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Day 1: Course Introduction



Today’s Objectives

• Understand course logistics and expectations
• Build context for the rest of the course
– What do we mean by dependable infrastructure?
– What are some of the challenges in building dependable critical 

infrastructure and other distributed systems?
– What are some high-level approaches to building dependable 

distributed systems?

08/27/2024 University of Pittsburgh CS 3551 2



Introductions
• Instructor: Amy Babay
– PhD from Johns Hopkins University in 2018

• “Timely, Reliable, and Cost-Effective Internet Transport using Structured Overlay 
Networks”: how can we provide the network performance needed for highly 
interactive applications?

• Intrusion-tolerant SCADA for the power grid: how can we build computer systems 
that continue to work correctly despite compromises and network attacks?

– Brief time in industry
• Exploring commercial applications of PhD work
• Infrastructure to simplify management of global overlay networks

– Joined Pitt SCI in August 2019
• Research focuses on building dependable critical infrastructure systems, supporting 

demanding new Internet services, and community-based environmental monitoring
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Introductions

• Instructor: Amy Babay
– Contact: Teams (best for quick questions) or 

email babay@pitt.edu

– Office hours: by appointment

08/27/2024 University of Pittsburgh CS 3551 4

mailto:babay@pitt.edu


Course Logistics

•  Course meetings
– 11:00am – 12:15pm Tue/Thu
– Sennott Square, Room 6516 

• Course website: course info, reading schedule
– https://sites.pitt.edu/~babay/courses/cs3551/ 
– (Link is posted in canvas)

• Canvas: assignment submission, announcements
• Teams: questions, discussion, project coordination
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Workload and Grading
• ~16 paper reviews (20%)

– Normally 1 review per class
• ~5 lab days (10%)

– In-class, hands-on work with tools for specifying, implementing, and testing distributed systems
• Discussion participation (10%)

• 1 semester-long course project (50%)
– May be done alone or in teams of any size. Project scope must match team size.
– 10/3: Project proposals
– 10/29 – 10/31: Project checkpoint presentations
– 12/10 – 12/12: Final project presentations + Final project report, webpage, and artifacts delivery

• ~2 paper presentations (10%)
– 1 in 1st half of course (sign up for pre-selected paper)
– 1 in 2nd half of course (need to find and propose a paper related to your project topic)
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Policies

• See course website: 
https://sites.pitt.edu/~babay/courses/cs3551/policies.html
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Questions?
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Seminar theme: Building Dependable Infrastructure
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Resilient Systems and Societies Lab
www.rsslab.io

Intrusion-
Tolerant 
Critical 

Infrastructure

Making it 
Possible

Making it 
Practical

Addressing 
Emerging 
Threats

• Spire intrusion-tolerant SCADA for the power grid
• Spines intrusion-tolerant network

•Cloud-based intrusion-tolerant SCADA systems 
reduce the cost of resilience, without exposing 
sensitive data to cloud providers 

•Digital twins can provide a transition path to 
intrusion-tolerant architectures
• Seamless intrusion-tolerant networks support 

legacy applications without changes

•Compound threats involve natural hazards 
combined with cyberattacks
• Integrated architecture for power grid systems, 

provides intrusion tolerance from substation to 
control center

www.spire-sys.org
www.spines-org.github.io 

DSN 2021 (Best paper runner-up), 
SRDS 2023, Maher Khan PhD thesis 
(2024)

DOE-funded Cyber Energy Center 
project
Defense Logistics Agency funded 
project

DoD/DOE funded SERDP project, 
SRDS 2024

Designing and 
building systems that 
can work even after 
successful intrusions 

that compromise part 
of the system
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Motivation – Personal Experience

• Resilience to failures and attacks is crucial
• But:
– Resilient system designs become complex
– Complexity introduces more opportunities for errors
– Proving correctness of protocols is challenging
• New protocols are often introduced without rigorous proofs

– There is often a big gap between the abstract specification of a 
protocol and its implementation in a real system
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Motivation – White House Report

• Back to the Building Blocks: A Path Toward Secure and 
Measurable Software

• “A proactive approach that focuses on eliminating entire 
classes of vulnerabilities reduces the potential attack surface 
and results in more reliable code, less downtime, and more 
predictable systems.”
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Motivation – White House Report

• Recommendations:
– Memory safe programming languages 

• Avoid classic memory safety bugs (null pointer, buffer overflow, use after free) 
possible (and common) in C/C++

• Challenge for systems where predictable low-latency performance is critical: garbage 
collection

• DARPA TRACTOR program – “Translating All C to Rust”
– Memory safe hardware

• For embedded systems where moving to memory safe programming languages may 
not (yet) be feasible

– Formal methods
• Prove that software is correct (meets specific requirements)
• Static analysis, model checking, assertion-based testing
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Motivation – White House Report

• Recommendations:
– Measuring the cybersecurity quality of software
• How can developers identify/choose secure open source libraries to build on?
• How can customers select secure products?

– Policy: make software manufacturers responsible for vulnerabilities, 
not only software users
• Echoed by software “users” in the power industry – rely on vendors for 

compliance, but limited incentives for vendors to fully meet requirements
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Overview: Fault Tolerance
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Fault tolerance requires distribution

• To withstand 
failures, typically 
need to replicate 
services over 
multiple machines
– Failure of a single 

replica does not 
impact availability of 
the service

– Achieving this in 
practice can be 
challenging…need to 
synchronize replicas
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Fault tolerance requires distribution

• Example: One DB 
replica fails

• No 
problem…another 
can take over

• But, can we 
guarantee that it 
has the same 
state?
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Overview: Testing and Verifying Distributed Systems
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Properties of Distributed Systems – 
More on this next class!

• We want to ensure that systems we build maintain certain 
properties:
– Safety (correctness at every step – nothing bad happens)
– Liveness (eventually, something good will happen)
– Performance (something will happen within a certain time or with a 

certain amount of resources)

• How do we ensure a distributed system meets these properties 
in practice?
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High-level View

• Testing
– Directly test the system implementation to evaluate whether it meets 

safety/liveness/performance properties
• In the normal case and under failures

– Best effort – typically impossible to test all possible cases
• Formal Verification
– Comprehensive checking of safety and liveness properties
– Proves that the system will behave correctly under stated assumptions
–  Usually applied on design, not on the implementation (often requires 

design to be written in formal specification language)
• See also: “The Verification of a Distributed System”
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Types of Testing

• Unit tests:
– Basis to catch most bugs pre-production
– Test every function, module, microservice separately
– Stub all other components (mocks, contract tests)
– Aim for >95% line coverage

• Integration:
– Test multiple integrated components, still with some 

stubbing for external dependencies
– Often rely on growing list of scenarios

• End-to-end:
– Run on deployment in production(-like) environment, 

often with mirrored traffic
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Shadowing / Traffic Mirroring

• Production traffic can be mirrored to shadow test service
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Shadowing Example: Spines Intrusion-Tolerant Network

• Test that our group did 
with an intrusion-
tolerant network 
service 

• Shadowed production 
monitoring traffic on 
the LTN Global cloud
– Status of data centers, 

network characteristics 
(latency, loss), client 
statuses, etc.

• 10 month deployment
• No messages lost, 

equally timely
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Canary Deployments

• Incremental roll out of upgrades
• Start by replacing a few “canary” nodes, compare 

metrics/output with old version
– Roll back if problems detected
– Upgrade more nodes if all looks good

• Good practice, but generally tests only the common case
– Only tests under production conditions at the time the canaries are 

deployed; unlikely to cover failures, corner cases
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Fault Injection

• Building confidence in correctness must include testing under 
failure conditions

• Perform fault injection for common distributed systems failure 
modes

• Node failures
• Faulty networks (latency, partitions)
• Unsynchronized clocks
• …
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Fault Injection in Production - Chaos Engineering

• “Chaos Engineering is the discipline of experimenting on a 
system in order to build confidence in the system’s capability 
to withstand turbulent conditions in production” 
(https://principlesofchaos.org/)

• Netflix Simian Army
– Chaos Monkey (https://github.com/netflix/chaosmonkey)
• “Randomly terminates virtual machine instances and containers that run 

inside of your production environment”
• “Exposing engineers to failures more frequently incentivizes them to build 

resilient services”
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Formal Verification

• Testing distributed systems is hard…
• Failures are often non-deterministic (and potentially difficult 

to reproduce)
– You can run a test multiple times, but how do you know if it is 

enough?

• Recall chaos engineering goal: “to build confidence in the 
system’s capability to withstand turbulent conditions in 
production”
– “build confidence” != prove correctness
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Why is exhaustive testing so hard?

• Huge state/behavior space of possible executions
– Concurrency
• How many different interleavings of actions by multiple processes are 

possible? (a lot!)

– Non-determinism
• Now, each of those interleavings has multiple possible outcomes based on 

non-deterministic events (e.g. consider every possible place that a machine 
might fail)
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Formal Specification and Model Checking: Process

(Ideally before implementing your system:)
1. Write a specification of the system in a formal specification 

language (think math).
2. Specify correctness properties as invariants on states or 

behaviors.
3. Use a model checker to exhaustively check that every 

state/behavior of the system, within a bounded range of 
configurations, satisfies your invariants.
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