CS 3551: Advanced Topics in Distributed Information
Systems - Building Dependable Infrastructure

Day 1: Course Introduction

Dr. Amy Babay, Fall 2024

!*:*:] UIl.lVCI’ Slty Of Department of Computer Science
\® / PlttSbllI'gh School of Computing and Information

Today’s Objectives

* Understand course logistics and expectations
* Build context for the rest of the course

— What do we mean by dependable infrastructure?

— What are some of the challenges in building dependable critical
infrastructure and other distributed systems?

— What are some high-level approaches to building dependable
distributed systems?

08/27/2024 University of Pittsburgh CS 3551 2

Introductions

* |nstructor: Amy Babay
— PhD from Johns Hopkins University in 2018

* “Timely, Reliable, and Cost-Effective Internet Transport using Structured Overlay
Networks”: how can we provide the network performance needed for highly
interactive applications?

* Intrusion-tolerant SCADA for the power grid: how can we build computer systems
that continue to work correctly despite compromises and network attacks?

— Brief time in industry
e Exploring commercial applications of PhD work
* Infrastructure to simplify management of global overlay networks

— Joined Pitt SCI in August 2019

* Research focuses on building dependable critical infrastructure systems, supporting
demanding new Internet services, and community-based environmental monitoring

08/27/2024 University of Pittsburgh CS 3551

Introductions

* |[nstructor: Amy Babay

— Contact: Teams (best for quick questions) or
email babay@pitt.edu

— Office hours: by appointment

08/27/2024 University of Pittsburgh CS 3551 4

mailto:babay@pitt.edu

Course Logistics

* Course meetings
—11:00am — 12:15pm Tue/Thu

— Sennott Square, Room 6516

* Course website: course info, reading schedule

— https://sites.pitt.edu/~babay/courses/cs3551/
— (Link is posted in canvas)

e Canvas: assignment submission, announcements
 Teams: questions, discussion, project coordination

08/27/2024 University of Pittsburgh CS 3551 5

https://sites.pitt.edu/~babay/courses/cs3551/

Workload and Grading

 ~16 paper reviews (20%)

— Normally 1 review per class
 ~5lab days (10%)

— In-class, hands-on work with tools for specifying, implementing, and testing distributed systems
e Discussion participation (10%)

* 1 semester-long course project (50%)

— May be done alone or in teams of any size. Project scope must match team size.

— 10/3: Project proposals

— 10/29 - 10/31: Project checkpoint presentations

— 12/10-12/12: Final project presentations + Final project report, webpage, and artifacts delivery
e ~2 paper presentations (10%)

— 1in 1%t half of course (sign up for pre-selected paper)

— 1in 2" half of course (need to find and propose a paper related to your project topic)

08/27/2024 University of Pittsburgh CS 3551 6

Policies

* See course website:
https://sites.pitt.edu/~babay/courses/cs3551/policies.html

08/27/2024 University of Pittsburgh CS 3551 7

https://sites.pitt.edu/~babay/courses/cs3551/policies.html

Questions?

Seminar theme: Building Dependable Infrastructure

Resilient Systems and Societies Lab

www.rsslab.io

* Spire intrusion-tolerant SCADA for the power grid www.spire-sys.org

- * Spines intrusion-tolerant network www.spines-org.github.io
Making it
Possible
* Cloud-based intrusion-tolerant SCADA systems DSN 2021 (Best paper runner-up),
reduce the cost of resilience, without exposing SRDS 2023, Maher Khan PhD thesis
Intrusion- sensitive data to cloud providers (2024)
Tolerant Making it * Digital twins can provide a transition path to DOE-funded Cyber Energy Center
Critical Practical intrusion-tolerant architectures project
Infrastructure « Seamless intrusion-tolerant networks support Defense Logistics Agency funded
legacy applications without changes project
Designing and . * Compound threats involve natural hazards DoD/DOE funded SERDP project,
Addressing combined with cyberattacks SRDS 2024

building systems that Emerein
can work even after Threi tsg * Integrated architecture for power grid systems,
provides intrusion tolerance from substation to

successful intrusions
control center

that compromise part

of the system
08/27/2024 University of Pittsburgh CS 3551 10

http://www.rsslab.io/
http://www.spire-sys.org/
http://www.spines-org.github.io/

Motivation — Personal Experience

e Resilience to failures and attacks is crucial
e But:

— Resilient system designs become complex
— Complexity introduces more opportunities for errors
— Proving correctness of protocols is challenging

* New protocols are often introduced without rigorous proofs

— There is often a big gap between the abstract specification of a
protocol and its implementation in a real system

08/27/2024 University of Pittsburgh CS 3551 11

Motivation — White House Report

 Back to the Building Blocks: A Path Toward Secure and
Measurable Software
* “A proactive approach that focuses on eliminating entire

classes of vulnerabilities reduces the potential attack surface
and results in more reliable code, less downtime, and more

predictable systems.”

08/27/2024 University of Pittsburgh CS 3551 12

https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

Motivation — White House Report

e Recommendations:

— Memory safe programming languages

* Avoid classic memory safety bugs (null pointer, buffer overflow, use after free)
possible (and common) in C/C++

* Challenge for systems where predictable low-latency performance is critical: garbage
collection

 DARPA TRACTOR program — “Translating All C to Rust”

— Memory safe hardware

* For embedded systems where moving to memory safe programming languages may
not (yet) be feasible

— Formal methods
* Prove that software is correct (meets specific requirements)
 Static analysis, model checking, assertion-based testing

08/27/2024 University of Pittsburgh CS 3551 13

Motivation — White House Report

e Recommendations:

— Measuring the cybersecurity quality of software
* How can developers identify/choose secure open source libraries to build on?
e How can customers select secure products?
— Policy: make software manufacturers responsible for vulnerabilities,
not only software users

* Echoed by software “users” in the power industry — rely on vendors for
compliance, but limited incentives for vendors to fully meet requirements

08/27/2024 University of Pittsburgh CS 3551 14

Overview: Fault Tolerance

Fault tolerance requires distribution

Web | | Web Web Web | * To withstand
FE FE FE FE failures, typically
: cache need to replicate

services over
Web Front End (FE) , multiple machines
— Failure of a single
f impact availability of
Database
Server (DB)

the service
02/21/2023

— Achieving this in
practice can be

challenging...need to
synchronize replicas

DB
Replica

DB
Replica

Replica

CS 2510: Lecture 10 16

Fault tolerance requires distribution

Web

Web

Web

Web Front End (FE)

@r?rj;
Database
Server (DB)

02/21/2023

CS 2510: Lecture 10

 Example: One DB
replica fails

* No
problem...another
can take over

* But, can we
guarantee that it
has the same
state?

17

Overview: Testing and Verifying Distributed Systems

Some slides adapted from Roxana Geambasu’s Distributed Systems course @ Columbia:
https://systems.cs.columbia.edu/ds1-class/lectures/13-testing-model-checking.pdf

Properties of Distributed Systems —

More on this next class!

 We want to ensure that systems we build maintain certain
properties:
— Safety (correctness at every step — nothing bad happens)
— Liveness (eventually, something good will happen)

— Performance (something will happen within a certain time or with a
certain amount of resources)

* How do we ensure a distributed system meets these properties
in practice?

04/11/2023 CS 2510: Lecture 16 19

High-level View

* Testing

— Directly test the system implementation to evaluate whether it meets
safety/liveness/performance properties

* In the normal case and under failures
— Best effort — typically impossible to test all possible cases

* Formal Verification
— Comprehensive checking of safety and liveness properties

— Proves that the system will behave correctly under stated assumptions

— Usually applied on design, not on the implementation (often requires
design to be written in formal specification language)

e See also: “The Verification of a Distributed System”

04/11/2023 CS 2510: Lecture 16 20

https://dl.acm.org/doi/pdf/10.1145/2857274.2889274

Types of Testing

* Unit tests:
— Basis to catch most bugs pre-production
— Test every function, module, microservice separately

— Stub all other components (mocks, contract tests) End-to-
— Aim for >95% line coverage End

* Integration:
— Test multiple integrated components, still with some Integration

stubbing for external dependencies
— Often rely on growing list of scenarios

e End-to-end:

— Run on deployment in production(-like) environment, Unit Tests
often with mirrored traffic

04/11/2023 CS 2510: Lecture 16 21

Shadowing / Traffic Mirroring

—_—> svc vl _—
—_— svc vl _—>
Downstream
End user =—————3p Proxy :
services
Tests 5 —_— svc vl —_—
_— svc v2 E—

 Production traffic can be mirrored to shadow test service

04/11/2023 CS 2510: Lecture 16

22

Shadowing Example: Spines Intrusion-Tolerant Network

e Test that our group did
with an intrusion-
tolerant network
service

 Shadowed production
monitoring traffic on
the LTN Global cloud

— Status of data centers,
network characteristics
(latency, loss), client
statuses, etc.

10 month deployment

* No messages lost,
equally timely

04/11/2023 CS 2510: Lecture 16 23

Canary Deployments

* Incremental roll out of upgrades

e Start by replacing a few “canary” nodes, compare
metrics/output with old version
— Roll back if problems detected
— Upgrade more nodes if all looks good

* Good practice, but generally tests only the common case

— Only tests under production conditions at the time the canaries are
deployed; unlikely to cover failures, corner cases

04/11/2023 CS 2510: Lecture 16 24

Fault Injection

* Building confidence in correctness must include testing under
failure conditions

* Perform fault injection for common distributed systems failure
modes

* Node failures
* Faulty networks (latency, partitions)
* Unsynchronized clocks

04/11/2023 CS 2510: Lecture 16 25

Fault Injection in Production - Chaos Engineering

* “Chaos Engineering is the discipline of experimenting on a
system in order to build confidence in the system’s capability
to withstand turbulent conditions in production”
(https://principlesofchaos.org/)

* Netflix Simian Army

— Chaos Monkey (https://github.com/netflix/chaosmonkey)

* “Randomly terminates virtual machine instances and containers that run
inside of your production environment”

* “Exposing engineers to failures more frequently incentivizes them to build
resilient services”

04/11/2023 CS 2510: Lecture 16 26

https://principlesofchaos.org/
https://github.com/netflix/chaosmonkey

Formal Verification

e Testing distributed systems is hard...
* Failures are often non-deterministic (and potentially difficult
to reproduce)

— You can run a test multiple times, but how do you know if it is
enough?

* Recall chaos engineering goal: “to build confidence in the
system’s capability to withstand turbulent conditions in
production”

— “build confidence” != prove correctness

04/11/2023 CS 2510: Lecture 16 27

Why is exhaustive testing so hard?

* Huge state/behavior space of possible executions

— Concurrency

* How many different interleavings of actions by multiple processes are
possible? (a lot!)

— Non-determinism

* Now, each of those interleavings has multiple possible outcomes based on
non-deterministic events (e.g. consider every possible place that a machine
might fail)

04/11/2023 CS 2510: Lecture 16 28

Formal Specification and Model Checking: Process

(Ideally before implementing your system:)

1. Write a specification of the system in a formal specification
language (think math).

2. Specify correctness properties as invariants on states or
behaviors.

3. Use a model checker to exhaustively check that every
state/behavior of the system, within a bounded range of
configurations, satisfies your invariants.

04/11/2023 CS 2510: Lecture 16 29

