CS 3551: Advanced Topics in Distributed Information
Systems - Building Dependable Infrastructure

Day 3: “The Bedrock of Byzantine Fault Tolerance:
A Unified Platform for BFT Protocols Analysis,
Implementation, and Experimentation”

Dr. Amy Babay, Fall 2024

!*:*:] UIl.lVCI’ Slty Of Department of Computer Science
\® / PlttSbllI'gh School of Computing and Information

The Problem

* There are A LOT of Byzantine Fault Tolerant (BFT) State
Machine Replication (SMR) protocols

* This makes it difficult for system designers to determine which
protocol is best for their needs

09/03/2024 University of Pittsburgh CS 3551 2

Contribution

 Bedrock is a tool to enable system designhers to understand how
different protocols relate to each other and compare them both

theoretically and empirically

Bedrock platform supports:
— Analysis: provides “design space” for BFT protocols that summarizes the

ways protocols can differ from each other

— Implementation: provides a domain specific language (DSL) for
implementing BFT protocols by specifying the choices they make within
the design space, plus roles, phases, states, and message exchanges

— Experimentation: provides a common implementation base and
deployment environment for fair comparisons

09/03/2024 University of Pittsburgh CS 3551

Approach

e Surveys existing BFT protocols and identifies the important dimensions in which they differ
to create the Bedrock design space

09/03/2024

Table 1: Comparing selected BFT protocols based on different dimensions of Bedrock design space

Protocol ‘ ElL ‘ E2. ‘ ES. ‘ ‘ P1. ‘ P3. ‘ ‘ 1 ‘ Des.ign

Nodes Topo Auth Tlmers Strategy Phases V-change Rec Chent Fair. Load Choices
PBFT [73] | 3f+1 | clique | MACISign | 7,7, T | pessimistic | 3 | stable | pro. | Req. | O | O | (11)
Zyzzyva [157] | 3f+1 | star | MACI Sign | T, Ty | optimistic (spec):aj,az | 1(3) | stable | - | Rep. | O | O | 811
Zyzzyva5[157] | 5f+1 | star | MACIISign | T, T | optimistic (spec):a; | 1(3) | stable | - | Rep. | O | O | 810,(11)
PoE [135] | 3f+1 | star | MACIT-Sign | T, T | optimistic (spec): a | 3 | stable | - | Req. | O | O | 1,711 .
SBFT [131] | 3f+1 | star | T-Sign | Tttt | optimistic: a, | 3(5) | stable | - | Req. | O | O | 1,611 Ta ble omits P4
HotStuff [252] | 3f+1 | star | T-Sign | T, T | pessimistic | 7 | rotating | - | Req. | O | O | 1,311 (Ch eCpri nti ng)
Tendermint [66] | 3f+1 | clique | Sign | T T2, Ts, Ts | optimistic: ag | 3 | rotating | - | Req. | O | O | 4,11 an d Pe rfO rmance
Themis [149] | 4f+1 | star | T-Sign | T, T2, Te | pessimistic | 1+7 | rotating | - | Regq. | [| | O | 1,3,13,11 O ptl m izatiO ns
Kauri [202] | 3f+1 | tree | T-Sign | T, T | optimistic: a3 | 7h | stable* | - | Req. | O | B | (3),14,11 (Ap pen d |X)
CheapBFT [146] | 2f+1 | clique | MAC | T, T | optimistic: a, | 3 | stable | - | Req. | O | O | 5
FaB [190] | 5f+1 | clique | (Sign) | T, T | pessimistic | 2 | stable | - | Req | O | O | 2
Prime [24] | 3f+1 | clique | Sign | 1.7, %, 17 | robust | 6 | stable | - | Req. | O | O | 11,12
Q/U [5] | 5f+1 | star | MAC | T, Ty | optimistic: a4, as | 1(3) | stable | - | Rep. | O | O | 9,10
FLB | 5/—1 | clique | Sign | T, T | pessimistic | 2 | stable | - | Req. | O | O | 1,211
FTB | 5/—1 | tree | T-Sign | T, T2 | optimistic: a3 | 3» | stable | - | Req. | O | W | 1,2,14,11

Hint: "T-Sign": threshold signatures, "Req": requester client, "Rep": repairer client, "Pro": proactive recovery. The number of phases in the slow path of
protocols is shown in parentheses. While Kauri is implemented on top of HotStuff, it does not use rotating leaders. Prime provides partial fairness.

University of Pittsburgh CS 3551 4

Approach

e Surveys existing BFT protocols and identifies the important dimensions in which they differ
to create the Bedrock design space

Protocol structure Quality of Service
P1. Commitment strategy Q1. Order-fairness
P2. Number of commitment phases Q2. Load balancing
P3. View-change
P4. Checkpointing Performance Optimization
P5. Recovery O1. Out-of-order processing
P6. Types of clients O2. Request pipelining

O3. Parallel ordering
Environmental Settings O4. Parallel execution

E1l. Number of replicas O5. Read-only requests processing
E2. Communication topology O6. Separating ordering and execution
E3. Authentication O7. Trusted hardware
E4. Responsiveness, synchronization, and timers 08. Request/reply dissemination

From the authors’ slides: https://www.usenix.org/system/files/nsdi24 slides-amiri.pdf
09/03/2024 University of Pittsburgh CS 3551 5

https://www.usenix.org/system/files/nsdi24_slides-amiri.pdf

Approach

» |dentifies design choices that can transform one valid protocol to another valid protocol at a

different point in the design space

(ZyzzyvaS [157D Efendermint [66D @oE [13SD (S
A
8 4 7

Q/U [5] |« 10 Q [37] PBFT [75] : Li PBFT

S 12
10 Y
(CheapBFT [1469 @rime [24D @osco [228] FTB) @hemis [149D

Figure 4: Derivation of protocols from PBFT using design choices

BFT [13 ID Kauri [202]

HotStuff [252]

13

09/03/2024 University of Pittsburgh CS 3551

Linearization

Phase reduction through
redundancy

Leader rotation
Non-responsive leader
rotation

Optimistic replica reduction
Optimistic phase reduction
Speculative phase reduction
Speculative execution
Optimistic conflict-free
Resilience

. Authentication

Robust
Fair
Tree-based Load Balancer

Approach

 Implements the Bedrock platform for specifying BFT protocols, and implements a wide
range protocols within that framework
* The core unit

* Defines entities, e.g., clients and nodes, and maintains the application logic and data
* Defines workloads and benchmarks

The state manager
* Enables the core unit to track the states and transitions of each entity according to the protocol
» Defines a domain-specific language (DSL) to rapidly prototype BFT protocols

The plugin manager
* Implements protocol-specific behaviors that cannot be handled by the protocol config
* Enables users to define their own dimensions/values or to update existing dimensions without requiring
changes to the platform code or rebuilding the platform binaries

The run-time unit
* Manages the run-time execution
e E.g., manages benchmarks, setups all entities, enables plugins to run, reports results

From the authors’ slides: https://www.usenix.org/system/files/nsdi24 slides-amiri.pdf
09/03/2024 University of Pittsburgh CS 3551 7

https://www.usenix.org/system/files/nsdi24_slides-amiri.pdf

Results

Request , Propose, Accept ; Commit , Reply

e Claim: Bedrock provides new insights into the y \
space of possible BFT SMR protocol designs M

node 1

* Evidence: two new protocols

— Fast Linear BFT (FLB):

* PBFT base: 3f+1 replicas, 3 ordering phases (linear, node3 X
quadratic, quadratic)

* Phase reduction through redundancy: use 5f-1

node 2

Figure 24: FLB

replicas to reduce message exchange to 2 phases Requestl _Propose Commit | Reply
(linear, quadratic) node 0 — o
* Linearization: split quadratic message exchange into ﬁ;‘ggg; :
2 linear exchanges via collect-broadcast pattern node 3 &
node 4 — ©
— Fast Tree-based BFT (FTB): node 5 —\e
* FLB + Tree-based Load Balancer / Kauri with . 28323 \/i %
gr s \ \ 2
modifications node 8 9,

09/03/2024 University of Pittsburgh CS 3551 Flgure 25:FIB

Results

* Claim: Bedrock makes it easier to implement BFT protocols

| | |
29.100
30,000 - o i1 Original I Bedrock | |
Vol oy
o 23.40
Vol ol 77
% Vol oy ValV oV
& 20,000 | A A 2
,_2 16,200 oy 2] 14.900
: oo 14300 £ pn 4
wn Vol - ValValV ValV ol ValV P
Q PVl Vel ol VoVl ValV oV ValValb
£ ool FH B BN B2 B2
— 3 -]]]]] ’
A Ay A A A 6,900 6100
x x 7 x 7] x X 4,800 77 ’
Vol Vel ol VoVl ValVolV ValVal Vel Vol
A A Ay A A]] o]
x 21158 112 x>198 x21109 >>135 2187 207 >>D13
O Pal Pl Pal Pl Pal Pal Pal Valal
PBFT Zyzzyva SBFT Tendermint FaB HotStuff Kauri Themis
Protocol

Figure 6: Lines of code in Bedrock and the original implementation

09/03/2024 University of Pittsburgh CS 3551 9

Results

* Claim: Bedrock makes it easier to empirically compare the
performance of different BFT SMR protocols

250
iy - 160
i‘é 200 120 é 120
2 = = =
s <
E = - Q
g S 60 2 80 5
£ 100 g & 2 60
%0 — oh —
2 2
£ 50 30 = 40 30
416 3R 64 100 06 » 64 100 oLt | ‘ o= ‘
. . 4 16 32 64 100 4 16 32 64 100
Number of replicas Number of replicas) .
Number of replicas Number of replicas

‘ -o-PBFT —e-Zyzzyva —— SBFT PoE —e-FaB —o- HotStuff -5~ Kauri —4— Themis -- FLB -&- FTB ‘

’ -o- PBFT —e- Zyzzyva —— SBFT PoE —&- FaB —-e- HotStuff -5- Kauri —4— Themis -&- FLB -m- FTB

Figure 7: Performance with different number of replicas Figure 9: Performance with faulty backups

09/03/2024 University of Pittsburgh CS 3551 10

