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Abstract
Large parallel machines with hundreds of thousands of processors are becoming more prevalent. Ensuring good load
balance is critical for scaling certain classes of parallel applications on even thousands of processors. Centralized load
balancing algorithms suffer from scalability problems, especially on machines with a relatively small amount of memory.
Fully distributed load balancing algorithms, on the other hand, tend to take longer to arrive at good solutions. In this
paper, we present an automatic dynamic hierarchical load balancing method that overcomes the scalability challenges
of centralized schemes and longer running times of traditional distributed schemes. Our solution overcomes these
issues by creating multiple levels of load balancing domains which form a tree. This hierarchical method is
demonstrated within a measurement-based load balancing framework in CHARM++. We discuss techniques to deal with
scalability challenges of load balancing at very large scale. We present performance data of the hierarchical load balancing
method on up to 16,384 cores of Ranger (at the Texas Advanced Computing Center) and 65,536 cores of Intrepid
(the Blue Gene/P at Argonne National Laboratory) for a synthetic benchmark. We also demonstrate the successful
deployment of the method in a scientific application, NAMD, with results on Intrepid.
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1 Introduction

Parallel machines with over a hundred thousand processors

are already in use. It is speculated that by the end of this

decade Exaflop/s computing systems that may have hun-

dreds of millions of cores will emerge, providing unprece-

dented computing power to solve scientific and engineering

problems. Modern parallel applications that use such large

supercomputers often involve simulation of dynamic

and complex systems (Phillips et al., 2002; Weirs et al.,

2005). They use techniques such as multiple time stepping

and adaptive refinements that often result in load imbalance

and poor scaling. For such applications, load balancing

techniques are crucial to achieving high performance on

very large scale machines (Devine et al., 2005; Bhatele

et al., 2008).

Several state-of-the-art scientific and engineering

applications such as NAMD (Phillips et al., 2002) and

ChaNGa (Jetley et al., 2008) adopt a centralized load

balancing strategy, where load balancing decisions are

made on one specific processor based on the load data

collected at runtime. Since global load information is

readily available on a single processor, the load balancing

algorithm can make excellent load balancing decisions.

Centralized load balancing strategies have been proven to

work very well on up to a few thousand processors (Phillips

et al., 2002; Bhatele et al., 2008). However, they face

scalability problems, especially on machines with a rela-

tively small amount of memory. Such problems can be

overcome by using distributed algorithms. Fully distributed

load balancing, where each processor exchanges workload

information only with neighboring processors, decentralizes

the load balancing process. Such strategies are inherently

scalable, but tend to yield poor load balance on very large

machines due to incomplete information (Ahmad and

Ghafoor, 1990). Fully distributed load balancing also

tends to take longer to arrive at good solutions.

It is evident that for petascale/exascale machines, the

number of cores and nature of the load imbalance problem

will necessitate the development of a qualitatively different

class of load balancers. First, we need to develop
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algorithmically efficient techniques because increasing

machine and problem sizes lead to more complex load

balance issues. Efforts involved in balancing the load can

become a performance bottleneck if the performance gain

due to better load balance is offset by the high cost of the

load balancing process itself. Further, at large scales, it

might be impossible to store load information that is used

for making load balancing decisions on a single processor.

Hence, we need to develop effective techniques to use

information that is distributed over many processors.

This paper presents a load balancing strategy designed for

very large scale machines. It overcomes the scalability

challenges discussed above by exploiting a tree-based

hierarchical approach.

The basic idea in our hierarchical approach is to divide

the processors into independent autonomous groups and to

organize the groups in a hierarchy, thereby decentralizing

the load balancing task. At each level, the processor at a

given node balances load across all processors in its sub-

tree. The root of the tree balances load across all the groups.

This method reduces the time and memory required for

load balancing since the groups are much smaller than the

entire set of processors. We present the following ideas in

this paper: 1) techniques to construct the tree using machine

topology information to minimize communication and

improve locality; 2) a method that explicitly controls and

reduces the amount of load data aggregated to the higher

levels of the tree; and 3) a token-based load balancing

scheme to minimize the cost of migration of tasks. We also

demonstrate that this hierarchical approach does not signif-

icantly compromise the quality of load balance achieved,

even though we do not have global load information

available at each load balancing group.

We demonstrate the proposed hierarchical approach

within a measurement-based load balancing framework in

CHARM++ (Kalé and Krishnan, 1993; Zheng, 2005), that

explicitly targets applications that exhibit persistent com-

putational and communication patterns. Our experience

shows that a large class of complex scientific and engineer-

ing applications with dynamic computational structure

exhibit such behavior. To perform load balancing on these

applications, load balancing metadata (i.e. the application’s

computational load and communication information) can

be obtained automatically by runtime instrumentation.

Our proposed hierarchical approach may also apply to

applications that do not exhibit such patterns, for example

those expressed in master–workers style, where the work

load can be approximated by the number of tasks in the task

pool.

The remainder of the paper is organized as follows:

Section 2 describes CHARM++ and its load balancing frame-

work, which is the infrastructure on which the proposed

hierarchical load balancers are implemented. Design and

implementation of the hierarchical load balancing method

is presented in Section 3. Performance results using the

hierarchical load balancers for a synthetic benchmark and

for a production scientific application, NAMD, are provided

in Section 4. Section 5 discusses existing work for scalable

load balancing strategies. Finally, Section 6 concludes the

paper with some future plans.

2 Periodic load balancing

Load balancing is a technique for distributing computa-

tional and communication load evenly across processors

of a parallel machine so that no single processor is

overloaded. In order to achieve global load balance, some

schemes allow the migration of newly created tasks only,

such as those in the field of task scheduling problems, while

other schemes also allow migration of tasks in progress.

In all these schemes, detailed computation and communica-

tion information needs to be maintained continually to be

used as metadata for making load balancing decisions.

In this paper, we mainly consider periodic load balancing

schemes, in which the load is balanced only when needed

by migrating existing tasks. With periodic load balancing,

expensive load balancing decision making and task data

migration occur only at the balancing times.

A large class of load balancing strategies in CHARM++

belong to the category of periodic load balancing schemes

(Zheng, 2005). Periodic load balancing schemes are

suitable for a class of iterative scientific applications such

as NAMD (Phillips et al., 2002), Finite Element Method

(Lawlor et al., 2006) and climate simulation, where the

computation typically consists of a number of time steps,

a number of iterations (as in iterative linear system solvers),

or a combination of both. A computational task in these

applications is executed for a long period of time and tends

to be persistent. During execution, partially executed tasks

are moved to different processors to achieve global load

balance. These characteristics make it challenging to apply

the load balancing method in the field of task scheduling,

where it is often assumed that once a task is started, it must

be able to execute to completion (Dinan et al., 2009).

One difficulty of all the load balancing schemes is how

to obtain the most current detailed computation and

communication information for making load balancing

decisions. CHARM++ uses a heuristic known as the principle

of persistence for iterative applications. It posits that,

empirically, for certain classes of scientific and engineering

applications, when they are expressed in terms of natural

objects (as CHARM++ objects or threads), the computational

loads and communication patterns tend to persist over time,

even in dynamically evolving computations. This principle

has led to the development of measurement-based load bal-

ancing strategies that use the recent past as a guideline for

the near future. These strategies have proved themselves to

be useful for a large class of applications (such as NAMD

(Bhatele et al., 2008), ChaNGa (Jetley et al., 2008), Fracto-

graphy3D (Mangala et al., 2007)). In measurement-based

load balancing strategies, the runtime automatically collects

the computational load and communication patterns for each

object and records them in a load ‘‘database’’ on each pro-

cessor. The advantage of this method is that it provides an
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automatic application-independent method to obtain load

information without users giving hints or manually predicting

the load.

The run-time assesses the load database periodically and

determines if load imbalance has occurred. Load imbalance

can be computed as:

s ¼ Lmax

Lavg

� 1; ð1Þ

where Lmax (also referred to as the critical path) is the load

of the most overloaded processor, and Lavg is the average

load of all the processors. Since a parallel program can only

complete when the most loaded processor completes its

work, Lmax represents the actual execution time of the pro-

gram, while Lavg represents the performance in the best sce-

nario when the load is balanced. Note that even when load

imbalance occurs (s > 0), it may not be profitable to start a

new load balancing step due to the overhead of load balan-

cing itself. When the run-time determines that load balan-

cing would be profitable, the load balancing decision

module uses the load database to compute a new assign-

ment of objects to physical processors and informs the

run-time to execute the migration decisions.

2.1 Migratable object-based load balancing
model in CHARM++

In our design of the hierarchical load balancing scheme, we

consider a petascale application as a massive collection of

migratable objects communicating via messages, distribu-

ted on a very large number of processors. Migrating objects

and their associated work from an overloaded processor to

an underloaded processor helps in achieving load balance.

Our implementation takes advantage of the existing

CHARM++ load balancing framework (Zheng, 2005) that has

been implemented based on such an object model (Lawlor

and Kalé, 2003).

Most of the existing load balancing strategies used in

production CHARM++ applications are based on centralized

schemes. We have demonstrated the overheads of centra-

lized load balancing in the past in a simulation environment

(Zheng, 2005). A benchmark that creates a specified num-

ber of tasks, n, on a number of processors, p, where

n � p, was used. In the benchmark, tasks communicate

in a two-dimensional mesh pattern. The load balancing

module collects load information for each task on every

processor. Information per task includes the task ID, com-

putation time, and data for each communication edge

including source and destination task ID, communication

times and volume. Processor-level load information is also

collected for each processor, including the number of tasks

on each processor and each processor’s background load

and idle time.

We measured the memory usage on the central proces-

sor for various experimental configurations. The results are

shown in Table 1. The memory usage reported is the total

memory needed for storing the task-communication graph

on the central processor. The intermediate memory alloca-

tion due to the execution of the load balancing algorithm

itself is not included. As the results show, the memory

overhead of storing the load information in a centralized

load balancing strategy increases significantly as the num-

ber of tasks increases. In particular, for an application with

1 million tasks running on 65;536 cores, the database alone

requires around 450 MB of memory, which is non-trivial

for machines with relatively little memory. This large

amount of information clearly becomes a bottleneck

when executing a realistic load balancing algorithm on a

million-core system with even more task units.

The challenge of dealing with a large amount of load

information motivated the work in this paper to design a

hierarchical load balancing scheme that allows the scaling

of load balancing strategies to a very large number of

processors without sacrificing the quality of the load

balance achieved. We expect that the techniques we present

are of use to other periodic load balancing systems to solve

scalability challenges in load balancing.

3 Hierarchical load balancing

The basic idea in our hierarchical strategy is to divide the

processors into independent autonomous groups and to

organize the groups in a hierarchy, thereby decentralizing

the load balancing task. For example, a binary-tree

hierarchical organization of an eight-processor system is

illustrated in Figure 1. In the figure, groups are organized in

three hierarchies. At each level, a root node of the sub-tree and

all its children form a load balancing group.

Generalizing this scheme, an intermediate node at level

li and its immediate children at level li�1 form a load balan-

cing group or domain, with the root node as a group leader.

Group leaders are in charge of balancing load inside their

domains, playing a role similar to the central node in a cen-

tralized load balancing scheme. Root processors at level li

also participate in the load balancing controlled by their

group leaders at level liþ1. Processors in the subtree of

the group leaders at level li do not participate in the load

balancing at level liþ1.

During load balancing, processors at the lowest level of

the tree send their object load information to their domain

leaders (parent processors). At each level, load and com-

munication data are converted such that domain leaders

represent their entire sub-domains. In particular, load data

are converted so that it appears as if all objects belong to

the domain leader, and all ‘‘outgoing message’’ records

from senders inside the domain are now represented as

Table 1. Memory usage (in MB) on the central processor for
centralized load balancing when running on 65; 536 cores
(simulation data)

Number of tasks 128K 256K 512K 1M

Memory usage (MB) 61 117 230 457
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messages from the domain leader. With the aggregated load

and communication database, a general centralized load

balancing strategy can be applied within each individual

sub-domain by its domain leader. From a software engineer-

ing point of view, this method is beneficial in that it takes

advantage of the many existing centralized load balancing

algorithms.

When the tree is uniform for a domain leader, the size

of its load balancing sub-domains (i.e., the number of pro-

cessors in its subtrees) is the same. The centralized load

balancing strategy then distributes the load evenly to its

sub-domains. However, when the tree is not balanced for a

domain leader, every sub-domain should receive work

proportional to its size. We achieve this balanced

distribution by assigning normalized CPU speeds to each

sub-domain (the sub-domain leader acts as a representative

processor of its domain) such that a smaller sub-domain is

represented by a slower CPU speed. CHARM++ centralized

load balancing strategies take these CPU speeds into

account when making load balancing decisions, i.e. faster

processors take a proportionally bigger workload.

In the hierarchical scheme, as we move up the tree, the

load balancing cost increases as the size of the aggregated

load balancing metadata grows. Our design goals for the

hierarchical load balancing scheme therefore focus on the

optimizations that reduce communication, minimize mem-

ory usage, and limit data migration. We now discuss these

optimizations.

Topology-aware tree construction: The advantages of

exploiting the machine topology for tree algorithms is well

known. For hierarchical load balancing, the advantages of

topology-aware tree construction lie in minimizing net-

work contention, since processors within a domain are

topologically close to one another and the load balancing

strategies tend to reassign the work within the domain as

much as possible. The CHARM++ runtime can obtain

information about the physical topology for some classes

of supercomputers, such as IBM Blue Gene and Cray XT

machines (Bhatelé et al., 2010). This information can be

used to optimize the tree construction for reducing commu-

nication. For example, for a three-dimensional (3D) torus

topology, the load balancing domain can be constructed

at the lowest level by simply slicing the 3D torus along the

largest dimension.

Load data reduction: As load information propagates

to a node at a higher level, the amount of load balancing

metadata including computation and communication load

increases considerably since the domain size increases.

Hence, much larger memory is required on the higher level

nodes to store the integrated load database. Therefore, it is

necessary to shrink load data while propagating it to higher

levels. Based on the physical memory available on a

processor and the application memory requirements, we

can calculate a limit on the memory available for the

load balancer ( �M). During load balancing, the amount of

memory actually needed for storing the load database at

level i can be calculated as

Mi ¼ Ni � sizeof ðObjDataÞ þ Ci � sizeof ðCommDataÞ; ð2Þ

where Ni is the total number of objects, and Ci is the num-

ber of communication records at the level i. ObjData is the

data structure that records the load data per object and

CommData is the data structure for the communication

data.

The runtime uses a memory usage estimator to monitor

the load data memory usage. When Mi > �M , load data

needs to be shrunk at level i to fit in memory. We have

explored three strategies to reduce memory usage:

0

0 4

0

0

2 4 6

1 2 3 4 5 6 7

Level 2

Level 3

Level 1

Level 0

Figure 1. Hierarchical organization of an eight processor system
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� At each level, communication data can be shrunk by

deleting some trivial communication records between

objects. The heuristic applied is that it is more impor-

tant for the load balancing algorithm to optimize the

communication of the most heavily communicating

objects.

� Use a coarsening scheme to reduce the number of

objects and their load balancing metadata. This is done

by consolidating multiple objects to one single con-

tainer object, for which the load is the sum of the load

of the objects it represents. The coarsening method can

be done by calling the METIS library (Karypis and

Kumar, 1998) to partition the object communication

graph into fewer groups, where each group is now a

container object. The advantage of using METIS is to

take object communication into account so that the

most heavily communicating objects can be grouped

together into a container object. When a migration

decision is made for a container object, all the objects

it represents will migrate together.

� When the amount of load data is prohibitively large at a

certain level, a dramatic shrinking scheme is required.

In this case, only the total load information (sum of all

object loads) is sent to the higher level, and load balan-

cing at this domain switches to a different mode –

‘‘semi-centralized load balancing’’. In this scheme, the

group leader of a domain does not make detailed migra-

tion decisions about individual objects. It only makes

decisions on the amount of load of a sub-domain to

be transferred to another sub-domain. It is up to the

group leaders of each sub-domain to independently

select objects to migrate to other sub-domains accord-

ing to the decisions made by the parent processor.

Token-based load balancing: In the hierarchical load

balancing scheme, one of the challenges is to balance load

across multiple domains, while at the same time minimiz-

ing data migration. Some hierarchical load balancing

schemes (Willebeek-LeMair and Reeves, 1993) balance the

domains from the bottom up. This method incurs repeated

load balancing effort when ascending the tree. Even when

each sub-tree is balanced, a higher level domain will

re-balance all the domains in its sub-tree. This behavior can

lead to unnecessary multiple hops of data migration across

domains before the final destination is reached, which is

not efficient due to the cost of migrating objects.

Our load balancing scheme overcomes this challenge by

using a top-down token-based approach to reduce exces-

sive object migration. As shown in Figure 2, the actual load

balancing decisions are made starting from the top level,

after load statistics are collected and coarsened at the top

level. A refinement-based load balancing algorithm is

invoked to make global load balancing decisions across the

sub-domains. When load balancing decisions are made,

lightweight tokens that carry only the objects’ workload

data are created and sent to the destination group leaders

of the sub-domains. The tokens represent the movement

of objects from an overloaded domain to an underloaded

domain. When the tokens that represent the incoming

objects arrive at the destination group leader, their load data

are integrated into the existing load database on that pro-

cessor. After this phase, the load database of each of the

group leaders at the lower level domains is updated, reflect-

ing the load balancing decisions made – new load database

entries are created for the incoming objects, and load data-

base entries corresponding to the outgoing objects are

removed from the database. This new database can then

0

0

0

1024 63488 64512

1023 1024 2047 63488 64511 64512 65535

Token

Object

Load Data

Load Data

Greedy load balancing

Refinement load balancing

Figure 2. Hierarchical token-based load balancing scheme
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be used to make load balancing decisions at that level.

At the intermediate levels of the tree, load balancing deci-

sions are made in the form of which object migrates to

which sub-domain. This process repeats until load balan-

cing reaches the lowest level, where final load balancing

decisions are made on migrating objects and their final

destination processors.

At this point, tokens representing a migration of an

object may have traveled across several load balancing

domains, therefore its original processor needs to know to

which final destination processor the token has traveled.

In order to match original processors with their tokens, a

global collective operation is performed on the tree.

This global collective operation is a fully distributed oper-

ation, and therefore it is reasonably efficient. By sending

tokens instead of actual object data in the intermediate load

balancing phases of the hierarchical tree, this load balan-

cing scheme ensures that objects are migrated only once

after all the final migration decisions are made.

3.1 Complexity analysis of hierarchical load balancing

The general problem of determining an optimal tree

depends on factors such as the use of varying branching

factors and different load balancing algorithms at different

levels of the tree. This general problem of determining the

optimal tree is beyond the scope of this paper. However,

this section offers an analysis of the complexity of a hier-

archical load balancing algorithm in a simplified but typical

scenario that we commonly use.

Load balancing time: For illustration, we assume that

the branching factor of the tree (G) is the same across

all levels, and a refinement load balancing algorithm

(RefineLB) is applied at each level of the tree. RefineLB

strives to reduce the cost of migration by moving only a few

objects from overloaded processors to underloaded ones so

that the load of each processor comes close to the average.

RefineLB works by examining every object on an

overloaded processor and finding the best choice of under-

loaded processor to which the object can be migrated.

The complexity of this algorithm is OðGlogG þ NilogGÞ,

where Ni is the number of migratable objects in each load

balancing domain at level i and G is the number of proces-

sors in the domain. In this formula,OðGlogGÞ is the time it

takes to build an initial max heap of processor loads for

overloaded processors and OðNilogGÞ is the time it takes

to examine objects on overloaded processors and update

the max heap with the decision of where to move the object.

When the memory usage reaches a threshold at a certain

level, the semi-centralized load balancing algorithm is

used to reduce the memory footprint of the algorithm.

The complexity of this algorithm is OðGlogG þ NiÞ. Here,

OðGlogGÞ is the time it takes to calculate the average load

among sub-domains, build an initial max heap of processor

loads for overloaded sub-domains, and compute the total

amount of load for each overloaded sub-domain that

migrates to an underloaded sub-domain; OðNiÞ is the time

on each sub-domain to make decisions on which object to

move.

At level i from the top, the number of objects in a load

balancing domain at that level is Ni ¼ N=Gi, assuming

even distribution of the objects to processors. When

Nl > M at level l, where M is the threshold to start load

data reduction, the load balancing algorithm switches from

the refinement strategy to the semi-centralized load balan-

cing strategy to reduce memory usage. The total cost of the

hierarchical load balancing algorithm is the summation of

the cost at each level of the tree (except the lowest level

where there is no load balancing), where the first l levels

(from the top of the tree) invoke the semi-centralized load

balancing algorithm, and the rest of the levels invoke the

regular refinement algorithm:

Oð
Xl

i¼0

ðGlogG þ NiÞ þ
XL�2

i¼lþ1

ðGlogG þ NilogGÞÞ;

where the number of levels L ¼ logGPþ 1 (from

G ¼
ffiffiffi
PL�1
p

). Also l ¼ logGðNMÞ, which is the switching point

of the load balancing algorithms when load data reduction

occurs.

As an example, Figure 3 shows a plot of the time

complexity for load balancing an application that has

1;000;000 parallel objects on 65;536 processors for varying

number of levels of the tree. The threshold for load data

reduction is when the number of objects in a load balancing

sub-domain is greater than 500;000. We can see that with a

three-level tree, the load balancing time is the shortest.

In Section 4.1.3 we will use a synthetic benchmark to

demonstrate this effect.

Intuitively, when the tree has fewer levels the quality

of load balancing tends to be better, since with increasing

sub-domain size at lower levels more global information

becomes available. In particular, when the tree comes down

to two levels (i.e. depth of one), hierarchical load balancing

becomes equivalent to centralized load balancing, losing

the benefits of multi-level load balancing. Therefore, to

achieve good load balance that is close to the centralized

load balancing algorithm, the heuristic for building the tree
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Figure 3. Plot showing the time complexity of load balancing as a
function of the number of levels in the tree when using RefineLB
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is to maximize the branching factor at the lowest level until

the cost of the algorithm is just affordable. This allows us to

exploit the advantages of the centralized load balancing

algorithm to the extent possible at the lowest level. In our

experiments, we found this three-level tree with high

branching factor at the lowest level generally performs

well.

Communication overhead: We analyze the communi-

cation overhead in terms of the total number of messages

generated by the hierarchical load balancing scheme.

For simplicity, network contention due to several processors

interacting with a single group leader is not considered.

Network contention is only important as a contribution to

overhead when the volume of data being communicated

becomes a significant fraction of the available network

bandwidth, which can be controlled by the branching factor

of the tree. Further, the messages due to migrating object

data are not counted, because the migration pattern

depends both on the initial load balance and the type of load

balancing algorithms used.

At a given level i in a hierarchical tree (i starts from 0,

which is the top level), there are P=GL�1�i load balancing

domains, where L is the total number of levels. In the first

phase of the hierarchical load balancing, when collecting

load statistics, messages are sent from the leaves to the root,

therefore each domain processor receives G load data

messages sent from its children, yielding a total number of

XL�2

i¼0

P

GL�1�i
G ¼ PG � G

G � 1

messages. Note that GL�1 ¼ P.

In the second phase, when each load balancing domain

leader makes load balancing decisions starting from top

to bottom along the tree, the communication pattern is sim-

ilar to the first phase but in the reverse order. This process

generates the same number of messages, i.e. PG�G
G�1

.

In the third phase of the load balancing, a global collec-

tive operation is performed to propagate load balancing

decisions to all processors with a communication pattern

similar to phase 1. Again, the same number of messages

is generated. Therefore the total number of messages in one

hierarchical load balancing is

3�
XL�1

i¼0

P

Gi
G ¼ 3� PG � G

G � 1
:

For example, given a binary tree (i.e. G ¼ 2), the total

number of messages in load balancing is 6P� 6. Given

a machine with 65;536 processors, Figure 4 shows the

number of messages for varying numbers of levels of the

hierarchical tree (note that G ¼
ffiffiffi
PL�1
p

). It can be seen that

as the number of levels increases, the number of load

balancing messages increases dramatically. This suggests

that using a tree with a small number of levels is beneficial

in reducing communication overhead.

4 Performance results

One question that remains to be answered is whether these

benefits, decrease in memory usage and increase in effi-

ciency, are attained by sacrificing the quality of the load

balance achieved. To answer this question, we evaluate the

performance of hierarchical load balancing schemes on two

major HPC systems for up to 16;384 and 65;536 cores

respectively using a synthetic benchmark and a production

application, NAMD . In the next two sections, we show that

the hierarchical load balancing strategy does not compro-

mise application performance, despite the fact that global

information is not used. In addition, we demonstrate the

dramatic improvements obtained in both time and memory

requirements from using the hierarchical load balancing

strategy.

4.1 Synthetic benchmark

This section offers a comparative evaluation between

hierarchical and centralized load balancers using a synthetic

benchmark. This benchmark provides a scenario where it is

possible to control load imbalance. We call the benchmark

‘‘lb_test’’. It creates a given number of objects, distributed

across all the processors. The number of objects is much

larger than the number of processors. The work done by each

object in each iteration is randomized in a parameterized

range. At each step, objects communicate in a ring pattern

with neighboring objects to get boundary data and do some

computation before entering the next step. All objects are

sorted by their load or computation time and this ordering

is used to place them on all processors, assigning equal

numbers of objects to each processor. This placement

scheme creates a very challenging load imbalance scenario

that has the most overloaded processors at one end and the

least overloaded processors at the other end.

4.1.1 Evaluation on Ranger. Our first test environment is a

Sun Constellation Linux Cluster called Ranger, installed

at the Texas Advanced Computing Center. Ranger is com-

prised of 3936 16-way SMP compute nodes providing a
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total of 62;976 compute cores. Ranger nodes are connected

using the InfiniBand technology. The experiments were run

on 16;384 cores, where a three-level tree is optimal.

Specifically, the tree for 16;384 cores is built as follows:

groups of 512 cores form load balancing domains at the

first (lowest) level and 32 such domains form the second

level load balancing domain. The same branching

factor of 512 at the lowest level is also used for building

three-level trees for 4096- and 8192-core tests. We use

greedy load balancing strategies at the lowest level and

a refinement-based load balancing strategy (with data

shrinking) at the highest level.

Three different centralized strategies are used for com-

parison. The first one is a simple scheme called GreedyLB,

that always picks the heaviest unassigned object and

assigns it to the currently least loaded processor. For N

objects and N >>P, this is an OðNlogNÞ algorithm.

The second one is called GreedyCommLB. It is similar to

GreedyLB in its choice of processors, however it is much

more expensive in that it takes communication into

account. When making an assignment for a heaviest object,

it not only checks against the least loaded processor, but

also checks the processors that the object communicates

with in order to find the best possible choice. The third

strategy is called RefineLB. Unlike the previous two load

balancing strategies, which make load balancing decisions

from scratch, RefineLB improves the load balance by

incrementally adjusting the existing object distribution.

Refinement is used with an overload threshold. For exam-

ple, with a threshold of 1:03, all processors with a load

greater than 1:03 times the average load (i.e. with 3% over-

load) are considered overloaded, and objects are migrated

from such overloaded processors. This algorithm is imple-

mented with an additional heuristic: it starts with a higher

overload threshold, and uses a binary search scheme to

reduce the threshold to achieve a load balance close to

average load.

We first measured the memory usage due to the collec-

tion of the load metadata in a hierarchical load balancing

scheme (HybridLB), and compared it with the centralized

load balancing strategies. The memory usage measured is

only for the load metadata, not including the temporary

data structures created by each centralized load balancing

strategy, therefore the memory usage is the same for all

centralized strategies. In these tests, the lb_test program

creates a total of 1;048;576 objects running on varying

numbers of cores up to 16;384, the maximum allowed

job size on the Ranger cluster. The results are shown in

Figure 5 (left plot). Comparing with the memory usage in

the centralized load balancing strategies, the memory usage

of the hierarchical load balancer (HybridLB) is signifi-

cantly reduced. Furthermore, the maximum memory usage

of HybridLB decreases as the number of cores increases,

while the memory usage for centralized load balancing

remains almost the same. This is due to the fact that, for the

fixed problem size in these tests, when the number of

processors doubles, each domain has half the number

of objects, and the size of the object load database on each

group leader reduces accordingly. In the case of centralized

load balancing, however, all object load information is

collected on the central processor regardless of the number

of processors. Therefore, the size of the load database in

that case is about the same.

Figure 5 (right plot) compares the load balancing time

spent in HybridLB and the three centralized load balancers

for the same problem size with 1;048;576 objects running

on up to 16;384 cores. The results show that the hierarchi-

cal load balancer is very efficient compared with the greedy

centralized strategies. Given much smaller load balancing

domains and a smaller load balancing problem for each

sub-domain to solve, the load balancing algorithms run

much faster. Furthermore, HybridLB exploits more paralle-

lism by allowing execution of load balancing concurrently

on independent load balancing domains. Compared to the

greedy schemes, RefineLB is much more efficient, because

RefineLB only migrates a fraction of the objects, thus

reducing the data migration time. This advantage will

become clear when we look at the total number of objects

migrated by each load balancing strategy. As shown in the

Table 2, RefineLB migrates significantly fewer objects,

while greedy load balancing strategies migrate almost all

objects. HybridLB uses a greedy strategy at the lowest level
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of the tree and hence migrates almost all objects, similar to

the centralized greedy schemes.

The breakdown of the time spent in load balancing in the

lb_test benchmark in Figure 6 illustrates the cause of

the reduction in load balancing time. The left plot shows

the timings obtained on Ranger. The time has been sepa-

rated into three different phases – time for data collection,

execution time for the load balancing strategy (strategy

time), and time taken for object migration. HybridLB

reduces time for all three phases. The most significant reduc-

tion happens in the time spent on the strategy, where the time

for the centralized cases increases as the number of proces-

sors increase. The time in the data migration phase is also

considerably reduced by using the hierarchical strategy. In

the greedy centralized strategies, large messages that con-

tain load balancing decisions for around one million objects

are generated and broadcast from the central processor to

every processor, leading to a communication bottleneck

on the central processor. The hierarchical strategy, how-

ever, avoids this bottleneck by doing independent load

balancing in each sub-domain. Although RefineLB is

almost as efficient as HybridLB, it suffers from the

same memory constraints as other centralized strategies

(as illustrated in Figure 5).

In order to compare the quality of load balance

achieved, we also compared the performance of lb_test

after using the hierarchical and centralized load balancers,

and the results are shown in Figure 7. The first bar in

each cluster shows the time per step performance of

lb_test without load balancing. The next three bars in

each cluster represent the time per step after applying the

centralized load balancers and the last bar in each cluster

represents the time per step after applying the hierarchical

strategy. We can see that the hierarchical scheme performs

comparably to the centralized schemes, and all of them

improve the performance of lb_test in comparison to the no

load balancing case.

4.1.2 Evaluation on Intrepid. To further study how the

hierarchical load balancer performs at even larger scales,

we ran similar experiments using lb_test on Intrepid, a Blue

Gene/P installation at Argonne National Laboratory. Intre-

pid has 40 racks, each of them containing 1024 compute

nodes. A node consists of four PowerPC450 cores running

at 850 MHz. Each node has 2 GB of memory, making it a

difficult environment for using centralized load balancing

strategies due to the low memory available per core.
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Table 2. The number of objects migrated by different load balan-
cing strategies for the lb_test benchmark with a total of 1,048,576
objects (on Ranger)

Number of
cores GreedyLB GreedyCommLB RefineLB HybridLB

4096 1,048,321 1,048,310 65,994 1,046,721
8192 1,048,447 1,048,455 64,777 1,046,662
16,384 1,048,568 1,048,507 60,097 1,046,715
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Indeed, lb_test with 1;048;576 objects runs out of mem-

ory during load balancing in the phase of load metadata col-

lection. Thus, only 524;288 objects are created in lb_test in

the following experiments. Figure 6 (right plot) illustrates

the breakdown of the load balancing time using two centra-

lized load balancers (GreedyLB and RefineLB), and the

hierarchical load balancer (HybridLB). We see that the

hierarchical load balancer is very efficient, especially when

the number of cores increases. Specifically, HybridLB on

65;536 cores only takes 0:55 s. The RefineLB centralized

load balancer executes faster than GreedyLB when the

number of cores is less than 65; 536, largely due to a signif-

icantly smaller number of objects being migrated, as shown

in Table 3. However, its load balancing decision making

time (strategy time) keeps increasing as the number of

cores increases, possibly due to the heuristic of overload

threshold that leads to an expensive binary search for better

load balance decisions.

4.1.3 Performance study of the number of tree levels. Section

3.1 explains that the number of levels of the hierarchical

tree and the level at which load data reduction occurs and

the load balancing algorithm switches, can significantly

affect the performance of the hierarchical load balancer.

In an experiment with the lb_test benchmark on 4096 cores

of Blue Gene/P, we evaluated the variation in load balan-

cing time with various numbers of levels of the tree. Unlike

the tree used in the previous experiments, which was a

three-level tree with a large branching factor (G ¼ 512)

at the lowest level, the trees used in these experiments are

uniform, with the same branching factor at all levels. For

example, for 4096 cores a four level tree is used that has

a branching factor of 16.

In most of these experiments, the threshold that triggers

data reduction and switching of load balancing strategies is

when the number of objects in a load balancing sub-domain

at level i is greater than 65;536 (i.e. Ni > 65;536).

For example, for a three-level tree with G ¼ 64, the data

reduction occurs at level 1, even though the number of

objects at that level is only 8192. Otherwise, at its parent

level (level 0, the root of the tree), the number of objects

collected from its 64 children would reach 524;288, which

is beyond the threshold. The results of the HybridLB load

balancing time are shown in Table 4. The ‘‘Shrink Level’’

in the third column is the level at which load balancing

reaches the threshold of data reduction, and ‘‘No. of

Objects’’ in the fourth column is the estimated number

of objects in the load balancing sub-domain at that time.

We can see that a three-level tree performs best for this

particular test scenario. This result is in agreement with the

analysis in Section 3.1.

4.2 Application study – NAMD

NAMD (Phillips et al., 2002; Bhatele et al., 2008) is a

scalable parallel application for molecular dynamics

simulations which uses the CHARM++ programming model.

The load balancing framework in CHARM++ is deployed in

NAMD for balancing computation across processors. Load

balancing is measurement-based – a few time steps of

NAMD are instrumented to obtain load information about

the objects and processors. This information is used in

making the load balancing decisions. Two load balancers

are used in NAMD:

1. A comprehensive load balancer that is invoked at

start-up. It performs the initial load balancing and

moves most of the objects around.

2. A refinement load balancer is called several times

during execution to refine the load by moving load from

overloaded processors and bringing the maximum load

on any processor closer to the average.

A greedy strategy is used in both load balancers, where

we repeatedly pick the heaviest object and find an under-

loaded processor on which to place it. This process is

repeated until the load of the most overloaded processor

is within a certain percentage of the average. More details

on the load balancing techniques and their significance for

NAMD performance can be found elsewhere (Kalé et al.,

1998; Bhatelé et al., 2009).

Table 3. The number of objects migrated by different load balan-
cing strategies for the lb_test benchmark with a total of 524,288
objects (on Blue Gene/P)

Number of cores GreedyLB RefineLB HybridLB

4096 524,166 30,437 523,326
8192 524,232 29,977 523,338
16,384 524,255 25,581 523,306
32,768 524,274 20,196 523,360
65,536 524,283 17,310 523,364

Table 4. Effect on the load balancing time of using different numbers of levels for the hierarchical trees in HybridLB (for the lb_test
benchmark running on 4096 cores of Blue Gene/P)

No. of levels Branching factor Shrink Level No. of Objects LB Time (s)

3 64 1 8192 0.52
4 16 1 32,768 2.82
5 8 1 65,536 21.47
7 4 2 32,768 7.51
13 2 3 65,536 59.63
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Traditionally, NAMD uses strategies that collect all

load balancing statistics to a central location (typically

processor 0) where all load balancing decisions are made.

These strategies are becoming a bottleneck for very large

simulations using NAMD on large supercomputers. Load

balancing can sometimes take as long as a thousand time

steps of the actual simulation. Table 5 shows the time

processor 0 takes to calculate load balancing solutions in

the centralized case. As we scale from 1024 to 16;384 pro-

cessors, the time for refinement load balancing increases

by a factor of 315.

The main driver, from the point of view of the NAMD

user, for deploying the hierarchical load balancing scheme

has been to reduce the time taken for load balancing.

However, with the use of NAMD for increasingly larger

simulations, memory is also bound to become a bottleneck.

We now describe the process of using the hierarchical load

balancing schemes in this production code. For the hier-

archical case, we build a tree with three levels and eight

sub-domains. The final selection of the number of levels

in the tree and the number of sub-domains may seem arbi-

trary, but we observed good results with this particular

combination. To form each sub-domain, we simply group

consecutive processors together, using the processor ID

assigned by the CHARM++ runtime.

Since our hierarchical load balancing scheme applies

centralized strategies within each sub-domain of the tree,

this allows NAMD to use its optimized centralized load

balancing algorithms, but within a much smaller sub-

domain. We still need to extend the existing comprehensive

and refinement algorithms so that they work well with a

subset of processors and relatively incomplete global

information. Cross-domain load balancing is done accord-

ing to the semi-centralized load balancing scheme described

in Section 3. The root of the tree makes global load balancing

decisions about the percentages of load to be moved from

overloaded sub-domains to underloaded ones. The group

leaders of overloaded sub-domains make detailed load

balancing decisions about which objects to move.

To evaluate our new hierarchical load balancing strat-

egy, we ran NAMD with a molecular system consisting

of 1;066;628 atoms. This system is called STMV (short for

Satellite Tobacco Mosaic Virus) and it was run with the

long-range electrostatic force component (PME) disabled.

There are approximately 100;000 to 400;000 objects for

this system (depending on the decomposition) under the

control of the load balancer. All the runs were executed

on Intrepid.

Figure 8 (left plot) presents a comparison of the time

spent in load balancing between the centralized and the

hierarchical approaches for the comprehensive load

balancers. The load balancing time in the centralized case

does not increase necessarily with the increase in the

number of cores because heuristic techniques are being

used. We can see that the hierarchical strategy outperforms

the centralized scheme by a large margin on all core counts

(note that the y-axis has a logarithmic scale). For instance,

on 4096 cores, the centralized approach takes 6:16 s to

balance the load. In contrast, the hierarchical load balancer

takes only 0:69 s, which is a speedup of 8:9. Speedup

increases with increasing core count. On 16;384 cores, the

hierarchical load balancer is faster by 117 times!
The results for the refinement load balancing phase are

similar. Figure 8 (right plot) compares the centralized and

hierarchical balancers for the refinement strategy.

The highest reduction in load balancing time occurs at

16;384 cores, where the time taken is reduced from 249:1
s to 2:27 s, giving a speedup of 110.

A breakdown of the time spent in load balancing into

three different phases – time for data collection, execution

time for the load balancing strategy within the sub-domains

(strategy time) and time for sending migration decisions –

indicates the source of the reduction. Table 6 shows a

breakdown of the time spent in the comprehensive strategy

for NAMD for the centralized and hierarchical algorithms.

Table 5. Time (in seconds) for centralized load balancing in
NAMD (on Blue Gene/P)

Number of cores 1024 2048 4096 8192 16,384

Comprehensive 5.12 4.87 6.16 25.09 96.84
Refinement 0.79 0.82 1.16 4.33 249.10
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The most important reduction happens in the time spent on

the strategy in the centralized case, which increases as we

scale to a larger number of processors. The time spent in

sending migration decisions also benefits from the use of

hierarchical strategies.

We further demonstrate that the hierarchical load

balancing strategy performs no worse than the centralized

strategy in balancing the load in NAMD. Figure 9 shows

the time per step performance of NAMD when the centra-

lized and hierarchical load balancers are used (compared

with the no load balancing base line performance).

On 4096 cores the simulation time is 35:78 ms per step

when no load balancing is performed, 20:21 ms per step

for the centralized load balancing and 20:75 ms per step for

the hierarchical load balancing case, showing negligible

slowdown. Very similar results can be observed from

1024 to 16;384 cores. These results show that the hierarch-

ical load balancing strategy performs equally well in

balancing the load compared to the centralized load

balancers, while using less memory and taking significantly

less time in computing the load balancing decisions.

5 Related work

Load balancing is a challenging problem and has been

studied extensively in the past. Load balancing strategies

can be divided into two broad categories – those for appli-

cations where new tasks are created and scheduled during

execution (i.e. task scheduling) and those for iterative

applications with persistent load patterns (i.e. periodic load

balancing).

Much work has been done to study scalable load

balancing strategies in the field of task scheduling, where

applications can be expressed through the use of task pools

(a task is a basic unit of work for load balancing). This task

pool abstraction captures the execution style of many appli-

cations such as master–workers and state-space search

computations. Such applications are typically non-iterative.

Neighborhood averaging schemes present one way of

solving the fully distributed scalable load balancing prob-

lem (Ha’c and Jin, 1987; Kalé, 1988; Shu and Kalé,

1989; Sinha and Kalé, 1993; Willebeek-LeMair and

Reeves, 1993; Corradi et al., 1999). In these load balancing

schemes, each processor exchanges state information with

other processors in its neighborhood and neighborhood

average loads are calculated. Each processor requests work

from the processor with the greatest load in its neighbor-

hood, to achieve load balance. Although these load balan-

cing methods are designed to be scalable, they tend to

yield poor load balance on extremely large machines, or

tend to take much longer to yield good solutions due to a

great degree of randomness involved in a rapidly changing

environment (Ahmad and Ghafoor, 1990).

Randomized work stealing is yet another distributed

dynamic load balancing technique, which is used in some

runtime systems such as Cilk (Frigo et al., 1998). Recent

work (Dinan et al., 2009) extends this work using the PGAS

programming model and RDMA to scale work stealing to

8192 processors for three benchmarks. ATLAS (Baldesch-

wieler et al., 1996) and Satin (Nieuwpoort et al., 2000) use

hierarchical work stealing for clusters and grids, both sup-

porting JAVA programming on distributed systems.

Several other hierarchical or multi-level load balancing

strategies (Ahmad and Ghafoor, 1990; Furuichi et al.,

1990) have been proposed and studied. Ahmad and

Ghafoor (Ahmad and Ghafoor, 1990) propose a two-level

hierarchical scheduling scheme that involves partitioning

a hypercube system into independent regions (spheres)

centered at some nodes. At the first level, tasks can migrate

between different spheres in the system; at the second level,

the central nodes schedule within their individual spheres.

Although our work shares a common purpose with such

work, we deal with scalability issues of load balancing

encountered at very large scale in the context of production

applications running on supercomputers. Most of the

previous work presents results via simulation studies using

synthetic benchmarks.

In the above load balancing work in the field of task

scheduling, it is often assumed that the cost associated with

migrating tasks is small, and once a task is started it must

be able to execute to completion (Dinam et al., 2009).
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Table 6. Breakdown of load balancing time (in seconds) into
three phases for the centralized and hierarchical load balancing
strategy (for comprehensive strategy in NAMD running on Blue
Gene/P)

Data collection Strategy time Migration

Number of cores Cent Hier Cent Hier Cent Hier

1024 0.36 0.78 3.77 1.84 0.99 0.41
2048 0.36 0.39 3.36 0.76 1.13 0.21
4096 0.41 0.20 4.12 0.38 1.63 0.11
8192 1.06 0.29 17.06 1.44 6.98 0.18
16,384 1.25 0.15 84.44 0.46 11.15 0.22
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This assumption avoids migration of a partially executed

task when load balancing is needed. This assumption holds

true for divide and conquer and state-space search type of

applications but not for iterative scientific applications.

For scientific applications, a different class of load

balancers is needed, such as those in CHARM++ (Kalé

et al., 1998; Zheng, 2005) and Zoltan (Catalyurek et al.,

2007). These load balancers support the migration of a task

and associated data during the lifetime of the task. Unlike

the task scheduling problem, migration of tasks and

their data can be costly, especially when user data is large

and migration occurs frequently. Therefore, to reduce the

excessive migration of tasks, these strategies typically

invoke load balancing in a periodic fashion, that is, load

balancing happens only when needed. Such load balancing

schemes are suitable for a class of iterative scientific

applications such as NAMD (Phillips et al., 2002), Finite

Element Method (Lawlor et al., 2006) and climate simula-

tion, where the computation typically consists of a number

of time steps, a number of iterations (as in iterative linear

system solvers), or a combination of both. Periodic load

balancing strategies for iterative applications are the main

focus of this paper.

Hierarchical periodic load balancing strategies have

also been studied in the context of iterative applications.

The Zoltan toolkit web site (Zoltan User’s Guide) describes

a hierarchical partitioning and dynamic load balancing

scheme where different balancing procedures are used in

different parts of the parallel environment. However, it

mainly considers the machine hierarchy of clusters that

consist of a network of multiprocessors, and does not con-

sider the performance issues involved when load balancing

on very large parallel machines.

6 Conclusion

Load balancing for parallel applications running on tens of

thousands of processors is a difficult task. When running at

that scale, the execution time of the load balancing strategy

and the memory requirements for the instrumented data

become important considerations. It is impractical to

collect information on a single processor and load balance

in a centralized fashion. In this paper, we presented a hierarch-

ical load balancing method that combines the advantages of

centralized and fully distributed schemes. The proposed

load balancing scheme adopts a periodic load balancing

approach that is designed for iterative applications that

exhibit persistent computational and communication

patterns. This hierarchical method is demonstrated within a

measurement-based load balancing framework in CHARM++.

We discuss several techniques to deal with scalability chal-

lenges of load balancing that are found at very large scale in

the context of production applications.

We presented results for a synthetic benchmark on up to

65;536 cores and a scientific application, NAMD, on up to

16; 384 cores. Using hierarchical schemes, we were able to

reduce considerably the memory requirements and the

runtime of the load balancing algorithm for the synthetic

benchmark. Similar benefits were obtained for NAMD, and

the application performance was similar for the hierarchi-

cal and centralized load balancers. In the future, we will

deploy the hierarchical load balancers in other applications.

We exploited the machine topology only for the tree

construction. We also plan to extend our hierarchical load

balancing strategies to be topology-aware, such that they

map the communication graph on the processor topology

to minimize network contention.
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(2008) Overcoming scaling challenges in biomolecular

simulations across multiple platforms. In: Proceedings of IEEE

International Parallel and Distributed Processing Symposium

2008, 1–12.

Catalyurek U, Boman E, Devine K, Bozdag D, Heaphy R, and

Riesen L (2007) Hypergraph-based dynamic load balancing

for adaptive scientific computations. In: Proc. of 21st Interna-

tional Parallel and Distributed Processing Symposium

(IPDPS’07). IEEE. Best Algorithms Paper Award, 1–11.

Catlett C et al. (2007) TeraGrid: Analysis of Organization, System

Architecture, and Middleware Enabling New Types of

Zheng et al. 383

 at UCSF LIBRARY & CKM on February 19, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


Applications. In: Grandinetti L (ed.) HPC and Grids in Action.

Amsterdam: IOS Press. 16: 225–49.

Corradi A, Leonardi L, and Zambonelli F (1999) Diffusive load

balancing policies for dynamic applications. IEEE Concurrency

7(1):22–31. URL http://polaris.ing.unimo.it/Zambonelli/PDF/

Concurrency.pdf

Devine KD, Boman EG, Heaphy RT, Hendrickson BA, Teresco

JD, Faik J, et al. (2005) New challenges in dynamic load

balancing. Appl. Numer. Math. 52(2–3): 133–52.

Dinan J, Larkins DB, Sadayappan P, Krishnamoorthy S, and

ieplocha J (2009) Scalable work stealing. In: SC ‘09: Pro-

ceedings of the Conference on High Performance Computing

Networking, Storage and Analysis. New York: ACM, 1–11.

Frigo M, Leiserson CE, and Randall KH (1998) The Implementa-

tion of the Cilk-5 Multithreaded Language. In: ACM SIGPLAN

‘98 Conference on Programming Language Design and Imple-

mentation (PLDI), volume 33 of ACM Sigplan Notices. Mon-

treal, 212–23.

Furuichi M, Taki K, and Ichiyoshi N (1990) A multi-level load

balancing scheme for or-parallel exhaustive search pro-

grams on the multi-psi. In: Second ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel Programming,

50–9.

Ha’c A and Jin X (1987) Dynamic load balancing in distributed

system using a decentralized algorithm. In: Proc. of 7-th Intl.

Conf. on Distributed Computing Systems, 170–7.

Jetley P, Gioachin F, Mendes C, Kale LV, and Quinn TR (2008)

Massively parallel cosmological simulations with ChaNGa.

In: Proceedings of IEEE International Parallel and Distributed

Processing Symposium 2008, 1–12.
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