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• Intra-site sensor variability was small
indicating low sensitivity to siting type.

• Short-term local activities were identi-
fied but did not significantly impact
reporting scales.

• Crowd-sourced sites in proximity to
regulatory analyzers measured similar
trends.

• With quality control checks, crowd-
sourced networks provided useful addi-
tional data.
⁎ Corresponding author at: MacDiarmid Institute for Ad
E-mail address: gmis011@aucklanduni.ac.nz (G. Miske

http://dx.doi.org/10.1016/j.scitotenv.2016.09.177
0048-9697/© 2016 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 15 August 2016
Received in revised form 14 September 2016
Accepted 22 September 2016
Available online 29 September 2016

Editor: D. Barcelo
Low-cost sensors offer the possibility of gathering high temporal and spatial resolution crowd-sourced data-sets
that have the potential to revolutionize theways inwhichwe understand individual and population exposure to
air pollution. However, one of the challenges associated with crowd-sourced data (‘citizen science’), often from
low-cost sensors, is that citizens may use sites strongly affected by local conditions, limiting the wider signifi-
cance of the data. This paper examines results from a low-cost network measuring ground-level ozone to evalu-
ate the impact of siting on data quality. Locations at both reference stations and at private homes or research
centers were used, and thought of as a typical ‘crowd-sourced’ network. Two instruments were co-located at
each site to determine intra-site variability and evaluated by standard performance statistics and local-scale ac-
tivity logs. The wider application of the data for both regional Inter-site variability was evaluated to show-case
the wider value and usefulness of crowd-sourced data. Analysis of intra-site variability showed little differences
atmost sites (b5 ppb). Large differences in intra-site variability were detectedwhen sensors were exposed to di-
rect sunlight (causing thermal variations within the instrument) and proximity to large emission sources. Short-
term local activities, such as lawn-mowing, were identifiable in the data, but had minimal impact on standard
reporting time-scales, and so did not pose as being significant limitations or errors. Inter-site evaluation demon-
strated that dense networks of low-cost sensors can add value to existing networks, with minimal impact on the
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overall data-set quality. Sensors located in crowd-sourced locations nearby to regulatory analyzers were able to
capture similar trends and concentrations, supporting their ability to report on wider conditions. Thus crowd-
sourced approaches to monitoring (with suitable calibration and data quality control checks) may be an appro-
priate method for increasing the temporal and spatial resolution of air quality networks.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Recent air quality research has focused on different approaches in
using data from low-cost instruments to supplement data provided by
official regulatory bodies (Snyder et al., 2013). Whilst low-cost instru-
ments have the potential to make a significant contribution to our un-
derstanding of the temporal and spatial variation of air pollutant
concentrations in urban areas, concerns over their accuracy and preci-
sion have limited their widespread use (Ottinger, 2010; Snyder et al.,
2013; Tregidgo et al., 2013). However, recent innovations in techniques
to detect sensor error and improve accuracy (e.g. Alavi-Shoshtari et al.,
2013; Miskell et al., 2016) are proving increasingly successful, and at-
tention is nowmoving away from assessing their reliability towards de-
veloping best-practice guidelines for the use of this new technology
(Nieuwenhuijsen et al., 2015; Xiang et al., 2016, U.S. Environmental
Protection Agency, n.d).

One area that has been given little attention so far is the impact of
local siting on determining the spatial and temporal representativeness
of the data. If low-cost, crowd-sourced data is to be adopted in air qual-
ity research, then the impact uponmeasured concentrations of siting in-
struments on private homes or education centers needs to be
understood. Traditionally, strict regulations surround the siting of regu-
latorymonitoring locations to ensure that datasets are representative of
a given area or land-use type and local-scale effects are controlled for
(Ministry for the Environment, 2009; U.S. Environmental Protection
Agency, 2013). For example, recommendations typically include that
the instrument is not adjacent to any walls, avoidance of large trees,
certain facades (e.g. wood), and chemical interferences (e.g. vehicle
emissions), and above the urban canopy layer (Ministry for the
Environment, 2009; Moosavi et al., 2015).

Citizen science approaches which may see instruments located on
education centers or private homes or in gardens could provide comple-
mentary information to regulatory datasets about the effects of different
land-use and settings in previously unmonitored locations (Brienza et
al., 2015; Ho et al., 2014). However, they can be expected to violate a
number of siting recommendations because of power requirements,
aesthetics, and household surroundings (e.g. building material). Data
from instruments at poorly selected locations (which may occur in
crowd-sourced data due to the siting often being outside of the data
users control) may not be representative of wider conditions due to
dominant effects of extremely local conditions or events specific to
that site. This has the potential to make data from these sites unsuitable
for reporting from a network perspective, and any temporal or spatial
averaging of the data could bemisleading from air quality management
perspectives. There is therefore a need to assess the impact of different
types of siting and to develop quality assurance techniques to allow the
citizen scientist (and those using that data) to know how to interpret,
and what value to place on, the data from their instrument (Bonney et
al., 2016; Ho et al., 2014; Wolters et al., 2016).

This paper examines the effect of local siting on data quality to ad-
dress the overall enquiry on the usefulness of low-cost data. Data from
a network of instruments (mounted on a variety of siting options,
such as on regulatory stations or on walls of private houses) were ana-
lyzed for their intra- (within a site) and inter- (between sites) variabil-
ity. Differences within a site were compared to their surroundings using
regression and standard statistical diagnostics to ascertain whether cer-
tain factors were related to large intra-site differences. Factors with
large differences could then be recommended to the citizen scientist
to avoid when mounting an instrument, or to the data user in deciding
whether to include the site within network analysis. Inter-site analysis
examined how a crowd-sourced network can assist in developing and
improving our understanding of the temporal and spatial variability of
urban O3 by using standard statistical diagnostics. Finally, differences
between crowd-sourced sites to nearby reference stations were ana-
lyzed for their ability to capture the wider pattern and to give support
for providing data representative of an area.
2. Materials and methods

2.1. Data

The data used here were collected from a network of low-cost in-
struments measuring ground-level ozone (O3) around Auckland, New
Zealand, over a twelve-month period (November 2014–November
2015) with two instruments operating per site (b2 m distance apart).
The data were validated by using methods described previously, with
good quality data capture for over 75% of all observations (Bart et al.,
2014;Williams et al., 2013). Auckland has a subtropical oceanic climate,
with humid summers and mild winters and prevailing wind direction
from the Southwest (Adeeb and Shooter, 2004). O3 is a secondary pol-
lutant formed from the photochemical reaction of NOX or VOCs with
UV, which causes regular spatial profiles and so regional patterning
can be expected from synoptic weather patterns up and downwind of
urban centers or central business districts (CBD) where precursors are
produced (often traffic-related) (Bart et al., 2014). O3 concentrations
in Auckland are typically low compared to other urban centers due to ti-
tration fromnitrous gases alongwith the geographic setting (Jiang et al.,
2014), with a peak of O3 in the winter to springmonths (July–October),
believed to be from greater stratospheric intrusion rather than local
sources (Adeeb and Shooter, 2004). High O3 days occur at different
times at different locations across Auckland, suggesting the significance
of local-scale controls (Adeeb and Shooter, 2004). Auckland has three
reference stations measuring O3 (Fig. 1), with two (Musick Point, MP,
and Whangaparaoa, WHA) operating only during the summer months.
Therefore, our understanding of O3 throughout the year in Auckland is
determined from one site (Patumahoe, PAT).

The low-cost sensors used were Aeroqual gas-sensitive semicon-
ducting oxide (GSS), which have been successfully used in a number
of field studies (Bart et al., 2014; Deville Cavellin et al., 2016; Lin et al.,
2015) and were found to have good performance when compared
against other commercial low-cost instruments (SCAMD, 2015). Sensor
specifications state a level of accuracy to 5 ppb, which has been used
here as a benchmark threshold as a true, or real, difference between
co-located measurements. Previous work (Bart et al., 2014) found a
standard error of 6 ppb when devices were compared to co-located an-
alyzer stations for over 6000measurements, giving support for this level
of precision of the device. All low-cost instruments were field linearized
and adjusted data reported, with detailed information on corrections
presented in the Supporting material. The methods described by Bart
et al., 2014 were used to check instrument performance; the sensor as-
sembly in the instrument was replaced when a signal or baseline drift
was detected (typically every 2–5 months; median 3 months). Overall,
the response was good, with high linearity and no significant differ-
ences between co-located concentrations following calibration. Site lo-
cations are illustrated in Fig. 1, and include both reference (n = 3)



Fig. 1. Locations of monitored sites around Auckland. The arrow denotes prevailing wind direction and CBD is the urban center. Sites a – n are the low-cost sites, PAT is Patumahoe, MP is
Musick Point, and WHA is Whangaparaoa.
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and low-cost (n=14; labelled Sites a–n) sites. Four of the low-cost sites
(Sites b, c, d, and i) were co-located with reference stations (Site i being
the only onemeasuring O3), with the remainder affixed to walls or bal-
conies in private homes orwithin university grounds. Periods ofmissing
data were observed over time andwere typically due to transmission or
power issues, b75% daily capture, or the site not yet being established or
was disestablished. Changes between co-located sensors' patterns
prompted a change and recalibration of the instruments, with average
length of time around 90 days. Locations where sensors were changed
at b30 days or at over 90 days did not seem to be related to their site
type, and so may not be responsible for drift (drift being typical in
most low-cost instruments over time).
2.2. Intra-site analysis methods

2.2.1. Intra-site differences
In order to determine the effect of local conditions on the sensors,

each site was classified according to a number of land-use parameters
such as distance from emission sources and type of mounting
(Table 1). These explanatory variables were determined based on both
known O3 sources and quantifiable observations that could help in de-
scribing immediate site surroundings. The subset of instruments co-lo-
cated with stations allowed comparison between two siting types, with
the co-location sites previously selected by air qualitymanagers as ideal
locations for monitoring and the other sites as a pseudo crowd-sourced



Table 1
Descriptors for each of the low-cost sites using set explanatory variables (Vx).

Site #n (days) Siting Va Vb Vc Vd Ve Vf Vg Vh Vi Vj Vk Vl

a 67 Wall 1.5 S SE Yes No No No Grass No Research Agricultural Yes
b 347 Reference 3.5 N SE No No Yes Yes Grass No School Residential No
c 79 Reference 3.5 E/W SW No No Yes No Gravel No Park Residential No
d 294 Reference 3.5 N/S NW No No Yes Yes Gravel No School Residential No
e 345 Wall/Roof 2 N NE No No No No Deck Yes Research Coastal Yes
f 329 Wall 1.5 N NW No Yes No No Gravel Yes House Residential Yes
g 224 Balcony 4 E/W NW Yes Yes No No Deck Yes House Residential No
h 231 Wall 2.5 W NW Yes Yes Yes No Grass Yes House Residential Yes
i 287 Reference 3.5 W SE No No No No Grass No Research Agricultural No
j 336 Balcony 3 N NW Yes Yes No No Grass Yes House Residential Yes
k 324 Wall 1.5 E NE No Yes Yes No Grass Yes Research Agricultural Yes
l 334 Wall 1.5 W SW No Yes Yes No Gravel No House Bush Yes
m 122 Balcony 4 E SW No Yes Yes No Grass No House Bush Yes
n 217 Balcony 2 E SE No Yes Yes No Gravel Yes House Coastal Yes

a Height above ground (m).
b Direction the instrument is facing.
c Direction from the CBD.
d Shelter over instrument.
e Tree within 10 m.
f Small emission source within 10 m.
g High emission source within 10 m.
h Land coverage below the instrument.
i Water-body within 1000 m.
j Descriptor of location.
k Land-use designation (‘Bush’ is North Island NZ native forest).
l Proximity to wood surface.
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network where locationswould be outside of a managers' control (here
labelled as station – controlled and crowd-sourced – uncontrolled). Co-
located data were analyzed using commonly used statistics to assess
performance on a number of indicators at both hourly and daily scales
(mean absolute error – MAE and root mean square error – RMSE for
Fig. 2. Locations of the low-cost sites (green) in close proximity to a reference station (blue), an
and j, and Figure (b) is for the Musick Point analyzer and Sites h and k.
accuracy, coefficient of determination – R2 and spearman rank correla-
tion – ρ for precision and relative ranking, and Cohen's d scores
(Cohen, 1988) for practical significance on the size of the effect). Group-
ing the concentration differences into low (b5 ppb) and high bands
(based on thresholds previously determined, Bart et al., 2014) further
d photographs of the installations. Figure (a) is for theWhangaparaoa analyzer and Sites f

Image of Fig. 2


Fig. 3. 95% estimate onmean absolute difference for the 14 low-cost sites. Red bars denote where siting was controlled and bluewhere the siting was uncontrolled. Datawere broken into
bands based on measuring length of time, with low (0–30 days), med (31–90 days), and high lengths (91+ days). The threshold of 5 ppb was used for determining practical differences
(Bart et al., 2014).
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provided information on site surroundings and instrument functioning
at real concentration levels,with variables associatedwith higher differ-
ences then recommended to avoid when mounting an instrument

2.2.2. Local-scale impacts
Analysis of data from local-scale activities that are known to impact

short-term O3 concentration were examined to determine if they could
be distinguished from regular periods of monitoring (and therefore as-
sist in ensuring data quality when short-term activities do occur at un-
controlled sites). Two examples were used, where one considered the
impact of a short-term activity over both a spatial and temporal scale,
and the other considered the impact of a longer-term seasonal activity
associated with a site over a temporal scale.

The first example used co-located sensors that were placed above a
grass area where lawn mowing was actively noted (two separate occa-
sions noted at two different sites). Lawn mowing can often use gas-
Table 2
Intra-site regression results for the logged mean absolute difference in concentrations for each

Siting Va Vb Vc Vd Ve Vf

Intercept 1.4⁎⁎ 1⁎⁎ 1.4⁎⁎ 1.3⁎⁎ 1.3⁎⁎ 1.3⁎⁎ 1.2⁎⁎

Coef. A^ Balcony:
Base

0.11 E: Base NE: Base No: Base No: Base No:
Base

Coef. B^ Roof: 0.55 – N:
−0.19

NW:
−0.05

Yes:
−0.15

Yes:
−0.07

Yes:
0.12

Coef. C^ Reference:
0.1

– S:
−0.87⁎

SE: −0.07 – – –

Coef. D^ Wall: −0.18 – W:
−0.34

SW:
−0.23

– – –

p-Value 0.08 0.08 0.05 0.69 0.39 0.54 0.3
R2 0.15 0.07 0.23 0.03 0.02 0.01 0.02
χ2^^ 0.21^^^ 0.76 0.33 0.43 1 0.66 0.87

^ Coef. A–D represent the different variable factors within the regression, with each cell iden
^^ Chi-Square response was intra-site differences grouped into high (N5 ppb) and low (≤5 pp
^^^ Chi-Square test was run without the factor roof for siting due to only one example within
⁎ p-Value b 0.05.
⁎⁎ p-Value b 0.01.
powered devices, which produce NOX and therefore impact the air at
a site over a small time-scale (minutes). This type of activity, although
accurate for the site at that brief moment in time, is often extremely lo-
calized and may affect averaged concentrations at which data is report-
ed due to their ‘spike’ impacts. Diagnostics from the sensors were
analyzed to also help with identification of spikes. In particular, we
used the sensor resistance baseline to check for stability of the sensor's
zero over time as spikes were often associated with a type of chemical
interference. In addition, we compared O3 concentrations to the nearest
site in a similar land-use setting over the same time-scale to understand
the spatial impact of the activity. Impacts on thedata at official reporting
averages (here one-hour and rolling eight-hours) were completed by
invalidating O3 at the peak impact of the activity and comparing this
towhere no data were removed. This allowed for the lawn-mowing im-
pact to be quantified to assess if such activities created significant effects
at typical reporting scales.
instrument/site combination and each descriptor variable from Table 1 (n = 46).

Vg Vh Vi Vj Vk Vl

1.2⁎⁎ 1.3⁎⁎ 1.3⁎⁎ 1.2⁎⁎ 1.4⁎⁎ 1.4⁎⁎

No:
Base

Deck: Base No: Base Coast: Base Agricultural:
Base

No: Base

Yes:
0.25

Grass:
−0.09

Yes:
−0.01

Park: 0.01 Bush: −0.16 Yes:
−0.25

– Gravel:
−0.08

– Research:
0.03

Coast: −0.02 –

– – – School: 0.26 Residential:
0.05

–

0.07 0.86 0.98 0.34 0.67 0.03
0.08 0.01 0 0.08 0.04 0.1
0.24 0.81 1 0.4 0.51 0.46

tifying the associated factor. Base is the factor that is used as the comparison (coef. = 0).
b) bands, with the p-value (χ2) reported.
this category.

Image of Fig. 3


Table 3
Intra-site summary statistics for the low-cost sites. MAE – Mean Absolute Error; RMSE –
Root Mean Square Error; R2 – correlation coefficient; ρX,Y – Spearman rank correlation.

Site MAE (ppb) RMSE (ppb) R2 (%) ρX ,Y (%) Cohen's d

1-h 24-h 1-h 24-h 1-h 24-h 1-h 24-h 1-h 24-h

a 1.73 1.55 2.15 1.85 0.77 0.84 0.97 0.95 0.01 0.01
b 4.1 3.89 5.02 4.74 0.42 0.21 0.65 0.46 0.07 0.03
c 3.3 2.44 4.3 3.12 0.54 0.5 0.73 0.63 0.12 0.11
d 4.65 4.12 5.92 5.17 0.45 0.39 0.69 0.63 0.04 0.04
e 3.34 3.65 4.91 5.3 0.4 0.4 0.79 0.77 0.31 0.42
f 4.2 4 5.44 5.09 0.43 0.3 0.66 0.51 0.32 0.41
g 4.58 3.8 6.39 5.06 0.54 0.69 0.77 0.82 0.11 0.13
h 2.97 2.64 3.99 3.48 0.43 0.42 0.74 0.66 0.1 0.14
i 3.55 2.54 4.69 3.42 0.6 0.66 0.78 0.81 0.09 0.1
j 3.69 3.59 4.24 4.04 0.73 0.73 0.89 0.9 0.15 0.1
k 4.99 4.23 6.19 5.08 0.44 0.52 0.73 0.77 0.52 0.67
l 3.12 2.87 3.9 3.56 0.54 0.57 0.81 0.77 0.13 0.15
m 4.15 3.91 5.46 5.3 0.48 0.51 0.77 0.72 0.51 0.58
n 4.39 4.36 5.25 5.13 0.5 0.39 0.7 0.63 0.32 0.38
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The second example examined effects of delivery and collection of
children from school using motor vehicles (school runs), as one site
was located within a primary school and had co-located wind data.
This activity covers a longer period of time than lawn-mowing and
often has no obvious spike, however, it may impact standard reporting
times from the localized activity within the school grounds, and contain
a seasonal component due to holidays. No comparable nearby site was
available to analyze the spatial impact. Data was filtered to periods
where wind direction was from the car park/pick-up area and during
Fig. 4. 10-min ozone and sensor baseline resistance (SRB)data for two sites, h andm, during the
mowing event and (b) is for Site m. The outlined period is where lawn-mowing was actively n
school hours (0700–1600 Monday–Friday), which was then grouped
into school term or school holiday periods in order to control for poten-
tial confounding effects due to time of day or day of week. Assessment
between the two groups was compared on their one and 8 haverages
to again check for differences at typical reporting scales.
2.3. Inter-site analysis methods

2.3.1. Inter-site differences
Inter-site variability was carried out in two ways. The first method

was by comparing each low-cost site (using the average of the two in-
struments where both data had been validated) to the analyzer run
year-round at Patumahoe using similar statistical tests to the intra-site
analysis for network performance. Variation in correlation to the ana-
lyzer of the different sites was used to uncover new information about
O3 patterns across the city. This analysis was supplemented by using hi-
erarchical cluster analysis among all of the sites (both analyzer and low-
cost) to see if any similarities or clusters were present. Sites were clus-
tered by their similarities using hourlymedian O3 Spearman rank corre-
lations against each of the other sites (with the ranked correlation used
to minimize the impact of outliers). Clusters were formed using the
complete linkage method, which is derived from selecting the smallest
maximum distance, or dissimilarity, among groups, with convergence
reached once all groups were within one cluster. Sites where larger dis-
similarities were found (greater O3 variability and poor correlation) il-
lustrated how a denser network can add new information (along with
potential redundancies where dissimilarity was low). This combination
day ofmowing,with comparison to O3 at sites f and l in proximity. (a) is for the Site h lawn-
oted. The colored lines represent the two individual instrument data at each site.

Image of Fig. 4
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of methods was chosen to enrich understanding of any long-term spa-
tial patterns across the city.

2.3.2. Regional reporting
Evaluation of the usefulness of data from uncontrolled site types at

representing regional concentrations was completed by comparison of
a select number of sites in close proximity to a nearby reference analyz-
er (b20 km). Two reference analyzers were compared (Musick Point
and Whangaparaoa), as no low-cost sites were within close proximity
to Patumahoe (Fig. 1). Locations and installations are shown in Fig. 2,
with all breaching standard requirements for siting when using analyz-
er station specifications. Some differences in concentrations among sites
can be expected due to local-scale effects and due to natural variation in
the atmosphere, but should be relatively minor within the network ob-
jective and for such distances (e.g. indicative exposure impacts on the
regularly patterned pollutant O3). Data were compared using similar
performance statistics as the intra- and inter-analysis, alongwith corre-
lation plots on the hourly and rolling eight-hourly data. The objective
was to explore how useful uncontrolled sites can be for reporting on
wider pollution patterns.

3. Results

3.1. Intra-site differences

The variability of the intra-sitemean absolute differencewas b5 ppb
for most locations (Fig. 3) which showed good agreement between in-
struments on O3 concentration within a site. Length of time did not ap-
pear to determine instrument differences, and therefore the changes
could not be attributed to sensor ageing or drift alone. This allowed
one to make comparisons among instrument concentration differences
without adjusting for length of time. Some of the smallest differences
(MAE: b2 ppb) were found at Sites a, e, h and j, all uncontrolled sites
(two in university grounds, two in private homes, Fig. 3; Table 1). It ap-
peared that the site type did not affect the magnitude of the difference
between co-located sensorswith a two-sample t-testfinding theuncon-
trolled sites having smallermean absolute differences (p-value ~ 0, con-
trolled MAE = 4.03 ppb, uncontrolled MAE = 3.91 ppb).

Absolute differences between co-located sensors were compared
against explanatory variables using linear regression to see if failure
could be associated with particular siting variables. Data required log-
transformation due to normality assumptions when using regression.
Ground cover (e.g. grass), awnings, land-use, and distance to a water
bodywere not found to be associatedwith intra-site differences, neither
was proximity to a small emissions source, such as a single lane drive-
way. Larger intra-site variability was noted where instruments were
east-facing (and therefore often having longer direct sun exposure
time) and where there were nearby large emission sources such as a
car-park (Table 2). We suspect that high temperatures within the plas-
tic instrument enclosures due to direct sun exposure would affect the
accuracy of the measurement circuits in the instrument and may also
result in the release of hydrocarbons from internal plastic components.
These could then be drawn into the sensor housingwhere itwould then
react with ozone to create instrument-specific errors. Alongwith this, if
inlet tubes or filters became hot then O3 may have decomposed before
reaching the sensor. Intra-site variability also appeared sensitive to
some types of sensor placement. Higher variability was noted when
the sensors were on roofs due to higher exposure to the elements, espe-
cially direct sun (however this option may be appealing for aesthetic
reasons as out of view). Instruments that were back to back also record-
ed larger differences, possibly also due to uneven sun exposure. Types of
instrument mounting or locations (either on walls, on reference sta-
tions, or on balconies) was not found to be significantly different (χ2

p-value = 0.21), giving evidence that the different mounting options
did not impact the size of concentration differences. Site a, located on
a wooden shed wall at an agricultural site in proximity to a small
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airfield, had the best results for all summary statistics, with good preci-
sion and accuracy and low practical difference between sensors (Table
3). Thiswas surprising due to the regular lawn-mowing and agricultural
activities, the isolation of the site and so tendency of spiders to make
webs that could cover the inlets, and building material type; however,
the site had low sun exposure and the instruments were side-by-side.
Results therefore suggest that the best strategy for capturing a site's
concentration effectively can be achieved by placing sensors side-by-
side, away from large emission sources, and on surfaces which are not
exposed to direct sunlight (e.g. roof surfaces) as instruments appeared
to be sensitive to high temperatures.
3.2. Local scale impacts

Data for the two separate lawn-mowingperiods are presented in Fig.
4 at ten-minute averages for the two sites, along with their respective
sensor baseline resistance and O3 concentration at a site in close prox-
imity (b10 km).

The data for Site h was on a Thursday where the lawn was mowed
during 0830–0930 and the data for Site m was on a Sunday during
1520–1420 (NZDT). Distinct local-scale patterns can be observed at
each site, along with differences between the sites in proximity, which
can be due to local-scale activities that have not been noted (e.g. Site
h, in proximity to a drive-way serving a number of houses, often showed
a dip in O3 concentration around 1500). The spike in O3 concentrations
was observed in both instruments at both sites, and the instruments
returned to similar concentrations following this event. This was also
captured in the sensor resistance baseline for the four instruments
with sudden negative spikes. These attributes were not observed in
the nearest sites during the same time, and so results show that ex-
tremely local-scale high-impact activities such as lawn-mowing can be
picked up by instruments, and that the sensors can return to similar
concentrations following such exposure. The impact on a site's one-
hour concentration (where sensors were averaged) were minor, with
differences of b3.3 ppb for both sites compared towhen the lawn-mow-
ing impacts were removed and then averaged (and were b1 ppb differ-
ence on the eight-hour averages). The hourly differences between
the site where lawn mowing occurred and the site in proximity were
b2.5 ppb when lawn mowing period data were removed (and b1 ppb
when lawn-mowing data were intact). Due to the distinct characteristic
of such events, invalidation of data or alerts if one wanted to improve
data quality further could be set up using baseline diagnostics specific
to each sensor, such as (srb2−srb1)/(t2−t1)Nα where α is some arbi-
trarily set threshold to note changes between times 1 and 2, could be
instated so that active observation of activities are not required.
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Fig. 5.Dendrogram for the low-cost sites using the complete linkage method and Spearman cor
west; orange = east).
The second example of local-scale impacts analyzed data from Site b,
located on school grounds, to investigate the impact of the school runs.
Results (in Supplementary material) showed consistent differences in
hourly averages when data were grouped into either school term or
school holiday periods and filtered to school hour times andwind direc-
tion from the carpark area. Overall, concentrations were lower and less
variable during the school term (n= 178 h), with median (inter-quar-
tile range, IQR) of 15.4 (11.2, 17.8) ppb compared to 16.3 (11.4, 22.7)
ppbduring the school holidays (n=88h),with a statistically significant
difference between themedians (p-value= 0.01). However, this differ-
ence would appear to have low practical significance due to the large
overlap of the IQR. The start (0700) and finish (1600) of the monitored
period returned to similar concentrations for each group (b1 ppb), giv-
ing support that the presence of cars from the school-run was causing
this difference, along with larger dips during the more common drop-
off (0900) and pick-up (1500) times (4 ppb difference for both times).
Differences in the eight-hour averages were negligible (1 ppb) due to
the effect of rolling hours, although a slight dip during the day could
be observed. This result showed the small, but significant, impact of
school runs on the surrounding environment, providing useful informa-
tion on siting from a network analysis perspective.

3.3. Inter-site differences

The comparison between the averaged low-cost sites and the
Patumahoe analyzer concentrations showed reasonable O3 variability
across Auckland (Table 4).

Sites with low MAE and RMSE scores (similar concentrations) were
Sites i, k and n, whichwere all located in semi-rural areas (similar to the
analyzer setting). Eight and nine of the 14 sites had hourly and eight-
hourly ranked correlations ≥60% to Patumahoe respectively, showing
that overall, concentration rankings were similar between the analyzer
and the sites (good agreement on high and low concentration periods).
The correlation coefficient (R2) between the sites and the analyzer were
typically poor however, which illustrates the degree of O3 variability
across the city. R2 values are highly impacted by outliers, which here
can represent local-scale events, and so the results supported the
value in measuring at more sites. Sites with relatively high R2 (and so
where the analyzer was able to explain a higher degree of the observed
variability)were sites a, c, i, and n, whichwere not downwind of the city
center (although in different directions to one another and up to 92 km
away). The city center (an area creating large amounts of precursor
emissions) and prevailing wind direction therefore seem important in
explaining regional O3 variability, as distance alone was not found to
be associatedwith site variability (Table 4). Hierarchical cluster analysis
further supported this conclusion (Fig. 5), where sites were grouped by
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Table 5
Inter-site summary statistics for the four sites against the reference analyzer in proximity
(b20 km) at hourly, eight, and daily resolution.

Site MAE (ppb) RMSE (ppb) R2 (%) ρX ,Y (%) Cohen's d

1-h 8-h 1-h 8-h 1-h 8-h 1-h 8-h 1-h 8-h

f 9.2 9.25 10.57 10.41 0.23 0.24 0.48 0.49 1.32 1.38
h 5.28 4.98 6.42 5.87 0.47 0.55 0.67 0.73 0.74 0.82
j 5.29 5.12 6.86 6.27 0.57 0.62 0.74 0.76 0.71 0.78
k 4.02 3.67 5.16 4.64 0.28 0.33 0.51 0.53 0.38 0.43

Fig. 6.Daily time-series for the four low-cost sensors (red) in close proximity (b20 km) to reference analyzers (black). Distance (km) and specific analyzer are identified in sub-plot titles.
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their ranked correlation similarities among each of the sites (for both
low-cost and analyzer). Those sites that were linked at a lower dissimi-
larity (which here is 1-ρ) were those that had small physical distances
from one another (e.g. Sites c and d), similar direction towards the
urban center (e.g. Sites a and b), and comparable land-use characteris-
tics (e.g. Sites f and j) (Table 1; Fig. 5). Three predominant clusters
were found, the first being for Sites c, d, g, i (PAT), and l, which were to-
wards the west of the city center, the second being for Sites e, k and n,
which were towards the east, and the third being for Sites a, b, f, h, j,
MP, and WHA, which were nearby and around the city center. Site m
was found to be the most different to all the groups, although was
more similar to the second, whichwas unusual based on the close phys-
ical proximity to the other cluster sites (Fig. 1). The settingwas at a high
elevation (over 300 m), and so may be a reason for this discrepancy.
This may show the influence of synoptic meteorological parameters
and topography/height upon O3 distribution and patterns, although
not enough sites at high heights were available to test these parameters
further. In relation to sensor mounting effects, no obvious cluster was
observed among the different siting types. This helps to support the
finding that specific instrument mounting had minimal impact on the
resulting data.

3.4. Regional reporting

The data from a subset of instruments in crowd-sourced locations
(Fig. 2) were analyzed against analyzer data within close proximity to
check for consistency in O3 reporting and their subsequent use in
explaining concentrations for a wider area. The instruments were
found to have similar time-series patterns and most had agreeable cor-
relation plots to the analyzers, albeit with differentmagnitudes and var-
iability (Fig. 6). Both examined analyzers are located on the ends of
peninsulas and have high elevation or inlets (83 m elevation and 12 m
inlet, Auckland Regional Council, 2005), which could explain the often
suppressed diurnal cycle observed (Adeeb and Shooter, 2004). Site f, lo-
cated in a residential setting, had the biggest difference to the compared
analyzer (Table 5). This may be due to the limited O3 rangemeasured at
the low-cost site, which may be due to the presence of titration emis-
sions (e.g. traffic-related NOX). Site k concentrations were similar to
the analyzer, although high scatter was observed, causing low R2 results
(potential local-scale short-term effects). Effect sizes, however, were
considered to be acceptable for three of the sites; that is, the observed
patterns had ‘medium’ or below (d b 0.8) practical differences when
using the Cohen's d statistic and widely-adopted thresholds (Cohen,
1988). This meant that three of the crowd-sourced sites were providing



Fig. 7.hex-binplots for the subset of reference and low-cost sites in proximity at one-hour (left) and eight-hour (right) resolution. The red dashed line denotes the 1:1fit and the blue solid
line denotes the least-squares fit.
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practically similar concentrations to the analyzer in proximity (and
therefore could be used as indicators of O3 for a wider area).

Comparisons between the analyzer and low-cost instruments were
made by hex-plots, which showed the crowd-sourced sites to often re-
cord lower concentrations (Fig. 7). This result appeared sensible for O3,
as analyzers are often placed in locations where concentrations are as-
sumed high and are free of any chemical interferences. Three of the
sites here were on private homes, where concentrations can be as-
sumed to be lower due to local-scale activities that impact and reduce
concentrations (e.g. traffic-related). The fourth site, Site k, was within
a vineyard (arguably similar surroundings and controls to parklands)
and downwind of the city center, and so it would be believable to
have similar concentrations to the analyzer (in parklands and
downwind).

4. Conclusion

Data from low-cost instruments can add interesting and valuable in-
formation for an area through improved spatial resolution and through
highlighting relationships among sites. Different siting types and local-
scale effects did not appear to have significant impacts on monitored
O3, with no clear evidence that siting caused large differences between
the two co-located sensors, and that short-termactivities did not impact
longer term results at which reporting is made. Spatial variability was
often low within and high between sites, which provided confidence
that the observed differences were real and not a type of instrument
functioning concern (other than keeping the instruments shaded).
Crowd-sourced datasets appeared capable of capturing wider concen-
tration trends, and therefore be representative for regional concentra-
tions. Land-use descriptions, direction towards the urban center, and
distance among sites appeared to be more important in determining
patterns than specific siting details, with clusters having similar charac-
teristics (and no obvious cluster based on instrument mounting). The
observations made here may help to alleviate concerns about instru-
ment mounting effects for crowd-sourced monitoring networks.
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