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Thermal diffusion from a single colloidal sphere suspended in an aqueous medium that is 
heated by a laser pulse is examined. The temperature field as a function of position and time 
arising from the cooling of a hot colloidal sphere suspended in an infinitely extended 
aqueous medium is obtained by solving the heat conduction equation with initial, asymptotic, 
boundary conditions using a Laplace transform technique. A polymethylmethacrylate 
sphere of 83 nm diameter is calculated to cool in water within 7 ns. The cooling time is found 
to decrease quadratically with the particle diameter. We discuss the use of arrays of 
dyed polymethylmethacrylate spheres suspended in a refractive-index-matched aqueous 
medium as a fast (ns) optical switching device which acts as an optical monostable. 

I. INTRODUCTION 

Charged colloidal particles suspended in water form 
stable dispersions due to their interparticle screened Cou- 
lomb repulsive interactions.14 The suspensions exhibit a 
wide variety of structural ordering and show crystalline, 
glass, and liquid phases depending on the particle concen- 
tration, impurity concentration, particle charge, tempera- 
ture, and the medium dielectric constant. The crystalline 
ordering has been exploited to make diffraction devices 
such as optical rejection filters.@ The colloidal suspension 
ordering has been investigated using optical microscopy,7 
light scattering,8 and Bragg diEi-action measurements.g 
Scattered and diffracted light intensities depend on the dif- 
ference in the refractive indices of the particle and the 
medium. *‘*‘l These dispersed particle systems have the po- 
tential to be used as optical limiters.‘2 For example, the 
colloidal crystals could be prepared from spherical colloids 
which, at a temperature TB have an identical refractive 
index to the dispersing medium. No diffraction of light will 
occur from this refractive-index-matched array.“‘” In 
contrast, if the sphere were heated by a pulsed laser pump 
beam that was selectively absorbed by the spheres,13 a dif- 
ference in refractive index would occur. The sphere array 
would selectively diffract until heat diffusion equilibrates 
the temperature difference. 

Here we examine heat diffusion in colloidal suspen- 
sions. This contrasts to our previous photothermal studies 
which examined photothermal compression’3 and photo- 
thermal dynamical phenomenal4 in these suspensions. 
These phenomena resulted from particle motion. We uti- 
lize previous thermal diffusion results derived from absorb- 
ing solution studies.r5’16 We solve the heat conduction 
equation for a sphere of polymethylmethacrylate 
(PMMA) immersed in water heated by a laser pulse, and 
obtain the temperature field created by a hot colloidal par- 
ticle cooling in an infinitely extended aqueous medium by 
solving the heat conduction equation. We calculate the 
cooling time of the particle and examine its dependence on 
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the particle diameter, and also discuss potential applica- 
tions of heated index-matched crystalline colloidal arrays 
of PMMA spheres for use as ns-fast switching devices and 
optical monostables. 

II. THEORY 

Consider a polymethylmethacrylate sphere of radius a, 
mass mp, and heat capacity Cp at a uniform temperature 
T1 at time t = 0 suspended in water at a temperature T2 
( < T1) everywhere at t = 0. The quantity of heat con- 
tained in the sphere at any time t, Q(t), is given by 

Q(t) =m&,T,(t>, (1) 

where TJt) is the average temperature of the sphere. The 
rate of loss of heat from the sphere to the water is given by 
Newton’s law of cooling as 

(2) 

where A is a constant. The solution of the above equation is 
given by 

Q=de -a + B, 

where the constants A and B are determined from the final 
and initial conditions, 

Ql t=m =B=m&&, 

Ql t,o=A + B=m&,T,. 

Hence, 

Q=m&,( T1 - T2>e-“’ + m&T,, (34 

and comparing the above equation with Eq. ( 1 ), the aver- 
age temperature of the sphere is obtained as 

T,= ( T1 - T2)e - /It + Tz. (3b) 

The heat lost by the sphere in time t = 0 to t is given by 

Qz=QIt=o- Ql,. 
Substituting Eqs. ( 1) and (3) in the above equation we 
obtain 
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QI=m,C,(T1--2)(1-ee-aif). (4) 

At time t> 0, the heat from the particle will diffuse out into 
the water and the water temperature, T(t,r), will be given 
by the heat diffusion equation15 

v2T$, 
(5) 

where a is the thermal diffusivity of water. The present 
heat diffusion geometry is spherically symmetric and hence 
Eq. ( 1) reduces to 

i a 
7% ( 1 

.2aT 1 dT - =-- 
dr a at ’ (6) 

where r is the distance from the center of the particle. We 
solve this expression by substituting the variable u, defined 
by 

u(r,t) =rT. (7) 

Thus, 

a2u i au =-- 
br2 a&* (8) 

The solution to the above equation can be readily obtained 
through the Laplace transform. The Laplace transform of 
u(r,t) is defined asI 

s 

Co 
U( r,s) = u(r,t)e-“‘dt. 

0 
The Laplace transforms of the derivatives of u are given by 

au -= at s 

m au a2u a*27 
0 ze -“dt=sii - u(r,O) and s=c. 

The Laplace transform of Rq. (8) becomes 

g&; (E-!$!2). (9) 

The temperature of water at t = 0 is T2 everywhere and 
hence 

u(r,O) =rTz, (10) 

for r > a where a is the sphere radius. 
Substituting Rq. ( 10) in (9) we obtain for r > a, 

the solution of which is given by 

U=Cleqr+ C2e-q’f (rT,/s), (11) 

where Ci and C, are the constants in r and q = m. 
The constants can be determined from the boundary con- 
dition and the continuity equation. 

Sinceumustbefmiteasr-+co,Ci = OandEq. (11) 
becomes 

U= C2e - qr + ( rT2/s) . (12) 
The heat gained by water from t = 0 to t is given by 

Qg= j-: 4s-r ‘pC[ T(r,t) - T2]dr, (13) 

where C and p are the heat capacity and density of water, 
respectively. Substituting Eq. (12) in the Laplace trans- 
form of Eq. ( 13) and carrying out the integration, we ob- 
tain 

&= (4rkC2e-qa/s)( 1 + qa), 

where k is the conductivity of water given by 

k=pCa. 

t 14) 

The heat lost by the sphere from t = 0 to t is given by Eq. 
(4). The continuity equation demands that Q, = Ql which 
implies that 

Qg= iZ. 

By comparing Eq. (14) with the Laplace transform of Eq. 
(4) we obtain 

4?rkC2e -q”( 1 + qa) 
s 

=m&,(T, - T2) (i--k) . 

The above equation gives the expression for C’, as 

c = h&“tTl- T2>eqa 
* 4?rk(A+s)(l +qa). 

Am&.,( T1 - T2)e-qcr-‘) T2 
4rkr(A-ts)(l+qa) +s’ (15) 

A is the effective time constant with which the heat 
content of the particle is decreasing. The value of A is 
determined by the rates of heat diffusion within the sphere 
and/or into the water environment. If the diffusivity of the 
sphere is much larger than of water, A will be specified by 
the heat diffusivity of water and vice versa. 

Consider a temperature distribution in the sphere. The 
thermal equilibration time of the sphere is obtained using 
Refs. 15 and 18 as 

tT- a2/6aP, (16) 

where up is the thermal diffusivity of the sphere. If a 
> aP, the rate of heat lost by the particle will be limited by 
the thermal diffusion within the sphere and hence 

a-t, l. (17) 

If a ( apt then the sphere can equilibrate faster than the 
rate of heat transport in water. In such case, A will be 
decided by imposing a boundary condition at r = a that 

TI r=&T,l r=as (18) 

where TP 1 r=O is the surface temperature of the sphere. This 
inequality implies that the source temperature cannot be 
lower than the sink temperature. 

In our present case, the values of a and aP are compa- 
rable. Hence we have to examine the values of A using both 
methods and choose the lower one. In order to resolve 
inequality ( 18), we need to solve the heat conduction 
equation in the sphere. 
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Following the procedure used in this work, we obtain 

a2u s - 
d=a, up- 

( 

up(r,O> 
s 

1 
2 

(19) 
where the subscript p in up and aP denotes particle. The 
temperature of the sphere at t = 0 is T1 everywhere. 

Hence, 

uJr,O) =rT,. 00) 

Substituting Eq. (20) in Eq. ( 19) we obtain 

(21) 
The solution of Eq. (2 1) is given by 

Up=Cple4pr+c,Ze-96+~, S 
where C Dr and Cp2 are the constants in r and qp = J 

(s/ap). The constants are determmed from the bound- 
ary condition and heat continuity equation. Tp at r = 0 is 
tite at all times. This implies that 

Tpl ,=a=finite. 

From Eq. (22), 

e-W 
Tplr=O=cp~~+cps~+~ = finite, 

r=O 

which gives Cpl = - Cp2. 
Hence, Fq. (22) becomes 

Up=Cpl(eV- e-V> + (rT,/s). (23) 

Heat lost by the sphere from time 0 to t can be written as 

h-r “ppCp[ TI - T,(r,t)]dr. (24) 

Substituting Eq. (23) in the Laplace transform of Eq. 
(24), we obtain 

i&v [eqf(l -4~) -e-(ra(l +qpa)], 

and comparing the above equation with the Laplace trans- 
form of Eq. (4)) we obtain 

~mpCp(Tl - T2> 
CP1=~~p(/Z+s)[eq~(l-qqa) -e-W(i +qfl)] * (25) 

Thus, the temperature of the sphere at any distance and at 
any time is given by the inverse Laplace transform of 

“,p Tp -= 

l-1 ;Im,C,(T, - T2)(e-Qp(u-r) - e-Qa+r)) 

(26) 

t / nsec 

FIG. 1. Calculated sphere surface temperature ( 0 ) and water tempera- 
ture at sphere surface (0) for A = 3 X IO* s - ’ as a function of cooling 
time. Diameter of the sphere is 83 nm. Inset shows the calculated sphere 
surface temperature and water temperature in an expanded scale. 

Hence, the Laplace transform of the surface temperature of 
the sphere is given by 

u! 
r =T;,ra 

r=Q 

Tl =- S 

A.mPCp( T, - T2) (1 - ew2W) 

+4?rkg(d+S)[(l -qfl) -e-2qfl(l +qfl)] * 

(27) 
Using Eq. ( 15), the Laplace transform of the water tem- 
perature at the contact with the sphere can be obtained as 

ampCp(T~ - T2) 
47rk@-i-s)(1 +qcza) ’ (28) 

The inverse Laplace transforms of Eqs. (27) and (28) give 
Tp I T=a and T I c We can determine the upper limit of A for 
which inequality ( 18) is satisfied. Comparing this value of 
il with that of Eq. ( 17), we choose the lower value. 

111. RESULTS AND DISCUSSION 

We assume that the sphere temperature increases uni- 
formly and instantaneously by 100 “C!. As indicated below, 
this temperature increase derives from heating by an inci- 
dent laser pulse that is selectively absorbed by the spheres. 
We obtain the value of 2 by searching for the minimum 
value of/z that fulfills the inequality of Eq. ( 18). Our first 
guess of ,I utilizes the particle thermal equilibration time 
tT calculated from Eq. (16); ;1 is the inverse of tT 

= 3.33 X 10 - ’ s for a PMMA particle of 83 nm diameter 
(A = 3 X lo* s - ‘). Using this value of ;1, the surface 
temperature of the sphere and the water temperature at 
contact with the sphere were calculated by numerically 
calculating the inverse Laplacc transform of Eqs. (27) and 
(28). 

Figure 1 plots these temperatures as a function of time. 
At time t = 0, the water temperature is 20 “C!. In contrast, 
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t / nsec 

FIG. 2. Calculated sphere temperature at a distance r = 0 (center of the FIG. 3. Temporal dependence of the water temperature at a distance of 
sphere) (0), r=0.4a (A), r=0.8a (Et) and r=a (E) for A = 1.6 
X 10’ s- ’ as a function of time. Diameter of the sphere is 2a = 83 run. 

r=ff (O), r=2a (O), and r=4a (A.), from the sphere center. /1 
= 1.6 x 10’ s- ‘, sphere diameter is 2a = 83 nm. 

at t = 0, the 83-nm-diam polymethyhnethacrylate 
(PMMA) sphere temperature is 120 “C!. Figure 1 shows 
that the particle surface temperature drops to ambient 
within about 10 ns while the water temperature at the 
sphere surface increases by 28 “C! within 1 ns and decreases 
to ambient temperature in about 30 ns. The water temper- 
ature at the sphere surface is higher than the sphere surface 
temperature between 10 and 50 ns (Fig. 1 ), which violates 
the inequality condition ( 18). Hence /z is reduced from 
3 x 10’ s - I, until the inequality ( 18) is satisfied. It was 
found that /z = 1.6 x 10’ s-l just satisfies inequality 
(18), and hence this value of ;1 was chosen for the 83-nm- 
diam PMMA particle cooling in water. 

The water temperature and the sphere temperature at 
various distances and times were calculated by inverse La- 
place transforming equations (15) and (26). Figure 2 
shows the sphere temperature as a function of time at var- 
ious radial distances. The particle surface temperature de- 
creases to its l/e value in about 7 ns, while at r = 0, the 
temperature decreases to its l/e values by 10 ns. The sur- 
face temperature decreases by 10 “C within 0.1 ns while the 
center temperature takes about 3 ns to decrease by 10 “C. 

Figure 3 shows the water temperature as a function of 
time at different radial distances. The water temperature at 
contact reaches its maximum temperature rise of 5 “C! 
within 3 ns and decreases to a l/e value in about 17 ns. The 
temperature excursion at larger distances from the sphere 
occurs later in time and is smaller in magnitude. 

Figure 4 shows the temporal temperature dependence 
of the sphere and water as a function of the radial distance 
from the sphere center. At r = a, the temperature is dis- 
continuous and the particle cools to 20% of its t = 0 max- 
imum temperature rise within about 10 ns. The water tem- 
perature increase is relatively small ( -5 “C) compared to 
the particle temperature increase. 

Similar cooling curves for different diameter PMMA 
spheres require different values of ;1. For example, il for 
166-nm-diam spheres was found to be 4 x 10’ s - ’ while 
/z is 6.7 X 10’ s -I for 41.5~mn-diam particles. Figures 
5(a) and 5(b) show the sphere temperature as a function 

70- 
0-0, T-a 

60- 0--0, r=*o 

,o 
A-A, r=40 

‘=- 50- 

40- 

10 100 1000 10000 
t / nsec 

of time at different radial distances for 166- and 41.5~nm- 
diam spheres, respectively. It is clear that smaller particles 
cool faster than larger particles. Figures 6(a) and 6(b) 
show the water temperature as a function of time at differ- 
ent distances for these two particles. The smaller spheres 
thermally equilibrate faster than the larger spheres. The 
maximum water temperature ( -25 “C) occurs at the 
sphere surface. The calculated value of/z decreases almost 
as the square of the particle diameter, in agreement with 
the thermal equilibration time expectations of Eq. ( 16). 

IV. APPLICATIONS 

The fast transient temperature response of these spher- 
ical particles can be used to create a fast (ns) optical 
switch. We discuss here an example that utilizes charged 
83-nm PMMA spheres containing absorbing but nonemit- 
ting dye molecules. The colloidal particles are ordered in a 
colloidal crystalline array in a refractive-index-matched 
medium containing a mixture of water and methyl phenyl- 
sulfoxide (MPSO), for example. The refractive indexlg of 
PMMA ( - 1.492) at 293 K is identical to that of a solu- 

,u 
80 

1 I 
\ 
t- 60 I 

2om 
0 1 2 3 4 

r/a 

FIG. 4. Particle temperature and water temperature as a function of 
distance from the sphere center at t = 1.28 ns (0 ), t = 10.2 ns (O), and 
t= 123 ns (A). A = 1.6 X lo8 s-t, sphere diameter is 2a = 83 nm. 
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FIG. 5. Sphere temperature at a distance r = 0 (0), r = 0.4~ (A), r 
= 0.8~ (El), and r = a (m) as a function of cooling time for particle 

diameter of (a) 166 nm with 1 = 4 X IO’ s-’ and (b) 41.5 mn with 
z-t. = 6.7 x 10’ s - ‘. 

tion containing 62.2% MPSO (refractive index” - 1.570) 
and 37.8% water (refractive index - 1.323). This colloidal 
array will, thus, not Bragg diffract light due to the refrac- 
tive index match between the spheres and the medium. 
When the suspension is irradiated with a laser pulse ab- 
sorbed by the dye, the particle temperature will increase 
relative to that of medium. Since the temperature deriva- 
tive of the refractive index” of PMMA is - 1.1 
X 10 -$/K, the refractive index mismatch 1 An 1 will in- 
crease with temperature. As the refractive index of the 
sphere diverges from that of the medium, the colloidal 
crystal will Bragg diffract and the transmission will de- 
crease for light meeting the Bragg condition. The transition 
from high transmission to low transmission occurs within a 

* few ns. Thus, this device acts as a ns-fast optical switching 
device. 

The low transmission state continues for a period of 
about 10 ns after the heating beam is turned off during 
which the thermal inhomogeneity decays and the colloidal 
crystal recovers to become completely transparent. This 
device acts as an optical monostable whose dwell time in 
the unstable state (low transmission state) can be con- 
trolled by varying the particle size or the heat beam inten- 
sity. 

We can calculate transmission of the beam through the 
colloidal crystal for various incident laser heat beam inten- 
sities and durations when the Bragg condition is satisfied. 

t / nsec 

O----O, r=a 
m-0, r=Zo 
A.-A, r=4a 

(b) “’ 
1 10. 100 1000 

t / nsec 

F’IG. 6. Temporal dependence of water temperature at a distance of r = a 
(O), r = 20 (O), and r = 4a (A) from the sphere canter for particle 
diameter of (a) 166 nm with P. = 4 x 10’ s-’ and (b) 41.5 nm with 
/z = 6.7 x logs-‘. 

Consider the index-matched PMMA colloidal crystal 
heated by an incident beam of wavelength &,. The resulting 
index mismatch causes Bragg diffraction of a probe beam 
of wavelength ,$, if it. satisfies the Bragg condition. The 
ratio between the Bragg diffracted power PH and the inci- 
dent power PO of the beam from a defect-free colloidal 
crystal is given byr’ 

pH sinh2(A j/iq> 
-= 
PO 1 - $ + sinh2(A dl - 3) ’ 

with 

(29) 

y= 040 - a)/2 1 @HI 

and 

(30) 

a=2(0, - 0) sin 2e8, 

where 19, is the Bragg angle, 8 is the incidence angle, rjo is 
the average crystal polarizability, and IJ~ is the Fourier 
component of the crystal polarizability with the periodicity 
of Bragg wave vector, Q = h-n, sin (3,//z,, where n, is the 
suspension refractive index. q. is obtained from the optical 
attenuationspectra of the colloidal crystal at various inci- 
dence angles.9*‘3 $H is given by2’ 

$H=#[ (n;$&> - 1 IG (31) 
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where 4 is the volume fraction of the particle in the sus- 
pension, n, and npn are the refractive indices of the me- 
dium and the particle, respectively, and G is the particle 
structure factor given bysl 

G= [3 (sin Qu - Qa cos Qa>/e”a”]. (32) 

The parameter A in Bq. (29) is given by 

A = 2?izn, 1 eHI 1&P sin 6, (33) 

where IO is the thickness of the crystal. 
Let IO and th be the intensity and pulse duration of the 

heat beam. Assuming that 1% of the light falling on the 
particle is completely absorbed (the particle absorption 
cross section is ra2/100), the temperature increase of the 
particle AT,(z) at a distance z from the front face of the 
crystal is given by15 

ATp(z) =+$f$ e - &fG.(~)d~~ 
PP 

(34) 

where C,(z) is the extinction cross section for the heat 
beam at z which is given by 

C,(z) =c,cd + (7T~2/100), (35) 

where C,(z) is the scattering cross section. For a vertically 
polarized heat beam C,(z) is given by” 

32;F ($;$)‘G(B) sinOd0, 

(36) 

where G( 0) is given by Eq. (32) with the scattering angle 
8 = 20,. The computed value of C,(z) using the above 
equation is found to be about four orders of magnitude 
smaller than ra2. The refractive index mismatch between 
the particle at z and the medium, An(z), induced by 
AT,(z) is given by” 

An(z)= - 1.1~10~“ATp(z), (37) 

where dn/dT = - 1.1 X low4 K-l for PMMA parti- 
cles. Since the heat beam is attenuated in the suspension, 
An(z) will be a function of z and hence the effective value 
of a A is obtained from Eqs. (33) and (3 1) by integration 
and is given by 

A= ;sB (y- I),. (38) 

The minimum transmission that occurs for y = 0 in 
Bq. (29) of an incident beam satisfying the Bragg condi- 
tion (probe beam) can be calculated from Bqs. (29)-( 38). 
Table I gives the transmission of the probe beam of ;lp 
= 514.5 nm (P/PO = 1 - Px/Po) through a4OO-pm-thick 
dyed index-matched PMMA colloidal crystal for various 
incident laser pulse intensities and Bragg angles. The trans- 
mittance PJPo decreases as IO, tht and 0s increases. Figure 
7 shows that the transmission of the probe beam is a non- 
linear function of heat beam intensity. Figure 8 shows the 
transmission of the probe beam as a function of time for a 
5-ns-wide rectangular heating beam of 10 MW/cm2. If the 
switching of the state (device) is defmed as the time to 

TABLE I. Transmittance of a beam’satisfying the Bragg condition at 
angle 0, in an index-matched bee colloidal crystal consisting of 83-nm- 
diam PMMA particles heated by incident laser pulses of intensities IO 
with pulse durations tb 

10 
(MW/cm’) 

1 
5 

10 

1 
5 

10 

1 
5 

10 

1 
5 

10 

4 
(ns) eE P/PO 

10 75 0.8451 
10 75 0.0605 
10 75 0.0010 

10 30 0.8735 
10 30 0.0925 
10 30 0.0024 

5 75 0.9579 
5 75 0.3948 
5 15 0.0605 

5 30 0.9662 
5 ’ 30 0.4665 
5 30 0.0925 

reach the 0.5 transmission point, then Fig. 8 demonstrates 
a switching time of 2 ns and a monostable time constant of 
-9 ns. Thus, the dyed index-matched PMMA colloidal 
crystal can be used as an optical switching device that 
turns on in 2 ns and operates as an optical monostable. 
This device could serve as an optical switch that can trig- 
ger the simultaneous transmittance decrease of multiple 
beams through the device. In this case, different wave- 
length would pass through the device at their individual 
Bragg angles. The transmission of all of these beams could 
be simultaneously switched off by a single heat beam, 

The dyed, index-matched colloidal crystal of PMMA 
colloidal particle will also operate as an optical limiter that 

$ 
6 0.6 - s .- E 
E 0.4 - 

e 
I- 

0.0 I 
0 1 25456789 

lo /VW/cm’) 
FIG. 7. Transmittance of the probe beam of wavelength 514.5 nm inci- 
dent at the Bragg angle 0, = 75’ as a function of the incident beam inten- 
sity for the pulse durations t,+ of (-) 10 ns and (---) 5 ns, through an 
index-matched 400~pm-thick colloidal bee crystal of 83-nm-diam dyed 
PMMA particles. The transmittance plotted is that occurring at the trail- 
ing edge of the pulse. 
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FIG. 8. Time dependence of transmittance through a nonlinear optical 
switch. (a) Heat beam pulse shape. (b) Transmission of the probe beam 
of wavelength 514.5 nrn incident at 0s = 75” on an index-matched dyed 
colloidal crystal of X3-run-diam PMMA particles as a function of time. 

nonlinearly prevents transmission of high incident intensi- 
ties. For example, let a heat beam of &, = 450 nm be inci- 
dent normally on a PMMA colloidal crystal of 50 pm 
thickness. If each sphere absorbs 1% of the light falling on 
it, the transmission of the incident heat beam is calculated 
by Eqs. (35) and (36) to be limited to 0.55 due to light 
absorption. In addition, if the Bragg condition is satisfied, 
transmission decreases further due to the Bragg diffraction 

0.6 - 
Jq .........m............ - . . . . . . . . . . . . . . . . . . . . ..-.............-..... 1 

0.5 

ti c O-4 I 
0 

=: 

‘i Oa3 

6 0.2 - 

e 

0.1 - 

0.01 
0 2 4 6 6 10 12 14 16 18 

t /nsec 
FIG. 9. The transmittance of a nonlinear optical limiter of an incident 
beam of wavelength A, = 450 nm, of intensity 10 MW/cm’ through a 
50-pm-thick dyed, index-matched PMMA fee colloidal crystal (with par- 
ticle diameter of 83 nm) at 9(r as a function of time, (-) when Bragg 
condition is satisfied, and (-) when Bragg condition is not satisfied. Inset 
shows the log of transmittance as a function of time. 

0.04. I, I ’ I. 8. L I I**. 1 ’ 

0 2 4 6 8 10 12 14 16 18 D 

I, /(MWm2) 

FIG. 10. The dependence of the transmitted intensity as a function of 
incident intensity for the colloidal crystalline array optical limiter. Inci- 
dent wavelength 1, = 450 nm. The transmitted intensity is calculated at a 
time 10 ns after the incident beam is turned on. The optical limiter con- 
sists of a 50-pm-thick dyed, index-matched PMMA fee colloidal crystal 
with particle diameter of 83 nm. 0s = 9r)“. The dashed line indicates the 
transmitted intensity for light that is not diffracted by the lattice. The 
inset shows the transmitted intensity in log scale as a function of the 
incident intensity for high intensities. 

losses. Assuming that Bragg diffraction, absorption, and 
scattering act as independent processes, the total transmis- 
sion of the incident beam is obtained by multiplying the 
transmittance from incomplete Bragg diffraction by that 
which results from light absorption (0.55). The ratio of the 
Bragg diffracted power to the incident power is given by 
Eqs. (29)-(38), with&inEqs. (33) and (38) replacedby 
&. Figure 9 shows the time dependence of the transmission 
of a lo-MW/cm” continuous wave heat beam of il, 
= 450 nm through the 50-pm-thick dyed, index-matched 
PMMA crystal which satisfies the Bragg condition for 
0B = 90. The transmittance decreases to 1% within 16 ns, 
and decreases exponentially to 10-l’ in 68 ns. Figure 10 
shows the incident intensity dependence of the transmitted 
intensity through this optical limiter at 10 ns after activa- 
tion. The transmitted intensity decreases to 10 kW/cm2 for 
an approximately 25-MW/cm2 incident beam and de- 
creases to 10 pW/cm’ for an 80-MW/cm2 incident beam. 
At low incident intensities the transmittance remains high. 
The dashed line indicates the expected linear transmittance 
in the absence of Bragg diffraction which is attenuated only 
by sphere absorption. Obviously, this optical device shows 
unique promise for use as an optical limiter to nonlinearly 
prevent transmission of intense incident laser radiation. 

V. CONCLUSlON 

The three-dimensional heat conduction equation has 
been solved for a hot sphere cooling in an infmitely ex- 
tended aqueous medium. The temperature field as a func- 
tion of time and position in the sphere as well as in the 
medium is obtained by a Laplace transformation tech- 
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nique. The temperature in the medium decreases exponen- 
tially with the radial distance from the surface of the 
sphere. The particle temperature at the surface is lower 
than that at the center. The PMMA particle of 83 nm 
heated to 120 “C is found to cool off within 7 ns in water 
causing the water temperature at the sphere surface to in- 
crease to a maximum of - 5 “C!. This temperature rise 
decays in 17 ns. The cooling time decreases quadratically 
with the sphere diameter. We discuss the use of this rapid 
thermal response as the basis for a novel optical limiter 
device and for uses in ns optical monostable switching de- 
vices and optical monostables. 
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