Practical Byzantine Fault Tolerance

Castro, Miguel, and Barbara Liskov. "Practical Byzantine fault tolerance."
In Proceedings of the Third Symposium on Operating Systems Design and
Implementation (OSDI), pp. 173-186. 1999.

Presented in: CS 3551 Advanced Topics in Distributed Information Systems
Presented by: Amy Babay

University of

Pittsburgh




Recall: State Machine Replication

e State Machine Replication (SMR): technique
for implementing strongly consistent fault-
tolerant services

— Servers start in the same state

— Servers apply deterministic updates in the same
order

— => Servers progress through exactly the same
sequence of states

3/2/20 Amy Babay 2



Recall: State Machine Replication

» State Machine Replication (SMR): technique for
implementing strongly consistent fault-tolerant

services
Servers
Mheaame=

Clients generate updates Servers apply updates in order

ordering

3/2/20 Amy Babay



System Model

* nreplicas
* Asynchronous network

— Messages can be dropped, delayed, duplicated, delivered
out of order

Byzantine failures

— Faulty replicas can behave arbitrarily (e.g. crash, recover,
lie, collude, corrupt messages, delay messages)

* But,
— At most f replicas are faulty, where 3f + 1 <=n

— Messages are authenticated (digital signatures) and faulty
replicas are computationally bounded (cannot break

crypto)

3/2/20 Amy Babay 4



Recall: Paxos (SMR with benign failures)

* Key concept: Any two majorities must
intersect in at least one replica
* S0, to guarantee agreement we:

1. Only allow a value to be chosen if it is accepted
by a majority of replicas

2. Require new leader to communicate with a
majority of replicas before proposing a value to
find out what they’ve previously accepted

3/2/20 Amy Babay 5



Recall: Paxos

accept_req(v, n, m): proposal
to assign client msg m
seqguence number nin view v

accept_req(1, 1, m)

accept_req(1, 1, m)

3/2/20 Amy Babay 6



Recall: Paxos

accept_resp(v, n, m): agreement to assign
client msg m sequence number n in view v
+ promise not to accept a different m’ forninv

accept_resp(1, 1, m)

accept_resp(1, 1, m)

3/2/20 Amy Babay 7



Recall: Paxos

choose(v, n, m): assign client msg m
sequence number n; it is now safe to
execute the update in m (assuming you’ve
executed all previous updates)

choose(1, 1, m)

choose(1, 1, m)

choose(1, 1, m)

3/2/20 Amy Babay 8



Paxos — What if our leader lies??

Replicas disagree on what the first
operation is! Clearly, we can’t just let the
leader decide on the final result...

choose(1, 1, m)

choose(1, 1, m’)

3/2/20 Amy Babay 9



Paxos: Consider our other variant

accept_req(v, n, m): proposal
to assign client msg m
seqguence number nin view v

accept_req(1, 1, m)

accept_req(1, 1, m)

3/2/20 Amy Babay 10



Paxos: Consider our other variant

replicas assign client msg m sequence number
n (and can execute it) upon receiving a
majority of matching accept_resp messages

accept_resp(1, 1, m)

accept_resp(1, 1, m)

(

accept_resp(1, 1, m) accept_resp(1, 1, m)

ni—>

3/2/20 Amy Babay 11



Paxos: Consider our other variant

request : proposal :  accept @ reply

T

Figure 1: Paxos normal-case operation. Client C' sends an update to the
leader (Server 0). The leader sends a PROPOSAL containing the update
to the other servers, which respond with an ACCEPT message. The client
receives a reply after the update has been executed.

* From “Paxos for System Builders”

3/2/20 Amy Babay 12



What can a malicious leader do?

accept_req(1, 1, m’)

3/2/20 Amy Babay 13



What can a malicious leader do?

P, executes m as
the first operation,
but P, executes m’

accept_req(1, 1, m)

accept_req(1, 1, m’) —

\P

-
—
accept_resp(1, 1, m’) 3 =

3/2/20 Amy Babay 14



Handling Byzantine Faults

* Simple majority is NOT enough

— Malicious replicas may not keep their promise to
only vote once

* New idea: require a majority of correct
replicas

— How many total replicas do we need?

3/2/20 Amy Babay 15



Handling Byzantine Faults

* How many total replicas do we need?

— faulty replicas may never respond at all, so we
can’t require more than n — f responses

— but, it could be that our n — f responses actually
do include f faulty replicas

— 5o, we are only guaranteed n—2foutof n—f
responses come from correct replicas

— we need correct replicas to outnumber faulty ones
in making our decision, so we need n — 2f > f,
which implies n > 3f

3/2/20 Amy Babay 16



Handling Byzantine Faults

* Let our total number of replicasn=3f+1
—eg. f=1->n=4;, f=2->n=7

e Letaquorum=2f+1
—e.g. f=1->2f+1=3;, f=2->2f+1=5

* Any 2 sets of 2f + 1 replicas MUST share at
least 1 correct replica

No way to get 2f+1 without
2f+1 = drawing at least one replica
from other green circle

3/2/20 Amy Babay 17



Quorums in BFT

f=1
3f+1=4
2f+1=3

There is no way to

get 3 replicas to
agree on m AND get

3 replicas to agree
onm’

3/2/20 Amy Babay 18



Quorums in BFT

f=1
3f+1=4
2f+1=3

In the worst case,

with 3f+1 replicas:

- f+1 correct
replicas vote m

- fcorrect replicas
vote m’

- ffaulty replicas
vote m AND m’

We can’t get 2f+1
votes for conflicting
messages!

3/2/20 Amy Babay 19



Basic BFT Protocol

0. operation to execute

D (REQUEST, o, t, c) t : timestamp
— c: clientid
Client P, E

3/2/20 Amy Babay 20



Basic BFT Protocol

V:view

D n : sequence number to assign
d : digest of client message

m : client message

(PRE-PREPARE, v, n, d), m)

ST
Client P, E

3/2/20 Amy Babay 21



Basic BFT Protocol

V:view

D n : sequence number to assign
d : digest of client message
i : replicaid

@l
Client P, 5

P, (PREPARE, v, n, d, i)

Upon receiving pre-prepare, if:
\ > — 1. Signatures verify
3 2. v matches my view
- 3. | haven’t accepted a pre-
(PREPARE, v, n, d, i) prep fornwithd’ !=dinv
4. h<n<H

then send prepare

3/2/20 Amy Babay 22



Basic BFT Protocol

Vv

[ ] “
ST d

Client P, E a

Py

S

(PREPARE, v, 1, d, i)

\

(PREPARE, v, n, d, i)

S

3/2/20 Amy Babay

: view

: sequence number to assign
: digest of client message
replica id

(PREPARE, v, n, d, )

Upon collecting prepare
certificate (pre-prepare + 2f
prepares) for (n,m), | know that
it is impossible for another
replica to get a prepare
certificate for (n,m’)

23



Basic BFT Protocol

V:view

D n : sequence number to assign

d : digest of client message
i: lica id
. P - 1:rep
Client 1 -

P, (PREPARE, v, n, d, i)

/ This

communication
pattern worked for
Paxos — why isn’t

it enough here?

P3U

(PREPARE, v, 1, d, i)

3/2/20

Amy Babay 24



Consider a Malicious leader (again)

3/2/20 Amy Babay 25



Consider a Malicious leader (again)

(PREPARE, 1, 1, d)

P>
—~
~
(PREPARE, 1,1, d’) P3 E P7 g Correct process P

{— collects prepare
certificate for (1,m)
(commits to m for
seq 1)

3/2/20 Amy Babay 26



Consider a Malicious leader (again)

]

P,
= = -
(PREPARE, 1, 1, d’) & — P; E

Now consider that P; and Pg get partitioned away. New leader P, must protect Pg by
choosing m for seq 1, but it doesn’t have enough information to know that (either m or

m’ could have been chosen). The protocol gets stuck!
3/2/20 Amy Babay 27



Basic BFT Protocol: Commit Phase

V:view
D (COMMIT, v, n, d, i) n : sequence number to assign
< B d : digest of client message
i : replica id
' P = i:rep
Client 1
(COMMIT, v, n, d, i)
P

\P3

(COMMIT, v, n, d, i)

Upon collecting 2f+1 valid
(COMMIT, v, n, d, i) matching prepare/pre-prepare
from different replicas:

send commit

3/2/20 Amy Babay 28



Basic BFT Protocol

V:view

D (REPLY, v, t, ¢, i, ) t: cll.ent Tequest timestamp
c : client id

i : replicaid

r : result of the operation

ST
Client P, E

P REPLY, v, t, ¢, i, r
4=( )

Upon collecting 2f+1 valid

- matching commits from
(REPLY, v, t, c, i, r) P3 = different replicas:

- execute the operation
(REPLY, v, t, ¢, i, r) (assuming all previous ops have
been executed) and reply to the
client

3/2/20 Amy Babay 29



Basic BFT Protocol

request épre-prepareé prepare commit reply

Figure 1: Normal Case Operation

3/2/20 Amy Babay 30



Basic BFT Protocol

* (One) Key difference from Paxos:

— It is possible to have more than one value proposed in a given
view (by faulty leader)

— So, we can’t rely only on view numbers to break ties

 Why does the commit phase solve our problem?

— By collecting 2f+1 valid commits for sequence number n and
message m, a replica learns that a quorum has collected a
prepare certificate for (n,m) in view v

— This implies that NO correct replica can collect a prepare
certificate for (n,m’) in view v

— This also implies that ANY future quorum must include at least
one correct replica with a prepare certificate for (n,m)

3/2/20 Amy Babay 31



BFT View Change

 Same principle as Paxos: new leader must
communicate with a quorum to find out what
might have been ordered/executed
* But,
— Quorum = 2f+1 (not n/2)
— We use prepare certificates to identify unique
operations that may have been executed in a view

— Replicas must be able to verify that the leader

preserves ordering operations that may have been
executed in a previous view

3/2/20 Amy Babay 32



BFT View Change

v+1 : next view

n : sequence number of last stable checkpoint
C : proof for checkpoint at n

i P : set of all prepare certificates | have with seq > n
Client
(VIEW-CHANGE, v+1, n, C, P, i)
- /
P ]
2 UU \

(VIEW-CHANGE, v+1, n, C, P 1] F3

Upon collecting 2f valid view

(VIEW-CHANGE, v+1, n, C, P, i) change from different replicas,
’ SR new leader sends new view

3/2/20



BFT View Change

v+1 : next view

V : set of 2f+1 VIEW-CHANGE msgs

O : set of pre-prepares for all sequence numbers
between min-s (highest stable seq nina VC msgin V)
and max-s (highest prepare cert in a VC msg in V)

\

~
P; N
(NEW-VIEW, v+1, V, O) 3 [ — Upon receiving valid new-view
message, each replica sends
prepare for each pre-prepare in O
3/2/20



Additional Considerations

Garbage Collection
— Checkpoint state periodically to keep message log from growing indefinitely
— In Byzantine environment, checkpoints must be coordinated

Non-determinism

— Transform non-deterministic operations into deterministic calculation
based result from one or more replica(s)

* e.g. BFS “time-last-modified”: take max of leader’s proposed value or highest value
seenso far+1

e Observation: median of 2f+1 values must be >= some value proposed by a correct
process and <= some value proposed by a correct process

Communication Optimizations
— Reduce # of replies, tentative execution, read-only optimization
Crypto Optimizations

— MACs vs Digital Signatures: MACs are faster but weaker; requires non-
trivial changes to view change protocol (view-change acks)

3/2/20 Amy Babay 35



Additional Considerations

e Liveness

— To guarantee progress, we need at least 2f+1 correct
replicas in a stable view with a correct leader

— Tension: if leader fails, we want to replace quickly,
BUT if our timeout is too aggressive, we will view
change before a (correct) leader has a chance to make
progress

— Solution approach: double the timeout each time we
view change

* Clean theoretical guarantee: we make progress as long as
message delay doesn’t grow faster than timeout forever

* Problematic in practice: that progress might be extremely
slow

3/2/20 Amy Babay 36



Summary

* Introduced the first practical state-machine
replication protocol that tolerates Byzantine
faults in an asynchronous network

* Optimized the protocol to achieve
dramatically better performance than state-of-

the-art (at the time) — replacing signatures
with MACs

* Implemented replicated NFS service on top of
the BFT library

3/2/20 Amy Babay 37



