A Survey of Blockchain Storage Requirement
Mitigation Techniques

Nicholas Gordon
University of Pittsburgh
nick.gordon@pitt.edu

April 20, 2020

1 Introduction

Since the release of Bitcoin [18] blockchains have grown in popularity and people
are applying the concept to a wide variety of problems, as well as continuing
fundamental research. Some applications include “digital gold” [I8], a “global
computer” [24], and a gross-settlement system [3] mainly used by banks. Fun-
damental research is very open, combining aspects from databases, distributed
systems, networks, and security research. Perhaps the best-known problem is
the enormous energy consumption of blockchains like Bitcoin, consuming more
energy than the entire country of Austria at the time of writing. [2] However,
less public problems like the various attack vectors, transaction throughput, and
the storage consumption of blockchains impact the community just as much.

Perhaps because of the relative abundance of disk space, most of the current
research overlooks the storage requirements of blockchain. This survey examines
research in this space. This paper is not intended to be a complete, exhaustive
review of the literature; there are undoubtedly countless papers at workshops
and conferences that state never-fulfilled positions or implement incremental
improvements over existing work. This paper is intended to provide a thorough
look at the existing “anchor points” in this field and orient the reader in what
has been done and what remains to be done.

In conducting the survey three major groups of techniques were identified:

e Summarization — attempting to summarize, abbreviate, or otherwise com-
press the information in the blockchain to reduce storage requirements

e Pruning — proposing how to remove unnecessary or unwanted information
from the blockchain to reduce storage requirements

e Structural — proposing a fundamental, structural rework of the blockchain
itself in an attempt to overcome the need for such storage requirements



These areas are not black-and-white and some papers fall into multiple cat-
egories or somewhere in-between. However, in the following sections, work is
placed in the category it most fits according to my interpretation. Finally, as
virtually all of these works are based on either Bitcoin, Ethereum, or Hyper-
Ledger Fabric, familiarity with these three systems is assumed.

2 Problem

The problem that each of these works aim to solve, in some way, is the storage
requirement of the blockchain. It is slightly different from chain to chain, but I
will use Bitcoin as the model.

Blocks are cryptographically linked to the previous block by a hash. This
hash forms the proof-of-work that a miner found it legitimately. This serves
doubly as a guarantee that the ledger has not been tampered with, as anyone
possessing the entire blockchain can recursively verify hashes until reaching the
genesis block, which de facto is assumed trustworthy.

However, verifying just the block headers is usually not useful, as the ledger is
composed of the transactions within the block bodies. To verify a transaction is
part of the blockchain, you must know the transaction’s hash and its containing
block’s hash. Since each participant will want to verify different transactions,
in general this means the chain in its entirety is kept by full nodes. For Bitcoin,
as of April 2020, the Bitcoin blockchain was 270GB in size. [I]. Various works
have stated that it can take days or even weeks to bootstrap a Bitcoin full node.

Furthermore, in the period from April 2019 to April 2020 Bitcoin grew from
211GB to 270GB.[I] The growth rate is not fixed, but a function of block size
and the block discovery rate. Unless computing resources grow at least as
fast, Bitcoin will eventually exclude more casual and low-powered participants,
leading to increased centralization of the blockchain.

3 Summarization

At first glance the reader may confuse these techniques with pruning techniques.
These techniques aim to retain all or most of the information in the blockchain,
but represent it more efficiently. In almost all cases this results in a change in
the properties of the blockchain, but each work emphasises different advantages
to offset their costs.

3.1 The mini-blockchain scheme [§]

The earliest paper in this section mini-blockchain scheme, proposed by Bruce
in 2014. The observation by Bruce, later made by most others in this survey, is
that the blockchain simultaneously accomplishes three things:

e Transaction coordination and ordering a la Paxos

e Proof-of-work that secures transactions



e Record ownership of assets on the chain

His observation is that the blockchain can simultaneously, but inefficiently, ac-
complish all three as it is. By separating the three parts into a mini-blockchain,
a proof-chain, and an account tree, which provide each of those functions re-
spectively.

3.1.1 The mini-blockchain

The mini-blockchain is an ordinary blockchain, except it is truncated after a
certain number of blocks from the tip of the chain. It functions to order blocks
by the same mechanism that Bitcoin and others do. This means mining proceeds
as in Bitcoin. However, after the truncation point we cannot guarantee trust,
so the proof-chain is needed.

3.1.2 The proof-chain

The proof-chain, in short, is the block headers since the genesis block, but no
block bodies. Each block header includes the hash of the previous block, a
nonce, the account master hash, and the block root hash as in Bitcoin. This
brings the security to as strong as Bitcoin’s security with regards to 51% attacks,
or “hidden chain attacks” as he calls them.

3.1.3 The account tree

The missing information in the proof-chain is retained in the account tree, imple-
mented approximately as a Merkle tree. Any structure that supports a securing
master hash could be used, instead.

3.1.4 Node bootstrapping

When a node wants to join the network it will acquire the proof-chain from
other nodes in the network until it reaches the mini-blockchain. At this point,
“slices” of the account tree are acquired and combined and the rest is similar
to Bitcoin, where blocks are requested and applied to the current state.

3.1.5 Analysis

Bruce does not provide any empirical analysis of the scheme’s performance.
Since the block headers are simply a few hashes, we can assume they will be on
the order of hundreds of bytes, a significant savings over Bitcoin’s approximately
1MB block size.[I]

Further, as the mini-blockchain inherits most of its properties from Bitcoin,
the same analyses apply. The final storage overheads come from the account
tree, which Bruce does quantify. If we assume we are using 160-bit addresses
and 64-bit account values, then Bruce’s estimate of 100 billion addresses takes
up constant space on the order of 160 + 64 * 10 = 2.5TB to store the entire
account tree, not counting data structure overhead.



3.2 Blockchain Abbreviation [4]

This paper was published by Amelchenko and Dolev in 2017. Briefly, the paper
discusses how to condense the Ethereum blockchain into a new genesis block, as
well as a description of how to accomplish the same thing in a shared-memory
setting on a filesystem.

3.2.1 New Genesis Block

Ethereum blocks contain a state description that was current when the block
was the tip of the blockchain, so they propose to have the network agree to
replace the current chain with the abbreviated chain. That is, the abbreviated
chain should occur near the tip of the chain. Specifically, this new genesis block
summarizes the account balances in the blockchain.

Since probabilistic blockchains follow the chain with the highest work, they
permit this new genesis block’s difficulty to be the sum of the blocks it abbre-
viates. As other blocks receive this abbreviation, they can verify that difficulty
as they will still have the entire chain.

In order for abbreviation to be successful, honest nodes must promptly adopt
a valid abbreviation, otherwise an adversary with enough mining power would
be able to exert outsize influence on the network.

3.2.2 Abbreviation Time

They discuss two different network types, one with uniform network latency
and non-uniform network latency with respect to how much time the network
has to abbreviate the chain. Their results are that a non-uniform network,
that is, we cannot speculate what percentage of nodes have received a message
until they all have, is that abbreviation must take less time than the block
mining time minus the network latency. In a uniform network, where we can
calculate the percentage of nodes that have received it, we have more time, that
is, abbreviation must be faster than the block mining time.

3.2.3 Shared Memory Scheme

They also propose a model wherein nodes remotely log in to other nodes to
communicate blocks, by writing them to that node’s blockchain filesystem. All
of their previous results apply also to this system.

3.2.4 Analysis

This approach has an obvious, unanswered question, which is how to reconcile
multiple abbreviations. It is not clear how susceptible this abbreviation process
is to 51% attacks, hidden-chain attacks, or other vulnerabilities that the whole
chain secures against.

As for storage requirement, it is very low as the network can decide to
abbreviate whenever it wants, giving a lower storage bound of the size of the



Ethereum blockchain’s state representation plus the number of blocks between
abbreviation.

Notably, abbreviating, i.e. deleting old block bodies makes interlocking
smart contracts impossible. However, this could be countered by nodes re-
publishing old smart contracts in a new block that is based off the abbreviated
block. This re-publication will decrease the effectiveness of the abbreviation
since the data we expected to be abbreviated is brought forward past the ab-
breviation. The authors do not discuss this trade-off.

3.3 Recycling Smart Contracts [21]

Published by Pontiveros, Norvill, and State in 2018, this method proposes
adding a new pseudo-opcode to the Ethereum VM to compress smart contracts
by replacing segments of a smart contract’s code with pointers to other existing
smart contracts, like a compression algorithm.

3.3.1 Pseudo-Opcode and Compression

They propose modifying the Ethereum VM to introduce a new pseudo-opcode,
COMPRETH, that specifies where to find the substituted source code, how long the
source is, which transaction its found in, and where it starts in the transaction.

They claim this “pointer” is different from the existing calls such as DELEGATECALL
in that it does not get executed as is; to decompress, a textual replacement is
done and then the source is executed after.

Chain-pointers are resolved by having a distance limit of 256 blocks, as well
as resolving pointers sequentially so that it is impossible for a pointer to refer
to source outside that 256 block limit.

Compression is done using a simple longest common subsequence algorithm,
but instead of trying to solve for the most efficient solution, they pick the longest
strings first and accept the sub-optimal packing of pointers in exchange for quick
compression.

They describe that segments of code would not be replaced if the COMPRETH
instruction would be greater. Finally they permit a hard-cap on the number of
pointers in a contract to tune between compressed size and decompression time.

3.3.2 Analysis

Their results show that a window size of 256 blocks yields an average compress-
ibility of 65%, but quadrupling the window size only yields a 69% compression
ratio, a finding consistent with increasing dictionary sizes in compression algo-
rithms.

However, at this 256 block depth it takes 13 seconds to compress a block’s
transactions, which is just shorter than the 14 seconds between blocks.

The authors neglect to describe how this pseudo-opcode would be tolerated
by the network. It is unclear whether they intend for it to have a comparable
gas price to the existing delegating opcode referenced above. They even admit



that the DELEGATECALL opcode was previously in high use, but with its increased
gas price it has fallen out of favor, and it is unclear how they would avoid this
problem.

3.4 Sidecoin [16]

Published in 2015 by Krug and Peterson, this work does not directly suggest its
method as a solution for an existing blockchain’s size, but how a snapshotting
mechanism can create a new genesis block for a new blockchain, allowing “free
buy-in” for Bitcoin users.

3.4.1 Snapshotting and Token Claiming

They stipulate that a snapsnot is all non-trivial balances currently in the Bitcoin
network, and use this information as the genesis block for the new chain. The
Bitcoin addresses and their balances will be embedded.

Then, roughly, a user can claim their coins on the new network by signing a
transaction with both their Bitcoin key and a new sidechain key.

3.4.2 Analysis

This method is very similar to the work by Amelchenko and Dolev, though Krug
and Peterson are more focused the technique’s use for easing adoption of new
blockchains and facilitating innovation.

3.5 Empowering Light Nodes in Blockchain with Block
Summarization

[19] Published in 2018 by Palai, Vora, and Shah, which they position as a node
option in between simplified payment verification nodes and full nodes, achieved
by recursive summarization of blocks in the chain.

3.5.1 Summary Blocks

Simply, they replace certain blocks in the chain with summary blocks instead,
where the summary block will condense transactions such as A— > B, B— >
C,and C— > D to A— > D. To avoid computational overheads associated
with forking, a certain number of blocks, n, near the tip are not summarized.
Then, after those spared blocks, every m unsummarized blocks are replaced by a
summary block as the chain grows. That is, eventually the chain will be mostly
summary blocks. To further improve this, they propose recursively summarizing
existing summary blocks in the chain, creating a “summary tree” of a tuneable
depth.



3.5.2 Analysis

They show that with varying tree depths and varying values of m they achieve
Bitcoin compression ratios from 0.53 to 0.60.

This method allows a node to actually verify transactions given the spared
blocks near the tip, something impossible with SPV. However, they are not
required to store the whole chain, thus saving about half of the disk space, as
shown above.

As with other compression methods, not well specified is the computational
overhead of this procedure and what kinds of nodes are capable of this compres-
sion while keeping up with the network. Additionally, summarization excludes
Bitcoin scripts, as the block bodies are not retained in summary blocks. Nat-
urally, the summarization process also obscures transaction histories, perhaps
enabling things such as money laundering if all nodes summarize given transac-
tions.

3.6 Block Summarization and Compression in Bitcoin Blockchain
[17]

Published in 2018 by Nadiya, Mutijarsa, Yuwono, this work is a straightforward
application of summarization and compression to Bitcoin.

They apply the recursive compression technique described by Palai et al in
their 2018 work, and additionally apply LZ77 and Huffman coding to compress
blocks.

3.6.1 Analysis

The authors do not specify exactly which blocks are compressed, i.e. the un-
summarized blocks near the tips, the summarized block tree, or if all blocks are
compressed.

This results show that compressing the blocks yields a large space savings,
approximately 78% in most cases. They do not quantify the computational
overhead of this compression scheme, so it is unclear how much savings can be
achieved if a node wants to stay up to date with the network.

Their work is mainly an incremental improvement over the summarization
scheme.

4 Pruning

All of the techniques in this section in some way choose to remove information
from the blockchain, either whole blocks or individual transactions. Inevitably
this means losing a degree of security or traceability in exchange for compact-
ness.



4.1 Downsampling Blockchain Algorithm [23]

Published by Quan, et al in 2019, this work applies a technique from digital
signal processing to identify high-information blocks to retain, while discarding
other blocks.

4.1.1 Block Information

They identify that the important information in a block is its UTXOs, and
without that information the blockchain cannot process transactions. They
describe the “survival block” of UTXO as the number of blocks between when
it is created and spent; the lifetime of the UTXO.

Knowing this, they show that the lifetime of UTXOs fits an exponential
distribution, compute a probability density function for UTXOs given a block.
Then this is applied to find a block’s information entropy, where approximately
the higher likelihood it is to have UTXOs the higher its information entropy is.

4.1.2 Downsampling

Armed with a block’s information entropy, their strategy is to pick the M blocks
with the highest information entropy, and discard the rest of the block bodies,
but keep all headers. Given the behavior of Bitcoin nodes to gossip transac-
tions they receive, this downsampling introduces four cases in the products of a
transaction’s validity and whether the node broadcasts it.

A node could fail to broadcast a valid transaction because it has downsam-
pled the needed block away, correctly discard an invalid transaction, or the
inverse of either of those two. They give a statistical treatment that shows the
probabilities at M = 1024 to be valid broadcasting at 1.000 and invalid discard-
ing to be 0.999. This is better than a trivial comparison downsampling where
blocks are randomly selected for downsampling. Further, they show that the
probability of requiring a full node to verify transactions is relatively stable at
0.07.

4.1.3 Analysis

As with other strategies, because the block headers are retained we keep a higher
level of security.

This method can be seen as a more sophisticated version of simple prun-
ing. As with other headers-only methods, it ensures growth very slowly, as the
number of retained full blocks is only this parameter M.

An obvious problem with this method is that it relies on the behavior of
the network — that is, it is not necessary that Bitcoin or another UTXO-based
blockchain system have an exponential curve for UTXO lifetimes. However, the
statistical analysis can be repeated when the error rates become too high.



4.2 Temporal Blockchain: A Formal Analysis [12]

Published in 2016 by Dennis, Owenson, and Aziz, this work primarily focuses
on designing a blockchain using formal methods. They attempt to tackle the
problem of a “rolling” blockchain by designing it in the B formal language to
prove correctness and other desirable properties.

4.2.1 Rolling Blockchain

Their blockchain continually deletes all blocks older than, say, 30 days. They
mention the use of a checkpointing method so that the deletion is safe but do
not specify what this checkpointing method could be. Other methods mentioned
in this survey could be used, such as Blockchain Abbreviation or Sidecoin to
achieve this.

They are not retaining block headers, as the disk requirements for their
blockchain are static, which is impossible if all block headers are retained.

4.2.2 Analysis

Orthogonal to the quality of their formal analysis is their solution to the disk
storage requirement. In that respect, they take the extreme position of com-
pletely losing history. At this point it becomes less clear what blockchain can
solve that a conventional distributed ledger cannot.

4.3 Selective Blockchain Transaction Pruning and State
Derivability [20]

Published in 2018 by Palm, Schelen, and Bodin, the they propose allowing
nodes to select transactions to prune using an arbitrary predicate. This permits
nodes in the network to make their own decisions about what transactions are
important to them, and what to store. However, to retain the derivability of
the current state extra discrimination of transactions is necessary.

4.3.1 Blockchain Anatomy and Pruning Process

The authors note that not all blocks can be pruned; for probabilistic blockchains
some “guard blocks” must be left un-pruned near the tip of the chain to ensure
forks and rollbacks can occur correctly. Further, transactions cannot be pruned
without changing the hash of a block, so they require that the hash of a block
be saved before the pruning occurs.

The pruning process is three steps: preparation, marking, and sweeping.

e Preparation — Collecting needed data structures, perhaps off-chain, as well
as identifying blocks that might contain transactions to prune.

e Marking — Once blocks are identified, the predicate function is applied to
each transaction in the block and marked if it passes.

o Sweeping — Marked transactions are deleted from the block.



4.3.2 Types of Transactions

The authors identify three classes of transactions based on their effect on system
state: significant, universally insignificant, and retroactively significant. The
first class is the “typical” transaction, which must be retained in order to derive
system state. An example might be a transaction where an asset is issued. The
second class is the trivial case, say a transaction that transfers zero tokens from
one address to another. The third class is where the authors aim to find the
most savings.

Transactions are considered “retroactively” insignificant if they no longer
contribute to the system state in a way relevant to the user. That is, if a newer
transaction overwrites a value set by an older transaction, the user can prune
that transaction if they don’t care about deriving the state associated with the
transactions in that older block.

4.3.3 Analysis

In their implementation they modify Hyperledger Fabric and model a supply-
chain scenario. This ideal scenario allows for very good results. Anytime an
asset is successfully delivered, the transactions associated with that asset are
considered insignificant and can be pruned. This leads to a 93% prunability and
an 85% size reduction of the chain.

However, they do not investigate or thoroughly discuss the use in public,
probabilistic blockchains. It is also unclear the consequences on the network if
all nodes are using this scheme and have distinct pruning functions. Block avail-
ability may be impacted, which can lead to transaction verification problems if
it is discovered nobody in the network possesses the transaction.

4.4 OmniLedger [15]

Published in 2018 by Kokoris-Kogias et al, this paper describes a complete
blockchain system designed to employ sharding to improve scalability. This
work is not primarily concerned with the storage requirements, though they do
describe an optimization to their system to permit pruning.

In their optimization, the shard nodes are not required to store the entire
blockchain, as in their system blocks contain a description of the system state,
like Ethereum. They permit shard nodes to delete old blocks and move the
responsibility of transaction verification to clients. This resembles the arbitrary
pruning predicates described by Palm.[20] In general, this will not constrain the
size of the blockchain.

4.5 Pruneable sharding-based blockchain protocol [14]

Published in 2018 by Feng et al, this paper positions itself as a refinement
and improvement of Rollerchain. They propose something called the “PSRB”
protocol. They claim that Rollerchain does not avoid the blockchain size growth
problem because the whole blockchain is retained, and they propose that nodes

10



should only retain recent blocks and the block headers. In this way it resembles
a fusion of the mini-blockchain and Rollerchain, while adding sharding to the
mix.

5 Structural

All of the techniques in this section aim to solve this problem by re-thinking
some property of the blockchain or adding new mechanisms. Many of the works
in this category have elements from the other two categories, but because of
their more radical changes to the concept they are placed here. Included in this
section are blockchain-like concepts which dispense with the linear blockchain
as well as proposals to modify the proof-of-work functions to require storage or
an indication of transaction validity.

5.1 Rollerchain [9]

Published in 2016 by Chepurnoy, Larangeira, and Ojiganov, Rollerchain’s main
insight is that full nodes are not incentivized in any way, only mining is. Roller-
chain re-works the typical proof-of-work to include a “proof-of-storage” such
that miners must also retain snapshots of the system state.

5.1.1 State Representation and Proof of storage

Rollerchain is based off a previous, formal definition of a blockchain system
called GKL. In their view, part of the reason block storage is difficult to solve is
that there is no state representation required by Bitcoin. Thus, any cumulative
UTXO state is only conventional, not specific.

They propose to define a formal state that includes an account dictionary,
reminiscent of Ethereum’s per-block state or mini-blockchain’s account tree.

Then, by extending Bitcoin Backbone’s proof-of-work to include a “ticket”
system which enforces the retention of snapshots, blocks are mined.

5.1.2 Analysis

The perform an analysis which shows that their POW could be interchanged
invisibly with Bitcoin’s POW, and thus the security of Rollerchain is at least as
good as Bitcoin’s.

The protocol does not reduce state size in any way, but by incentivizing
miner’s to retain state for, as they say, 10,000 blocks, the role of an altruistic
full node can be eliminated.

5.2 Proof-of-property [13]

Published in 2018 by Ehmke, Wessling, and Friedrich, this work modifies Ethereum
to include a proof that all transactions will complete successfully by providing
the state information needed to verify it with the transaction.

11



5.2.1 Validation Paths

The proof-of-property is manifested in the validation path, which is a partial
state tree, specifically they suggest a Merkle Patricia tree because it allows for a
smaller path, that has all of the information needed to verify that the addresses
involved in the transaction can complete.

Specifically, this is a partial state tree, including all public key addresses and
their balances needed to cryptographically validate an account’s balance. For
an account involved in the transaction, all of that account’s parent nodes in the
tree and each parent’s siblings must be included in this partial state tree.

The state of the blockchain will change each block, so nodes are required to
upkeep their validation paths.

5.2.2 Analysis

This can be viewed as an inversion of the concept of Palm[20] and OmniLedger[15]
in that instead of clients choosing what state to receive to validate transactions,
clients must retain enough state to prove to others that their transactions are
valid.

The authors claim that, in general, this means no nodes are required to store
all blocks, as transaction submitters are required to remember the state needed;
nodes merely validate this partial state tree. Because most nodes can discard
most block bodies, most nodes will save up to 90% space, they claim.

Security is unaffected since block headers are not compromised, but this
exchange of responsibility warrants a more thorough examination of security
and correctness, as it is not clear that old results apply to this new model.

5.3 Enabling Blockchain Innovations with Pegged Sidechains
[5]

Published in 2014 by Back et al, this paper does not directly address the storage

requirements, rather it describes a mechanism by which two blockchains can

be made to interact. This mechanism could be used to ease the adoption of

technological innovations on existing blockchains rather than requiring hard
forks as is currently required to adopt a major change.

5.4 On Scaling Decentralized Blockchains: A Position Pa-
per [10]

Published in 2016 by Croman et al, this paper is an examination of the bot-
tlenecks in current blockchain systems. Their discussion provides the insight
that blockchains may need fundamental, structural changes that make them
dissimilar to current blockchain models to scale to the throughput of current
transaction processing services like Visa.

The paper discusses many other aspects of blockchain scalability, but their
specific contributions to the storage plane of blockchains include an identifica-

12



tion that Bitcoin’s implementation of ledger storage is inefficient. They addi-
tionally suggest that UTXO could be stored in a data structure that is “sharded”
between nodes to reduce its per-node footprint. They suggest a distributed hash
table, but provide no further discussion.

5.5 A Low Storage Room Requirement Framework for
Distributed Ledger in Blockchain [11]

Published in 2018 by Dai et al, they propose distributing the workload of storing
blocks by using error-correcting codes to encode blocks and distribute the blocks.

5.5.1 Network Codes and Distributed Storage

The authors describe “network codes” which other readers may know better as
error-correcting codes, such as their specific example of a Reed-Solomon code.
These codes can be grouped by their (n,k) pair, which states that if a unit
of data is encoded into n packet fragments you will be able to recover it by
obtaining any k of the n encoded fragments.

Then, because each block is encoded in this way, a block is not replicated
everywhere, but instead the work is distributed, so that a block under this
scheme will take up % of the space it does in a conventional blockchain, where
k is the same as above.

Further, they suggest two ways to determine the exact values of k and n as
the number of participating nodes changes, as well as how to shift the compu-
tational cost of this scheme from decoding to encoding. Decoding such packets
requires a solving of linear equations and then back-substitution to combine
fragments. They propose restraining the coding to the binary field and at en-
coding time intentionally shifting packets by a random number of bits.

5.5.2 Analysis

Their “binary field random shift encoding” is not well-explained, so its correct-
ness cannot be evaluated. They make several claims about scalability that follow
from an assumed understanding of this scheme, so whether the computational
overhead of such a scheme will dominate the advantage we can gain from it is
unknown.

The bandwidth consumed by this scheme is lower since a block is not propa-
gated in whole, but rather in pieces. They do not, however, explain how a node
should select which packets to retain. Such a system could be readily created,
such as by taking the modulo of a node’s public key to determine which packets
it should store, but the authors do not say.

They do not describe how to ensure that an honest majority will have enough
encoded packets to reconstruct the original block. They admit a weakness of
their work is packet pollution, which enables attackers to waste node computa-
tion power by providing bogus packets that force an honest node to attempt to
combine them, which is computationally intensive.

13



5.6 Section- and Segment-Blockchain [25][26]

Published in 2018 and 2020 by Xu et al, Section-Blockchain and Segment-
Blockchain respectively overlap in many ways with regards to the storage aspect
and are grouped together here. They propose dividing the blockchain into “seg-
ments” of consecutive blocks and extending the proof-of-work puzzle to include
a proof-of-storage that a node actually retains their segment. In this way it
resembles Rollerchain. As with Rollerchain, nodes must still store all block
headers.

5.6.1 Node occupations and proof-of-storage

They re-use an argument from sharding that states that an attacker must con-
trol more than half of the nodes (or jurors) in each shard in order to control
a blockchain. They appropriate this occupation analogy to distribute the seg-
ments of the blockchain. They explain that the number of blocks per segment
can change as the number of nodes in the system changes.

Specifically, the proof of storage uses the hash of the current block to select a
transaction from within the segment that the claiming block should be hosting.
The challenged node must provide the transaction, proof that the transaction
is contained within that block, and a proof that the block is part of the chain,
specifically a Merkle branch.

A reward is also specified for the proof-of-storage, which is split evenly among
all miners. I believe this is to incentivize nodes to select underfilled occupations,
as described in the next section.

5.6.2 Balancing the number of nodes per occupation

A particular innovation is the self-balancing property. Before a node can begin
mining it must “apply” to host a specific segment. This queue is stored in each
block, and a node must continually solve proof-of-work puzzles to retain its slot
in the queue. Once a node joins the occupation, whenever a block is mined, it
must also provide a proof-of-storage to keep its occupation. If it does not, it
will be fired from its occupation and cannot mine.

5.6.3 Analysis

The authors go on to explain how to combine this system with sharding, which
is in large part orthogonal to the concerns of this survey. This segmentation
scheme does not reduce the size of the blockchain, but instead reduces the
footprint of the blockchain on individual nodes; each node will only have block
bodies for their segment, effectively limiting the number of block bodies to just
the current number of blocks per segment.

14



5.7 Corda, IOTA, and Swirlds

The following three schemes are grouped together because each one uses a fun-
damentally different graph structure to represent the state of the system, mak-
ing comparisons to existing blockchains difficult, especially translating existing
summarization and pruning techniques. These will not be discussed in depth,
but given for completeness and a suggestion of directions for future work.

5.7.1 Corda [7]

Published in 2019 by Hearn and Brown, instead of a proof-of-work and mining,
transactions in Corda are controlled by distributing trust among notaries, es-
sentially a controller or guarantor of assets in the network. A notary guarantees
it will not validate a transaction unless all input assets are unspent. Corda thus
resembles more PBTF than a blockchain, and the research into storage require-
ments and efficient state representation are outside the scope of this survey.

5.7.2 IOTA [22]

Published in 2018 by Popov, this system is also referred to as “the tangle.” The
fundamental difference is that instead of a blockchain, the tangle is a dircted
acyclic graph. The tangle positions itself as a generalization and next evolution-
ary step of the blockchain. Transaction processing is similar to Bitcoin, where
a proof-of-work puzzle must be solved, but additionally a node must validate
two other transactions before it can issue its own transaction.

5.7.3 Swirlds [6]

Published in 2016 by Baird, Swirlds uses a Byzantine agreement protocol and
a hashgraph to optimize information transfer and voting procedures in such
algorithms. It explicitly is not a blockchain, rejecting proofs of work and blocks
completely, falling back to well-establihed consensus protocol concepts.

6 Conclusion

As mentioned in the introduction, this survey does not and cannot cover all of
the research in this field. However, the papers presented here demonstrate a
clear trichotomy for how to reduce the storage size of a blockchain. Specifically,
through this trichotomy we can see that there is an apparently unresolvable
tension between data storage, ledger completeness, availability, reliability, and
computational requirements.

Summarization techniques sacrifice some ledger completeness and computa-
tional efficiency in exchange for higher availability and reliability, while pruning
techniques are more efficient but can in some cases dramatically affect availabil-
ity of a given block or transaction, and may fully discard ledger completeness.
On the other hand, structural techniques appear to strike a good balance by

15



in some cases incentivizing the problem or shifting responsibilities, but in these
cases there may be significant economic ramifications that are not present in
other works which are merely technical improvements on the existing system.
The more radical structural approaches such as IOTA require re-evaluation of
the the techniques presented here to discover how they apply to the tangle.

There is evidently room for interdisciplinary innovation, as evidenced by the
downsampling algorithm work and the network coding work. There is still work
to be done, as the very recent work by Xu demonstrates.

Finally, it is unclear if we can have our cake and eat it too, that is, if the
original vision of the blockchain in Bitcoin has inherent disadvantages we cannot
overcome with technical innovation and if we must re-consider the goals of our
system as the position paper by Croman suggests. In any case, this survey
demonstrates a wide, open field of research waiting to be done on a problem
that certainly will not go away on its own anytime soon.

References

[1] Blockchain charts. https://www.blockchain.com/charts/blocks-size.
Accessed: 2020-04-20.

[2] Cambridge bitcoin electricity consumption index. https://www.cbeci.
org/cbeci/comparisonsl Accessed: 2020-04-20.

[3] Xrp ledger dev portal. https://xrpl.org/docs.html. Accessed: 2020-04-
20.

[4] AMELCHENKO, M., AND DOLEvV, S. Blockchain abbreviation: Imple-
mented by message passing and shared memory (extended abstract). 2017
IEEE 16th International Symposium on Network Computing and Applica-
tions (NCA) (2017), 1-7.

[5] Back, S. A., CoraLLO, M., DasHJR, L., FRIEDENBACH, M.,
MAXWELL, G., MILLER, A., POELSTRA, A., AND TIMON, J. Enabling
blockchain innovations with pegged.

[6] BAIRD, L. The swirlds hashgraph consensus algorithm: Fair, fast, byzan-
tine fault tolerance. Swirlds, Inc. Technical Report SWIRLDS-TR-2016 1
(2016).

[7] BROWN, R. G. The corda platform : An introduction.
[8] BRUCE, J. D. The mini-blockchain scheme.

[9] CHEPURNOY, A., LARANGEIRA, M., AND OJiGANOV, A. Rollerchain,
a blockchain with safely pruneable full blocks. arXiv: Cryptography and
Security (2016).

16


https://www.blockchain.com/charts/blocks-size
https://www.cbeci.org/cbeci/comparisons
https://www.cbeci.org/cbeci/comparisons
https://xrpl.org/docs.html

[10]

[20]

[21]

CroMAN, K., DEckEiRr, C., EvaL, I., GENCER, A. E., JUELS, A.,
KosBa, A. E., MILLER, A., SAXENA, P., SHI, E., SIRER, E. G., SONG,
D. X., AND WATTENHOFER, R. On scaling decentralized blockchains - (a
position paper). In Financial Cryptography Workshops (2016).

DaAr, M., ZHANG, S., WANG, H., AND JIN, S. A low storage room re-
quirement framework for distributed ledger in blockchain. IEEE Access 6
(2018), 22970-22975.

DENNis, R., OWENSON, G., AND Aziz, B. A temporal blockchain: A for-

mal analysis. 2016 International Conference on Collaboration Technologies
and Systems (CTS) (2016), 430-437.

EuMKE, C., WESSLING, F., AND FRIEDRICH, C. M. Proof-of-property
- a lightweight and scalable blockchain protocol. 2018 IEEE/ACM 1st
International Workshop on Emerging Trends in Software Engineering for

Blockchain (WETSEB) (2018), 48-51.

FeEnG, X., Ma, J., M1ao, Y., MENG, Q., Liu, X., JIANG, Q., AND LI,
H. Pruneable sharding-based blockchain protocol. Peer-to-Peer Networking
and Applications 12 (2019), 934-950.

Kokoris-Kocias, E., Jovanovic, P., GASSER, L., GAILLY, N., SYTA,
E., AND FORD, B. Omniledger: A secure, scale-out, decentralized ledger
via sharding. 2018 IEEE Symposium on Security and Privacy (SP) (2018),
583-598.

KRrug, J., AND PETERSON, J. Sidecoin: a snapshot mechanism for boot-
strapping a blockchain. ArXiv abs/1501.01039 (2015).

Nabp1va, U., MuTiiArsaA, K., AND Rizqr, C. Y. Block summarization

and compression in bitcoin blockchain. 2018 International Symposium on
Electronics and Smart Devices (ISESD) (2018), 1-4.

NAKAMOTO, S., ET AL. Bitcoin: A peer-to-peer electronic cash sys-
tem.(2008), 2008.

Pavar, A., VOora, M., AND SHAH, A. Empowering light nodes in
blockchains with block summarization. 2018 9th IFIP International Con-
ference on New Technologies, Mobility and Security (NTMS) (2018), 1-5.

PaLMm, E., ScHELEN, O., AND BobDIN, U. Selective blockchain trans-
action pruning and state derivability. 2018 Crypto Valley Conference on
Blockchain Technology (CVCBT) (2018), 31-40.

PoNTIVEROS, B. B. F., NORVILL, R., AND STATE, R. Recycling smart
contracts: Compression of the ethereum blockchain. 2018 9th IFIP Inter-
national Conference on New Technologies, Mobility and Security (NTMS)
(2018), 1-5.

17



[22]
[23]

[26]

Porov, S. The tangle.

QuaN, L., HuANG, Q., ZHANG, S., AND WANG, Z. Downsampling
blockchain algorithm. IEEE INFOCOM 2019 - IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS) (2019), 342—
347.

Woob, D. D. Ethereum: A secure decentralised generalised transaction
ledger.

XU, Y. Section-blockchain: A storage reduced blockchain protocol, the
foundation of an autotrophic decentralized storage architecture. 2018 23rd
International Conference on Engineering of Complex Computer Systems
(ICECCS) (2018), 115-125.

Xu, Y., AND HUANG, Y. Segment blockchain: A size reduced storage
mechanism for blockchain. IEEE Access 8 (2020), 17434-17441.

18



	Introduction
	Problem
	Summarization
	The mini-blockchain scheme miniblockchain 
	The mini-blockchain
	The proof-chain
	The account tree
	Node bootstrapping
	Analysis

	Blockchain Abbreviation abbrev 
	New Genesis Block
	Abbreviation Time
	Shared Memory Scheme
	Analysis

	Recycling Smart Contracts recycling 
	Pseudo-Opcode and Compression
	Analysis

	Sidecoin sidecoin 
	Snapshotting and Token Claiming
	Analysis

	Empowering Light Nodes in Blockchain with Block Summarization
	Summary Blocks
	Analysis

	Block Summarization and Compression in Bitcoin Blockchain summcompr 
	Analysis


	Pruning
	Downsampling Blockchain Algorithm downsampling 
	Block Information
	Downsampling
	Analysis

	Temporal Blockchain: A Formal Analysis temporal 
	Rolling Blockchain
	Analysis

	Selective Blockchain Transaction Pruning and State Derivability derivability 
	Blockchain Anatomy and Pruning Process
	Types of Transactions
	Analysis

	OmniLedger omniledger 
	Pruneable sharding-based blockchain protocol pruneablesharding 

	Structural
	Rollerchain rollerchain 
	State Representation and Proof of storage
	Analysis

	Proof-of-property proofofproperty 
	Validation Paths
	Analysis

	Enabling Blockchain Innovations with Pegged Sidechains sidechains 
	On Scaling Decentralized Blockchains: A Position Paper position 
	A Low Storage Room Requirement Framework for Distributed Ledger in Blockchain lowstorage 
	Network Codes and Distributed Storage
	Analysis

	Section- and Segment-Blockchain sectionsegment 
	Node occupations and proof-of-storage
	Balancing the number of nodes per occupation
	Analysis

	Corda, IOTA, and Swirlds
	Corda corda 
	IOTA iota 
	Swirlds swirlds 


	Conclusion

