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Readings

• CAP Twelve Years Later: How the “Rules” Have 
Changed, Eric Brewer

• Impossibility of Distributed Consensus with a 
Single Faulty Process, Michael Fischer, Nancy 
Lynch, Michael Paterson
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Why distribute?

• Wouldn’t our lives be easier if we just had a 
single database/data store/control server/etc?
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Why distribute?

• Availability
– What if my single server fails?

• Scale
– What if my data can’t all fit on one server?

• Performance
– Latency: put data/services closer to geographically 

distributed users
– Throughput: more servers can handle more requests

• Specialization
– Systems may be composed of different types of 

components (e.g. sensors, storage servers, GPUs)
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Sounds good…so what’s the problem?

• Consider a database storing bank accounts 
(classic example)

1/10/20 Amy Babay 5

$100
$100

$100



Sounds good…so what’s the problem?

• Consider a database storing bank accounts 
(classic example)

1/10/20 Amy Babay 6

$100
$100

$100

I want to 
withdraw $60



Sounds good…so what’s the problem?

• Consider a database storing bank accounts 
(classic example)

1/10/20 Amy Babay 7

$40
$100

$100

I want to 
withdraw $60



Sounds good…so what’s the problem?

• Consider a database storing bank accounts 
(classic example)

1/10/20 Amy Babay 8

$40
$100

$100



Sounds good…so what’s the problem?

• Consider a database storing bank accounts 
(classic example)

1/10/20 Amy Babay 9

$40
$40

$40

We need a 
synchronization
protocol



So we synchronize the accounts.
Easy, right?

• When our replicas are connected, we can synchronize
• But, sometimes the network partitions….
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CAP Theorem

• Introduced by Armando Fox and Eric Brewer in 
1999 HotOS paper and Brewer’s 2000 PODC 
Keynote

• C = Consistency
• A = Availability
• P = Partition Tolerance
• Theorem: Pick at most 2 – It is impossible to 

design a system that is always consistent and 
always available, given the possibility of partitions
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Consistency

• Single-copy consistency (serializability): observed 
behavior is the same as if there was a single server
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Scenario 1 - OK
- Amy’s withdrawal succeeds
- Chris’s withdrawal fails
- Ending balance is $40

Scenario 2 - OK
- Chris’s withdrawal succeeds
- Amy’s withdrawal fails
- Ending balance is $40

Scenario 3 – NOT OK
- Amy’s withdrawal succeeds
- Chris’s withdrawal succeeds
- Ending balance is ???



Availability

• Users can perform operations (e.g. read and 
write data)
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Neither person should be blocked 
from performing their update

(even though the result of the 
update can be a failure, e.g. 
insufficient balance notification)



Partition Tolerance

• Network partitions (disconnections) happen.
• We can do our best to make them as infrequent as 

possible, but there’s really no way around this
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So, “2 of 3” is misleading

• You don’t really get to pick CA…
• The world doesn’t end when a partition happens, so your 

system has to do something in that case
– Although that may be to sacrifice availability and stop accepting 

updates

• But, most of the time the network isn’t partitioned!
• So consistency and availability are both possible in the 

normal case

• And, it’s not a binary choice
• There is a whole range of trade-offs we can make between 

Consistency and Availability
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What should we do during partitions?

• Detect and manage
– How we manage depends on trade-off we want 

between consistency and availability

• Note: detection isn’t completely 
straightforward
– Brings up classic distributed systems issues: slow 

vs. disconnected/failed, different nodes can have 
different views
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Options for Managing Partitions

• Strongly consistent option
– Only allow operations to proceed in the part of the 

system with a quorum (if one exists)
– Quorum: in distributed systems, this usually means a 

set that must intersect with any other set (e.g. 
majority)
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Options for Managing Partitions

• More available approach – allow at least some 
operations to continue
– Risky operations can be delayed
• e.g. large withdrawal in banking

– Safer operations can be applied
• e.g. deposit in banking

– Mistakes can be compensated for after recovery
• “Risky” and “Safe” operations strongly depend 

on the details of the specific system
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Partition Recovery

• Generally requires that nodes keep a history 
during partition

• Possible recovery approach: Impose a total 
order on the operation history, and replay 
from the beginning of the partition
– Must maintain order for causally related 

operations. Non-causally related operation may 
conflict
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Resolving Conflicts

• Approach 1: avoid conflicts
– Only allow commutative operations, so execution 

order doesn’t matter
– Have some well-defined merge/convergence 

procedure (shopping cart example)

• Approach 2: fix mistakes
– Simple: “last writer wins”
– Compensating transaction: undo the effects
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Impossibility of Distributed Consensus
with One Faulty Process (FLP result)

A closer look at synchronization
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Consensus

• A group of processes needs to decide on a 
single value

• Every process may propose a value, and 
exactly one should be chosen
– In systems that use a strongly consistent 

replication approach, this can be used to impose 
an ordering on submitted updates (state-machine 
replication). e.g. agree on the first update, then 
the second, etc.
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Requirements for Consensus

• Agreement: all correct processes decide on 
the same value

• Validity: If a correct process decides on a 
value, that value was proposed by some 
process

• Termination: all correct processes eventually 
decide
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Simple Asynchronous Model

• Each process starts with an initial input value in {0, 1}
• Processes communicate by sending messages to each 

other
• Communication is reliable, but asynchronous
– Every message sent is eventually received
– No bound on how long it takes to receive a message

• Correct (nonfaulty) processes run forever (“take 
infinitely many steps”)
– step = receive message, update state (based on message), 

send messages
• Faulty processes stop executing at some point (fail-

stop)
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FLP: Requirements for Consensus

• Agreement: all correct processes that decide on a 
value decide on the same value
– “No accessible configuration has more than one decision 

value”
• Validity: 0 and 1 are both possible decision values
– “For each 𝑣 ∈ 0, 1 , some accessible configuration has 

decision value v”
– Weaker requirement than typical (makes result stronger)

• Termination: Some correct process eventually decides
– Weaker requirement than typical (makes result stronger)
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Impossibility Result

• No consensus protocol is totally correct (meets 
requirements on previous slide) in spite of one 
fault

• What if there are no faults? How would you 
solve this problem?

• Why doesn’t that work if a process may fail?
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Impossibility Proof: Definitions

• Definitions:
– A configuration is 0-valent if 0 is the only 

reachable decision value
– A configuration is 1-valent if 1 is the only 

reachable decision value
– A configuration is bivalent if both 0 and 1 are 

reachable decision values
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Impossibility Proof: Sketch

• Lemma 1 (Lemma 2 in paper): Any consensus 
protocol must have a bivalent initial configuration

• Lemma 2 (Lemma 3 in paper): For any bivalent 
configuration and any pending message, we can 
take some sequence of steps in the protocol that 
ends with us applying that message and ending 
up in another bivalent configuration

• Thus, we can keep taking steps forever and never 
reach a decision (univalent configuration)

1/10/20 Amy Babay 28



Impossibility Proof: Lemma 1

• Lemma 1: Any consensus protocol that is 
totally correct in spite of one fault must have a 
bivalent initial configuration
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Proof: Lemma 1

• Assume the contrary…
• By definition, there must be a 0-valent initial 

configuration and a 1-valent initial configuration
• Consider initial values (0, 0, …, 0) -> 0 decision
• Consider initial values (1, 1, …, 1) -> 1 decision
• There is a chain of configurations
– (0, 0, …, 0), (1, 0, …, 0), (1, 1, …, 0), … (1, 1, …, 1)

• At some point, there must be a pair of configurations C0
& C1 such that C0 is 0-valent and C1 is 1-valent, and their 
only difference is the starting value of one processor p
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Proof: Lemma 1

• There must be a pair of configurations C0 & C1
such that C0 is 0-valent and C1 is 1-valent, and 
their only difference is the starting value of one 
processor p

• Let processor p immediately fail
– e.g. (0,0,1), (0,1,1) -> (0,X,1), (0,X,1)

• C0 & C1 must reach the same decision
– They only differed in p’s initial value
– So, if p never does anything, they look exactly the 

same
• => either C0 or C1 must be a bivalent configuration
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Lemma 2

• Lemma 2: Let C be a bivalent configuration of P, and let 
𝑒 = 𝑝,𝑚 be an event that is applicable to C. Let 𝒞 be 
the set of configurations of C without applying e, and let 
𝒟 = 𝑒 𝒞 = 𝑒 𝐸 𝐸 ∈ 𝒞 and 𝑒 is applicable to 𝐸}.
Then, 𝒟 contains a bivalent configuration.

• Informally, for any bivalent configuration C and pending 
event e, there is some sequence of events that ends with 
event e and brings us to another bivalent configuration
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Proof Intuition: Lemma 2

• Assume the contrary: assume that after some event e = 
(p,m) we go from a bivalent configuration to only 
univalent configurations being reachable
– e = (p,m) : event e, where process p receives message m

• Since the initial configuration is bivalent, both 0-valent 
and 1-valent configurations must be reachable
– So there must be two “neighboring” configurations C0 and 

C1 that differ in only a single event e’ at process p, which 
occurs (C1) or doesn’t occur (C0) before “decision point” e
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Proof Intuition: Lemma 2

• C0 is bivalent. Receiving e’ then e commits to 1-valent 
execution; receiving e without having received e’ commits 
to 0–valent execution
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by Lemma 1, e(A) = & and e(e’(A)) = E,. (See Figure 3.) Hence, A is bivalent. 
But this is impossible since the run to A is deciding (by assumption), so A must be 
univalent. 

In each case, we reached a contradiction, so .&2 contains a bivalent configura- 
tion. 0 

Any deciding run from a bivalent initial configuration goes to a univalent 
configuration, so there must be some single step that goes from a bivalent to a 
univalent configuration. Such a step determines the eventual decision value. We 
now show that it is always possible to run the system in a way that avoids such 
steps, leading to an admissible nondeciding run. 

The run is constructed in stages, starting from an initial configuration. We ensure 
that the run is admissible in the following way. A queue of processes is maintained, 
initially in an arbitrary order, and the message buffer in a configuration is ordered 
according to the time the messages were sent, earliest first. Each stage consists of 
one or more process steps. The stage ends with the first process in the process 
queue taking a step in which, if its message queue was not empty at the start of the 



Proof Intuition: Lemma 2

• A series of steps 𝜎 that doesn’t involve 
process p can’t affect p’s decision, so the 
ordering of 𝜎 vs e and e’ doesn’t change the 
decision

• But our protocol must be fault-tolerant – so 
what happens if p crashes?
– The other processes must still decide on some

value!
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Proof Intuition: Lemma 2

• The execution 
ending in state 
A (p fails after 
C0) must decide 
0 or 1

• But what if p
was only slow??
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Implications of FLP

• Why do we care?
• Strong, fundamental result
• But, if consensus is impossible, why are we 

studying consensus protocols next week?
– What can we give up in the “Requirements for 

Consensus” to build a practical system?

• Discussion: How does CAP relate to FLP?
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