=210 nm D=270 nm
Crystal N (nm)=
planes 2d,, F Nosr F Nosr F Negr
(111) 438.8 1 30 2.44 19 2.12 20
(200) 380 1.24 18 1.6 15 0.35 35
(220) 268.7 0.57 56 1.91 29 7.4 14

scattering by perfect fcc crystal CCAs. We examined the
dependence of the diffraction efficiency on the sphere diam-
eter and angle of incidence. The effective penetration depth
of the incident light was calculated for several fcc planes for
CCAs of different sphere diameters.

We studied both close-packed and non-close-packed sys-
tems and compared their diffraction efficiencies as a function
of sphere diameter. We show that the diffraction efficiency
does not always increase monotonically with the sphere di-
ameter. Thus, a closed-packed photonic crystal system is not
always the most efficient Bragg diffracting crystal.’* For the
CCA consisting of polystyrene spheres in water, the most
efficient Bragg diffraction by (111) planes at normal inci-
dence is achieved at sphere diameters approximately 20%
smaller than the close-packed case. At normal incidence to
the (200) planes, the single sphere scattering efficiency at the
Bragg condition is five times larger for spheres of a diameter
approximately 30% smaller than the close-packed case.

One of the simplest ways to model the diffraction from
stack of (111) layers is to replace each layer with a 1D di-
electric slab. We show how to specify the dielectric modula-
tion of such a 1D slab system by matching the diffraction
intensity of a single 1D slab to a single (111) crystal layer.
We tested the impact of multiple scattering by comparing
results obtained by EXKNM method to exact solutions for a
1D slab system. For a low contrast modulation CCA, the
diffracted intensities calculated by EXKNM are close to the
exact result obtained for an effective 1D slab system. Al-
though the EXKNM method does not take into account mul-
tiple scattering effects, it gives good results in calculating
diffracting intensities. For the perfect 1D slab system, the
EXKNM bandwidth of the diffracted peak is smaller than the
exact result by less than twofold.

Our calculation method can be used to predict the optimal
properties of photonic crystal films that have been used as
photonic crystal coatings and sensors.** Our method can also
be used to examine the impact of CCA disorder, such as
variations in particle position, diameter, and changes in di-
electric constant.
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APPENDIX A: EXTENDED KINEMATIC ONE-
DIMENSIONAL THEORY

We developed 1D analogs of EXKNM theory and used
these formulas to investigate the role of multiple scattering in
the 1D case by comparing the result to the exact expressions
for scattering intensities of a 1D slab system. Here, we as-
sume that each unit cell consist of two layers, of high and of
low refractive index. These two layers form the repeating
unit cell of the 1D periodic structure.

We assume that our 1D slab system consists of N repeat-
ing units each of thickness d. In EXKNM theory, we further
assume that the incident propagating wave attenuates while
propagating through the system. The total amplitude r, of the
wave scattered by N units is the sum of contributions from
all N units,

N
n= E t,ry exp(in®),

n=1

where r; is the single unit scattering factor, and the phase
factor ®=2kn,, sin(a) corresponds to the phase difference
between the scattering contributions of two adjacent units.
The incident wave with wave vector k propagates at a glanc-
ing angle « within the 1D slab system with an average re-
fractive index n,,,.

The amplitude of the incident wave after propagating
through 7 units is 7,=\1—-7>_,. We calculate the single cell
scattering factor r; by using the exact transfer matrix 1D
theory® applied to a single dielectric layer.

APPENDIX B: EXACT SOLUTION BY THE TRANSFER
MATRIX METHOD FOR THE PROBLEM OF
LIGHT SCATTERING BY ONE-DIMENSIONAL PERIODIC
LAYER SYSTEM

We solved Maxwell equations for 1D layered (along z)
system by the standard transfer matrix method.?> Reflection
and transmission coefficients can be obtained by solving
Maxwell equations for either the H or E field. Here, we
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FIG. 10. N, (solid line) and the scattering efficiency of single sphere (dotted) for Bragg diffraction by (111) planes as a function of
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colloidal particles.

examine it for the H field. In the case of TM modes (mag-
netic field H vector is parallel to the interface between lay-
ers), we solve the wave equation for the H(z) field,

(92 k2 2
(5

The solution for the magnetic field inside each layer can be
represented as a combination of two plane waves, one is in
the forward and another is in the backward direction,

H,(z) =A, e + B,e 7,

For a layered 1D system consisting of a finite number of
identical unit cells (each unit cell contains two layers), we
can connect coefficients A, and B,, for two arbitrary cells.

For example, we can connect cell n=0 and cell n=N sepa-
rated by N cells with the matrix equation

(o
By

whrere L and T are 2 X 2 matrices (the exact expression for
these matrices is complex and can be found in Ref. 35),
where d is the unit cell length and

) -V, mal,m(z”

N

a, = \s"(w/c)zsl - ki.

The exact result for the transmission » and reflection ¢
amplitudes can then be obtained from
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-

The reflection intensity |r|> can be calculated by

|r|2= L12L21
Lol ( AN )2’
+ | —=
12521 X2A,—-X2N

where | and \, are the eigenvalues of matrix L. The reflec-
tion coefficient r; (used in 1D kinematic theory) for just one
cell is obtained by

Ly

2_
|r1| Ly

In the case of TE modes, we can solve a similar wave
equation but for the E electric field vector, resulting in
slightly different matrix elements for matrix L but otherwise
the same formulas for the reflection and transmission coeffi-
cients.

APPENDIX C: SCATTERING OF LIGHT BY A SINGLE
SPHERE

It is well known that when a plane electromagnetic wave
is scattered by a dielectric sphere, it is possible to obtain the
exact analytical solution for the scattered intensity by solving
Maxwell equations.?

When an incident plane wave of amplitude E| is polar-
ized along the x axis, we can calculate the single sphere
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The glancing angle is defined relative to the (111) CCA surface.

3D scattering amplitude Es(r,0,¢) [form factor F j(F) for
sphere j in formula (1)] as a function of spherical coordinates
r, 6, and ¢ with the coordinate origin at the sphere center
as

2
0.0 = IS Orcos’ () + SHOsin’ ()],

Asymptotic far-field expressions for parallel and perpendicu-
lar polarization scattered effective intensities |S;|> and |S,|*
are given by

< 2n+1 ] Plcos()]  dP)[cos(6)]
S‘(a)_z nn+ | sin(e) " 4|
B 2 2n+1 P,l,[cos(ﬂ)]
52(9)‘,2 nin+1) " sin(6)
dP,i[cos(B)]
+a,— |,
de

where sz are associated Legendre polynomials and the ex-
pressions for the scattering coefficients a, and b, can be
found, for example, in Ref. 29.

235404-15



TIKHONOV, COALSON, AND ASHER

*Author to whom correspondence should be addressed. FAX: 412-

624-0588. asher@pitt.edu

7. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic
Crystals: Molding the Flow of Light (Princeton University Press,
Princeton, NJ, 1995); Photonic Band Gap Materials, edited by
C. M. Soukoulis (Kluwer, Dordrecht, 1996).

2S.Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joan-
nopoulos, Science 282, 274 (1998); G. A. Ozin and S. M. Yang,
Adv. Funct. Mater. 11, 95 (2001); S. A. Asher, Nanoparticles:
Building Blocks for Nanotechnology, edited by V. M. Rotello
(Kluwer, New York, 2004), pp. 145-172; J. Broeng, D. Mogi-
levstev, S. E. Barkou, and A. Bjarklev, Opt. Fiber Technol. 5,
305 (1999); P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D.
Joannopoulos, Opt. Lett. 21, 2017 (1996); S. A. Asher, G. Pan,
and R. Kesavamoorthy, Mol. Cryst. Liq. Cryst. Sci. Technol.,
Sect. B: Nonlinear Opt. 21, 343 (1999).

3M. Holgado, F. Garcfa-Santamarfa, A. Blanco, M. Ibisate, A.
Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A.
Mifsud, F. Meseguer, and C. Lopez, Langmuir 15, 4701 (1999);
Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyan-
skii, O. Z. Karimov, and M. F. Limonov, Phys. Rev. E 61, 5784
(2000); Y. Xia, B. Gates, Y. Yin, and Y. Lu, Adv. Mater. (Wein-
heim, Ger.) 12, 693 (2000).

4R. J. Carlson and S. A. Asher, Appl. Spectrosc. 38, 297 (1984);
R. D. Pradhan, J. A. Bloodgood, and G. H. Watson, Phys. Rev. B
55, 9503 (1997).

SM. Doosije, B. J. Hoenders, and J. Knoester, Opt. Commun. 206,
253 (2002); E. E. Istrate, A. A. Green, and E. H. Sargent, Phys.
Rev. B 71, 195122 (2005).

oM. Sigalas, C. M. Soukoulis, E. N. Economou, C. T. Chan, and
K. M. Ho, Phys. Rev. B 48, 14121 (1993).

7]. B. Pendry, J. Phys.: Condens. Matter 8, 1085 (1996).

8N. Stefanou, V. Karathanos, and A. Modinos, J. Phys.: Condens.
Matter 4, 7389 (1992); K. Ohtaka and Y. Tanabe, J. Phys. Soc.
Jpn. 65, 2265 (1996).

9G. Gantzounis and N. Stefanou, Phys. Rev. B 73, 035115
(2006).

10, Braginsky and V. Shklover, Phys. Rev. B 73, 085107 (2006).

11O, Painter, K. Srinivasan, and P. E. Barclay, Phys. Rev. B 68,
035214 (2003).

2M. 1. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering,
Absorption, and Emission of Light by Small Particles (Cam-
bridge University Press, Cambridge, 2002).

3F. M. Kahnert, J. Quant. Spectrosc. Radiat. Transf. 79-80, 775
(2003).

I4T. Wriedt, Part. Part. Syst. Charact. 15, 67 (1998).

PHYSICAL REVIEW B 77, 235404 (2008)

I5E. Moreno, D. Erni, and C. Hafner, Phys. Rev. B 65, 155120
(2002).

1A, J. Ward and J. B. Pendry, Phys. Rev. B 58, 7252 (1998).

170. J. F. Martin, C. Girard, D. R. Smith, and S. Schultz, Phys.
Rev. Lett. 82, 315 (1999).

13D. W. Mackowski and M. I. Mishchenko, J. Opt. Soc. Am. A 13,
2266 (1996).

19y, Xu, Appl. Opt. 36, 9496 (1997).

20H. Kimura, L. Kolokolova, and I. Mann, Astron. Astrophys.
449, 1243 (2006).

2L Photonic Crystals and Light Localization in the 21st Century,
edited by C. M. Soukoulis (Kluwer Academic, Dordrecht, 2001);
Proceedings of the NATO ASI, edited by B. van Tiggelen and S.
Skipterov (Kluwer, Dordrecht, 2003).

22 A. F. Koenderink and W. L. Vos, Phys. Rev. Lett. 91, 213902
(2003); A. Yu. Sivachenko, M. E. Raikh, and Z. V. Vardeny,
Phys. Rev. B 63, 245103 (2001).

23R, W. James, The Optical Principles of the Diffraction of X-Rays
(Bell, London, 1962).

2*W. H. Zachariasen, Theory of X-Ray Diffraction in Crystals (Do-
ver, New York, 1945).

2P. A. Rundquist, P. Photinos, S. Jagannathan, and S. A. Asher, J.
Chem. Phys. 91, 4932 (1989).

26W. L. Vos, R. Sprik, A. van Blaaderen, A. Imhof, A. Lagendijk,
and G. H. Wegdam, Phys. Rev. B 53, 16231 (1996).

27R. M. Amos, J. G. Rarity, P. R. Tapster, T. J. Shepherd, and S. C.
Kitson, Phys. Rev. E 61, 2929 (2000).

288, A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and
R. Kesavamoorthy, Phys. Rev. E 69, 066619 (2004).

2H. C. van de Hulst, Light Scattering by Small Particles (Dover,
New York, 1957); C. F. Bohren and D. R. Huffman, Absorption
and Scattering of Light by Small Particles (Wiley, New York,
1983).

L. Liu, P. Li, and S. A. Asher, J. Am. Chem. Soc. 119, 2729
(1997).

3ID. M. Mittleman, J. F. Bertone, P. Jiang, K. S. Hwang, and V. L.
Colvin, J. Chem. Phys. 111, 345 (1999).

32M. Inoue, K. Ohtaka, and S. Yanagawa, Phys. Rev. B 25, 689
(1982).

3D. P. Gaillot and C. J. Summers, J. Appl. Phys. 100, 113118
(2006).

34C. H. Munro, M. D. Merritt, and P. H. Lamers, U.S. Patent No.
7,217,746 (15 May 2007); C. H. Munro, C. M. Kania, and U. C.
Desai, U.S. Patent No. 6,894,086 (17 May 2005).

3P Yeh, A. Yariv, and C. S. Hong, J. Opt. Soc. Am. 67, 423
(1977).

235404-16



