Reducing the Disk Requirements of
Blockchains

Nicholas Gordon
04/23/2020




Blockchains: They're great

* If the hype Is to be believed, blockchains can
solve all problems

* Secure, trustless, verifiable, incentivized!

* “Why Iisn’t everyone using them?” you might ask

* Because | don’t have two weeks to bootstrap my
phone!



—
The problem: blockchain size Is out

of control

* As | have said many times this term, Bitcoin
and Ethereum are enormous.

* For today’s numbers:

- Bitcoin: ~273GB
- Ethereum: ~332GB (full node this time)



—
But why Is that a problem?

 Research indicates it takes anywhere from days
to weeks to sync a full Bitcoin node

* Ain’t nobody got time for that

* EXcept maybe large corporations
- What was that about distributed, trustless ledger?
* Also Bitcoin on a raspberry pi could be cool



—
The plan

e Survey — can’'t do something new until you
know what isn’'t new anymore.

* After a month or so of recursively following
related works and keyword searches, all papers
were found.

21 made the cut, and all were read (mostly)



O
The results

* Broadly speaking, works fell into three
categories:

— Summarization
— Pruning
— Structural change

* We'll go over each category and talk about it and
pick out some Interesting examples



O
Are the results black-and-white?

* No. Most of these fit at least partially into two
categories.

* | decided which category they fit most into

* Also, If the work was primarily about something
else, | disregarded that other part and focused on

the storage requirements part.
- Remember what | said earlier about time?



Summarization

* This could have been called compression,
abbreviation, or condensing.

* All works here try to more efficiently represent
the same information.

* Always you lose some information, such as full
transaction traceability.



Mini-blockchalin

 We already talked about this, but it is an archetypal
entry.

* First well-known attempt at this sort of thing (2014)
* Account tree is the summarization part

e Remove old block bodies to lose redundant
Information

* Keep headers to retain security
- |



—
Empowering Light Nodes In

blockchains with block
summarization

* Along title, ironically.

* Proposes to summarize every m blocks into a summary block,
repeated in a way that eventally the chain is g guard blocks and
then an arbitrary number of summary blocks.

* Then, every m summary blocks, summarize them again!

- A“summarization tree”

* An interesting middle ground between SPV where you can only
verify a transaction is in a block and a full node



e
Blockchain Abbreviation

* Pretty straightforward idea: compress all blocks
Into a new genesis block.

* Have to adjust block difficulty, change forking
protocol to ensure abbreviation adoption

e Security problems? What about contracts?



Pruning

* All techniques aim to delete unneeded
iInformation. Sometimes radically, by losing
whole blocks.

* |n some cases, overlaps with “summarization”
depending on the angle you look at it from



—
Downsampling Blockchain Algorithm

* Borrows a technique from digital signal
processing world, downsampling

- A downsampling factor of 1/M, where you keep only
M samples

* Use statistics (!) to find a probability function for
how many UTXO a block has

* Then, only keep the M highest scoring blocks.



O
Selective Blockchain Transaction

Pruning and State Derivability

e Also talked about this one

* Everyone cares about a different set of transactions in
the network, and few people care about all transactions

* Allow an arbitrary predicate to decide what transactions
to prune

* Check blocks, apply predicate to transactions, delete
matching transactions



-
Temporal Blockchain: A Formal

Analysis
* Use a formal language to build a specification of
blockchalin

* Also, half an attempt to solve the size problem

* Only keep blocks that are younger than n days old,
say 30 days old.

* Use a “checkpoint” to make deletion safe, then delete
them. No mention of how to checkpoint, though.



Structural Change
* All techniques in this category take a more
“radical” approach to solving the problem

* Often feature proof-of-work changes, sometimes
even depart from the blockchain idea.

* Perhaps the most promise, but requires the
most work



Proof-of-property

 Why do nodes have to keep state? To verify
transactions.

— Again: why do nodes have to keep state? Why not make the
transaction submitters do it?

* Extend Ethereum’s per-block system state to include a
“validation path” with transactions that contains all the
necessary state for a node to verify that the transaction
IS valid and can complete, i.e. has enough gas



-
Section/Segment Blockchain

* A bizarre duo of papers that are very similar and only a little
different by the same author

* Utilize a “proof of storage” that forces miners to retain
segments of the blockchain, which contain consecutive
blocks.

 Distributed by “occupations” that nodes apply for and they can
get fired by not showing their proof of storage.

— This incentivizes nodes to store blocks instead of relying on altruistic
full nodes to do it



O
Rollerchain

* Probably the inspiration for “proof of storage” concepts

* Extend the Bitcoin POW to require “tickets” that you
obtain by storing state snapshots, in this case a
snapshot of UTXOs at the time of that block
- Required for mining

* Again, not trying to “invent the problem away,” but give
nodes a reason to actually retain blocks.



e —
What do | think?

» After the mini-blockchain presentation | began to
suspect we could not have our cake and eat it, too

* There may be irreconcilable tensions between
some aspects of blockchain that we must rank by
their importance to us

* That will dictate which of the techniques we use
and the results we can get from them



Questions, Comments?




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

