
Department	of	Computer	Science

School	of	Computing	and	Information

CS 3551: Advanced Topics in Distributed Information
Systems - Building Dependable Infrastructure

Dr. Amy Babay, Fall 2024

Day 1: Course Introduction

Today’s Objectives

• Understand course logistics and expectations
• Build context for the rest of the course
– What do we mean by dependable infrastructure?
– What are some of the challenges in building dependable critical

infrastructure and other distributed systems?
– What are some high-level approaches to building dependable

distributed systems?

08/27/2024 University of Pittsburgh CS 3551 2

Introductions
• Instructor: Amy Babay
– PhD from Johns Hopkins University in 2018

• “Timely, Reliable, and Cost-Effective Internet Transport using Structured Overlay
Networks”: how can we provide the network performance needed for highly
interactive applications?

• Intrusion-tolerant SCADA for the power grid: how can we build computer systems
that continue to work correctly despite compromises and network attacks?

– Brief time in industry
• Exploring commercial applications of PhD work
• Infrastructure to simplify management of global overlay networks

– Joined Pitt SCI in August 2019
• Research focuses on building dependable critical infrastructure systems, supporting

demanding new Internet services, and community-based environmental monitoring

08/27/2024 University of Pittsburgh CS 3551 3

Introductions

• Instructor: Amy Babay
– Contact: Teams (best for quick questions) or

email babay@pitt.edu

– Office hours: by appointment

08/27/2024 University of Pittsburgh CS 3551 4

mailto:babay@pitt.edu

Course Logistics

• Course meetings
– 11:00am – 12:15pm Tue/Thu
– Sennott Square, Room 6516

• Course website: course info, reading schedule
– https://sites.pitt.edu/~babay/courses/cs3551/
– (Link is posted in canvas)

• Canvas: assignment submission, announcements
• Teams: questions, discussion, project coordination

08/27/2024 University of Pittsburgh CS 3551 5

https://sites.pitt.edu/~babay/courses/cs3551/

Workload and Grading
• ~16 paper reviews (20%)

– Normally 1 review per class
• ~5 lab days (10%)

– In-class, hands-on work with tools for specifying, implementing, and testing distributed systems
• Discussion participation (10%)

• 1 semester-long course project (50%)
– May be done alone or in teams of any size. Project scope must match team size.
– 10/3: Project proposals
– 10/29 – 10/31: Project checkpoint presentations
– 12/10 – 12/12: Final project presentations + Final project report, webpage, and artifacts delivery

• ~2 paper presentations (10%)
– 1 in 1st half of course (sign up for pre-selected paper)
– 1 in 2nd half of course (need to find and propose a paper related to your project topic)

08/27/2024 University of Pittsburgh CS 3551 6

Policies

• See course website:
https://sites.pitt.edu/~babay/courses/cs3551/policies.html

08/27/2024 University of Pittsburgh CS 3551 7

https://sites.pitt.edu/~babay/courses/cs3551/policies.html

Questions?

08/27/2024 University of Pittsburgh CS 3551 8

Seminar theme: Building Dependable Infrastructure

08/27/2024 University of Pittsburgh CS 3551 9

Resilient Systems and Societies Lab
www.rsslab.io

Intrusion-
Tolerant
Critical

Infrastructure

Making it
Possible

Making it
Practical

Addressing
Emerging
Threats

• Spire intrusion-tolerant SCADA for the power grid
• Spines intrusion-tolerant network

•Cloud-based intrusion-tolerant SCADA systems
reduce the cost of resilience, without exposing
sensitive data to cloud providers

•Digital twins can provide a transition path to
intrusion-tolerant architectures
• Seamless intrusion-tolerant networks support

legacy applications without changes

•Compound threats involve natural hazards
combined with cyberattacks
• Integrated architecture for power grid systems,

provides intrusion tolerance from substation to
control center

www.spire-sys.org
www.spines-org.github.io

DSN 2021 (Best paper runner-up),
SRDS 2023, Maher Khan PhD thesis
(2024)

DOE-funded Cyber Energy Center
project
Defense Logistics Agency funded
project

DoD/DOE funded SERDP project,
SRDS 2024

Designing and
building systems that
can work even after
successful intrusions

that compromise part
of the system
08/27/2024 University of Pittsburgh CS 3551 10

http://www.rsslab.io/
http://www.spire-sys.org/
http://www.spines-org.github.io/

Motivation – Personal Experience

• Resilience to failures and attacks is crucial
• But:
– Resilient system designs become complex
– Complexity introduces more opportunities for errors
– Proving correctness of protocols is challenging
• New protocols are often introduced without rigorous proofs

– There is often a big gap between the abstract specification of a
protocol and its implementation in a real system

08/27/2024 University of Pittsburgh CS 3551 11

Motivation – White House Report

• Back to the Building Blocks: A Path Toward Secure and
Measurable Software

• “A proactive approach that focuses on eliminating entire
classes of vulnerabilities reduces the potential attack surface
and results in more reliable code, less downtime, and more
predictable systems.”

08/27/2024 University of Pittsburgh CS 3551 12

https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

Motivation – White House Report

• Recommendations:
– Memory safe programming languages

• Avoid classic memory safety bugs (null pointer, buffer overflow, use after free)
possible (and common) in C/C++

• Challenge for systems where predictable low-latency performance is critical: garbage
collection

• DARPA TRACTOR program – “Translating All C to Rust”
– Memory safe hardware

• For embedded systems where moving to memory safe programming languages may
not (yet) be feasible

– Formal methods
• Prove that software is correct (meets specific requirements)
• Static analysis, model checking, assertion-based testing

08/27/2024 University of Pittsburgh CS 3551 13

Motivation – White House Report

• Recommendations:
– Measuring the cybersecurity quality of software
• How can developers identify/choose secure open source libraries to build on?
• How can customers select secure products?

– Policy: make software manufacturers responsible for vulnerabilities,
not only software users
• Echoed by software “users” in the power industry – rely on vendors for

compliance, but limited incentives for vendors to fully meet requirements

08/27/2024 University of Pittsburgh CS 3551 14

Overview: Fault Tolerance

08/27/2024 University of Pittsburgh CS 3551 15

Fault tolerance requires distribution

• To withstand
failures, typically
need to replicate
services over
multiple machines
– Failure of a single

replica does not
impact availability of
the service

– Achieving this in
practice can be
challenging…need to
synchronize replicas

02/21/2023 CS 2510: Lecture 10 16

Web Front End (FE)

Network

Database
Server (DB)

Web
FE

Network

DB
Replica

cache

Web
FE

Web
FE

Web
FE

cache cache cache

DB
Replica

DB
Replica

Fault tolerance requires distribution

• Example: One DB
replica fails

• No
problem…another
can take over

• But, can we
guarantee that it
has the same
state?

02/21/2023 CS 2510: Lecture 10 17

Web Front End (FE)

Network

Database
Server (DB)

Web
FE

Network

DB
Replica

cache

Web
FE

Web
FE

Web
FE

cache cache cache

DB
Replica

DB
Replica

Overview: Testing and Verifying Distributed Systems

08/27/2024 University of Pittsburgh CS 3551 18

Some slides adapted from Roxana Geambasu’s Distributed Systems course @ Columbia:
https://systems.cs.columbia.edu/ds1-class/lectures/13-testing-model-checking.pdf

Properties of Distributed Systems –
More on this next class!

• We want to ensure that systems we build maintain certain
properties:
– Safety (correctness at every step – nothing bad happens)
– Liveness (eventually, something good will happen)
– Performance (something will happen within a certain time or with a

certain amount of resources)

• How do we ensure a distributed system meets these properties
in practice?

04/11/2023 CS 2510: Lecture 16 19

High-level View

• Testing
– Directly test the system implementation to evaluate whether it meets

safety/liveness/performance properties
• In the normal case and under failures

– Best effort – typically impossible to test all possible cases
• Formal Verification
– Comprehensive checking of safety and liveness properties
– Proves that the system will behave correctly under stated assumptions
– Usually applied on design, not on the implementation (often requires

design to be written in formal specification language)
• See also: “The Verification of a Distributed System”

04/11/2023 CS 2510: Lecture 16 20

https://dl.acm.org/doi/pdf/10.1145/2857274.2889274

Types of Testing

• Unit tests:
– Basis to catch most bugs pre-production
– Test every function, module, microservice separately
– Stub all other components (mocks, contract tests)
– Aim for >95% line coverage

• Integration:
– Test multiple integrated components, still with some

stubbing for external dependencies
– Often rely on growing list of scenarios

• End-to-end:
– Run on deployment in production(-like) environment,

often with mirrored traffic

04/11/2023 CS 2510: Lecture 16 21

Unit Tests

Integration

End-to-
End

Shadowing / Traffic Mirroring

• Production traffic can be mirrored to shadow test service

04/11/2023 CS 2510: Lecture 16 22

Shadowing Example: Spines Intrusion-Tolerant Network

• Test that our group did
with an intrusion-
tolerant network
service

• Shadowed production
monitoring traffic on
the LTN Global cloud
– Status of data centers,

network characteristics
(latency, loss), client
statuses, etc.

• 10 month deployment
• No messages lost,

equally timely

04/11/2023 CS 2510: Lecture 16 23

DEN

HKG

DFW ATL

CHI
WAS

NYC

LON

FRA
LAX

SJC

JHU

Canary Deployments

• Incremental roll out of upgrades
• Start by replacing a few “canary” nodes, compare

metrics/output with old version
– Roll back if problems detected
– Upgrade more nodes if all looks good

• Good practice, but generally tests only the common case
– Only tests under production conditions at the time the canaries are

deployed; unlikely to cover failures, corner cases

04/11/2023 CS 2510: Lecture 16 24

Fault Injection

• Building confidence in correctness must include testing under
failure conditions

• Perform fault injection for common distributed systems failure
modes

• Node failures
• Faulty networks (latency, partitions)
• Unsynchronized clocks
• …

04/11/2023 CS 2510: Lecture 16 25

Fault Injection in Production - Chaos Engineering

• “Chaos Engineering is the discipline of experimenting on a
system in order to build confidence in the system’s capability
to withstand turbulent conditions in production”
(https://principlesofchaos.org/)

• Netflix Simian Army
– Chaos Monkey (https://github.com/netflix/chaosmonkey)
• “Randomly terminates virtual machine instances and containers that run

inside of your production environment”
• “Exposing engineers to failures more frequently incentivizes them to build

resilient services”

04/11/2023 CS 2510: Lecture 16 26

https://principlesofchaos.org/
https://github.com/netflix/chaosmonkey

Formal Verification

• Testing distributed systems is hard…
• Failures are often non-deterministic (and potentially difficult

to reproduce)
– You can run a test multiple times, but how do you know if it is

enough?

• Recall chaos engineering goal: “to build confidence in the
system’s capability to withstand turbulent conditions in
production”
– “build confidence” != prove correctness

04/11/2023 CS 2510: Lecture 16 27

Why is exhaustive testing so hard?

• Huge state/behavior space of possible executions
– Concurrency
• How many different interleavings of actions by multiple processes are

possible? (a lot!)

– Non-determinism
• Now, each of those interleavings has multiple possible outcomes based on

non-deterministic events (e.g. consider every possible place that a machine
might fail)

04/11/2023 CS 2510: Lecture 16 28

Formal Specification and Model Checking: Process

(Ideally before implementing your system:)
1. Write a specification of the system in a formal specification

language (think math).
2. Specify correctness properties as invariants on states or

behaviors.
3. Use a model checker to exhaustively check that every

state/behavior of the system, within a bounded range of
configurations, satisfies your invariants.

04/11/2023 CS 2510: Lecture 16 29

