
Department	of	Computer	Science

School	of	Computing	and	Information

CS 3551: Advanced Topics in Distributed Information
Systems - Building Dependable Infrastructure

Dr. Amy Babay, Fall 2024

Day 3: “The Bedrock of Byzantine Fault Tolerance:
A Unified Platform for BFT Protocols Analysis,

Implementation, and Experimentation”

The Problem

• There are A LOT of Byzantine Fault Tolerant (BFT) State
Machine Replication (SMR) protocols

• This makes it difficult for system designers to determine which
protocol is best for their needs

09/03/2024 University of Pittsburgh CS 3551 2

Contribution

• Bedrock is a tool to enable system designers to understand how
different protocols relate to each other and compare them both
theoretically and empirically

• Bedrock platform supports:
– Analysis: provides “design space” for BFT protocols that summarizes the

ways protocols can differ from each other
– Implementation: provides a domain specific language (DSL) for

implementing BFT protocols by specifying the choices they make within
the design space, plus roles, phases, states, and message exchanges

– Experimentation: provides a common implementation base and
deployment environment for fair comparisons

09/03/2024 University of Pittsburgh CS 3551 3

Approach
• Surveys existing BFT protocols and identifies the important dimensions in which they differ

to create the Bedrock design space

09/03/2024 University of Pittsburgh CS 3551 4

Table 1: Comparing selected BFT protocols based on different dimensions of Bedrock design space

Protocol E1.
Nodes

E2.
Topo.

E3.
Auth.

E4.
Timers

P1.
Strategy

P2.
Phases

P3.
V-change

P5.
Rec.

P6.
Client

Q1.
Fair.

Q2.
Load.

Design
Choices

PBFT [73] 3 f+1 clique MAC || Sign t1, t2, t8 pessimistic 3 stable pro. Req. ⇤ ⇤ (11)

Zyzzyva [157] 3 f+1 star MAC || Sign t1, t2 optimistic (spec): a1, a2 1 (3) stable - Rep. ⇤ ⇤ 8, (11)

Zyzzyva5 [157] 5 f+1 star MAC || Sign t1, t2 optimistic (spec): a1 1 (3) stable - Rep. ⇤ ⇤ 8, 10, (11)

PoE [135] 3 f+1 star MAC || T-Sign t1, t2 optimistic (spec): a2 3 stable - Req. ⇤ ⇤ 1, 7, 11

SBFT [131] 3 f+1 star T-Sign t1, t2, t3 optimistic: a2 3 (5) stable - Req. ⇤ ⇤ 1, 6, 11

HotStuff [252] 3 f+1 star T-Sign t1, t2 pessimistic 7 rotating - Req. ⇤ ⇤ 1, 3, 11

Tendermint [66] 3 f+1 clique Sign t1, t2, t5, t6 optimistic: a6 3 rotating - Req. ⇤ ⇤ 4, 11

Themis [149] 4 f+1 star T-Sign t1, t2, t6 pessimistic 1+7 rotating - Req. ⌅ ⇤ 1, 3, 13, 11

Kauri [202] 3 f+1 tree T-Sign t1, t2 optimistic: a3 7h stable* - Req. ⇤ ⌅ (3), 14, 11

CheapBFT [146] 2 f+1 clique MAC t1, t2 optimistic: a2 3 stable - Req. ⇤ ⇤ 5

FaB [190] 5 f+1 clique (Sign) t1, t2 pessimistic 2 stable - Req. ⇤ ⇤ 2

Prime [24] 3 f+1 clique Sign t1, t2, t6, t7 robust 6 stable - Req. ⇤ 11, 12

Q/U [5] 5 f+1 star MAC t1, t2 optimistic: a4, a5 1 (3) stable - Rep. ⇤ ⇤ 9, 10

FLB 5 f�1 clique Sign t1, t2 pessimistic 2 stable - Req. ⇤ ⇤ 1, 2, 11

FTB 5 f�1 tree T-Sign t1, t2 optimistic: a3 3h stable - Req. ⇤ ⌅ 1, 2, 14, 11

Hint: "T-Sign": threshold signatures, "Req": requester client, "Rep": repairer client, "Pro": proactive recovery. The number of phases in the slow path of
protocols is shown in parentheses. While Kauri is implemented on top of HotStuff, it does not use rotating leaders. Prime provides partial fairness.

PBFT [75]

FaB [190]Bosco [228]

Zyzzyva [157]

Quorum [37]

Tendermint [66]

CheapBFT [146]

Linear PBFT

Zyzzyva5 [157]

Q/U [5] HotStuff [252]

SBFT [131]PoE [135] Kauri [202]

Themis [149]FLB FTBPrime [24]
10

1

2

9

5

48

10

67
3

14

14

13

10

1

212

Figure 4: Derivation of protocols from PBFT using design choices

Depending on the order-fairness parameter g (0.5<g1) that
defines the fraction of replicas receiving the requests in that
specific order, at least 4 f +1 replicas (n> 4 f

2g�1) replicas are
needed to provide order-fairness [149, 150] 1.

Design Choice 14. (Tree-based LoadBalancer). This func-
tion explores a trade-off between the communication topology
and load balancing where load balancing is supported by or-
ganizing replicas in a tree topology, with the leader at the root,
e.g., Kauri [202]. This function splits a linear communication
phase into h phases where h is the tree’s height and each
replica uniformly communicates with its child/parent replicas
in the tree. The protocol optimistically assumes all non-leaf
replicas are non-faulty (assumption P 1, a3). Otherwise, the
tree is reconfigured (i.e., view change).

4.2 Deriving and Evolving Protocols
Figure 4 demonstrates the derivation of a wide spectrum

of BFT protocols from PBFT using design choices. Table 1
provides insights into how each BFT protocol maps into the
Bedrock design space. The table also presents the design

1With 3 f+1 replicas, as shown in [149], order-fairness requires a syn-
chronized clock [255] or does not provide censorship resistance [159].

Figure 5: Overview of BFT protocols

choices used by each BFT protocol. A detailed explanation
of protocols is presented in Appendix B.

Figure 5 focuses on different stages of replicas and demon-
strates the communication complexity of each stage. The
figure presents: (1) the preordering phases used in Themis
and Prime, (2) the three ordering phases, e.g., pre-prepare, pre-
pare or commit in PBFT (labeled by o1, o2, and o3), (3) the
execution stage, (4) the view-change stages consisting of view-
change and new-view phases (labeled by v1 and v2), and (5)
the checkpointing stage. As can be seen, some protocols do
not have all three ordering phases, i.e., using different de-
sign choices, the number of ordering phases is reduced. The
dashed boxes present the slow-path of protocols, e.g., the third
ordering phase of SBFT is used only in its slow-path. Finally,
the order of stages might be changed. For example, HotStuff
runs view-change (leader rotation) for every single message
and this phase takes place at the beginning of a consensus

378 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table omits P4
(Checkpointing)
and Performance
Optimizations
(Appendix)

Approach
• Surveys existing BFT protocols and identifies the important dimensions in which they differ

to create the Bedrock design space

09/03/2024 University of Pittsburgh CS 3551 5

Design space of BFT protocols

8

Protocol structure
P1. Commitment strategy
P2. Number of commitment phases
P3. View-change
P4. Checkpointing
P5. Recovery
P6. Types of clients

Environmental Settings
E1. Number of replicas
E2. Communication topology
E3. Authentication
E4. Responsiveness, synchronization, and timers

Quality of Service
Q1. Order-fairness
Q2. Load balancing

Performance Optimization
O1. Out-of-order processing
O2. Request pipelining
O3. Parallel ordering
O4. Parallel execution
O5. Read-only requests processing
O6. Separating ordering and execution
O7. Trusted hardware
O8. Request/reply dissemination

From the authors’ slides: https://www.usenix.org/system/files/nsdi24_slides-amiri.pdf

https://www.usenix.org/system/files/nsdi24_slides-amiri.pdf

Approach

• Identifies design choices that can transform one valid protocol to another valid protocol at a
different point in the design space

09/03/2024 University of Pittsburgh CS 3551 6

Table 1: Comparing selected BFT protocols based on different dimensions of Bedrock design space

Protocol E1.
Nodes

E2.
Topo.

E3.
Auth.

E4.
Timers

P1.
Strategy

P2.
Phases

P3.
V-change

P5.
Rec.

P6.
Client

Q1.
Fair.

Q2.
Load.

Design
Choices

PBFT [73] 3 f+1 clique MAC || Sign t1, t2, t8 pessimistic 3 stable pro. Req. ⇤ ⇤ (11)

Zyzzyva [157] 3 f+1 star MAC || Sign t1, t2 optimistic (spec): a1, a2 1 (3) stable - Rep. ⇤ ⇤ 8, (11)

Zyzzyva5 [157] 5 f+1 star MAC || Sign t1, t2 optimistic (spec): a1 1 (3) stable - Rep. ⇤ ⇤ 8, 10, (11)

PoE [135] 3 f+1 star MAC || T-Sign t1, t2 optimistic (spec): a2 3 stable - Req. ⇤ ⇤ 1, 7, 11

SBFT [131] 3 f+1 star T-Sign t1, t2, t3 optimistic: a2 3 (5) stable - Req. ⇤ ⇤ 1, 6, 11

HotStuff [252] 3 f+1 star T-Sign t1, t2 pessimistic 7 rotating - Req. ⇤ ⇤ 1, 3, 11

Tendermint [66] 3 f+1 clique Sign t1, t2, t5, t6 optimistic: a6 3 rotating - Req. ⇤ ⇤ 4, 11

Themis [149] 4 f+1 star T-Sign t1, t2, t6 pessimistic 1+7 rotating - Req. ⌅ ⇤ 1, 3, 13, 11

Kauri [202] 3 f+1 tree T-Sign t1, t2 optimistic: a3 7h stable* - Req. ⇤ ⌅ (3), 14, 11

CheapBFT [146] 2 f+1 clique MAC t1, t2 optimistic: a2 3 stable - Req. ⇤ ⇤ 5

FaB [190] 5 f+1 clique (Sign) t1, t2 pessimistic 2 stable - Req. ⇤ ⇤ 2

Prime [24] 3 f+1 clique Sign t1, t2, t6, t7 robust 6 stable - Req. ⇤ 11, 12

Q/U [5] 5 f+1 star MAC t1, t2 optimistic: a4, a5 1 (3) stable - Rep. ⇤ ⇤ 9, 10

FLB 5 f�1 clique Sign t1, t2 pessimistic 2 stable - Req. ⇤ ⇤ 1, 2, 11

FTB 5 f�1 tree T-Sign t1, t2 optimistic: a3 3h stable - Req. ⇤ ⌅ 1, 2, 14, 11

Hint: "T-Sign": threshold signatures, "Req": requester client, "Rep": repairer client, "Pro": proactive recovery. The number of phases in the slow path of
protocols is shown in parentheses. While Kauri is implemented on top of HotStuff, it does not use rotating leaders. Prime provides partial fairness.

PBFT [75]

FaB [190]Bosco [228]

Zyzzyva [157]

Quorum [37]

Tendermint [66]

CheapBFT [146]

Linear PBFT

Zyzzyva5 [157]

Q/U [5] HotStuff [252]

SBFT [131]PoE [135] Kauri [202]

Themis [149]FLB FTBPrime [24]
10

1

2

9

5

48

10

67
3

14

14

13

10

1

212

Figure 4: Derivation of protocols from PBFT using design choices

Depending on the order-fairness parameter g (0.5<g1) that
defines the fraction of replicas receiving the requests in that
specific order, at least 4 f +1 replicas (n> 4 f

2g�1) replicas are
needed to provide order-fairness [149, 150] 1.

Design Choice 14. (Tree-based LoadBalancer). This func-
tion explores a trade-off between the communication topology
and load balancing where load balancing is supported by or-
ganizing replicas in a tree topology, with the leader at the root,
e.g., Kauri [202]. This function splits a linear communication
phase into h phases where h is the tree’s height and each
replica uniformly communicates with its child/parent replicas
in the tree. The protocol optimistically assumes all non-leaf
replicas are non-faulty (assumption P 1, a3). Otherwise, the
tree is reconfigured (i.e., view change).

4.2 Deriving and Evolving Protocols
Figure 4 demonstrates the derivation of a wide spectrum

of BFT protocols from PBFT using design choices. Table 1
provides insights into how each BFT protocol maps into the
Bedrock design space. The table also presents the design

1With 3 f+1 replicas, as shown in [149], order-fairness requires a syn-
chronized clock [255] or does not provide censorship resistance [159].

Figure 5: Overview of BFT protocols

choices used by each BFT protocol. A detailed explanation
of protocols is presented in Appendix B.

Figure 5 focuses on different stages of replicas and demon-
strates the communication complexity of each stage. The
figure presents: (1) the preordering phases used in Themis
and Prime, (2) the three ordering phases, e.g., pre-prepare, pre-
pare or commit in PBFT (labeled by o1, o2, and o3), (3) the
execution stage, (4) the view-change stages consisting of view-
change and new-view phases (labeled by v1 and v2), and (5)
the checkpointing stage. As can be seen, some protocols do
not have all three ordering phases, i.e., using different de-
sign choices, the number of ordering phases is reduced. The
dashed boxes present the slow-path of protocols, e.g., the third
ordering phase of SBFT is used only in its slow-path. Finally,
the order of stages might be changed. For example, HotStuff
runs view-change (leader rotation) for every single message
and this phase takes place at the beginning of a consensus

378 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1. Linearization
2. Phase reduction through

redundancy
3. Leader rotation
4. Non-responsive leader

rotation
5. Optimistic replica reduction
6. Optimistic phase reduction
7. Speculative phase reduction
8. Speculative execution
9. Optimistic conflict-free
10. Resilience
11. Authentication
12. Robust
13. Fair
14. Tree-based Load Balancer

Approach

• Implements the Bedrock platform for specifying BFT protocols, and implements a wide
range protocols within that framework

09/03/2024 University of Pittsburgh CS 3551 7

Implementation

15

• The core unit
• Defines entities, e.g., clients and nodes, and maintains the application logic and data
• Defines workloads and benchmarks

The state manager
• Enables the core unit to track the states and transitions of each entity according to the protocol
• Defines a domain-specific language (DSL) to rapidly prototype BFT protocols

The plugin manager
• Implements protocol-specific behaviors that cannot be handled by the protocol config
• Enables users to define their own dimensions/values or to update existing dimensions without requiring

changes to the platform code or rebuilding the platform binaries

The run-time unit
• Manages the run-time execution
• E.g., manages benchmarks, setups all entities, enables plugins to run, reports results

From the authors’ slides: https://www.usenix.org/system/files/nsdi24_slides-amiri.pdf

https://www.usenix.org/system/files/nsdi24_slides-amiri.pdf

Results

• Claim: Bedrock provides new insights into the
space of possible BFT SMR protocol designs

• Evidence: two new protocols
– Fast Linear BFT (FLB):

• PBFT base: 3f+1 replicas, 3 ordering phases (linear,
quadratic, quadratic)

• Phase reduction through redundancy: use 5f-1
replicas to reduce message exchange to 2 phases
(linear, quadratic)

• Linearization: split quadratic message exchange into
2 linear exchanges via collect-broadcast pattern

– Fast Tree-based BFT (FTB):
• FLB + Tree-based Load Balancer / Kauri with

modifications

09/03/2024 University of Pittsburgh CS 3551 8

Figure 24: FLB Figure 25: FTB

4 16 32 64 100

30

60

90

120

Number of replicas

Th
ro

ug
hp

ut
[k

tra
ns

/s
ec

]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

4 16 32 64 100
0

1

2

3

Number of replicas

La
te

nc
y

[s
]

Figure 26: Performance with a geo-distributed setup

5 f � 1 replicas (following the lower bound results on fast
Byzantine agreement [12, 161]). The ordering stage of FLB
is similar to the fast path of SBFT in terms of the linearity
of communication and the number of phases. However, FLB
expands the network size to tolerate f failures (in contrast
to SBFT, which optimistically assumes all replicas are non-
faulty).
Fast Tree-based balanced BFT (FTB). A performance bot-
tleneck of consensus protocols is the computing and band-
width capacity of the leader. While Kauri [202] leverages a
tree communication topology (design choice 14) to distribute
the load among all replicas, Kauri requires 7h phases of com-
munication to commit each request, where h is the height of
the communication tree.

FTB (Figure 25) reduces the latency of Kauri based on
two observations. First, we noticed that while Kauri is imple-
mented on top of HotStuff, it does not use the leader rotation
mechanism. As a result, it does not need the two linear phases
of HotStuff (2h phases in Kauri) that are added for the purpose
of leader rotation (design choice 3). Second, similar to FLB,
we can use the phase reduction through redundancy function
(design choice 2) to further reduce 2h more phases of com-
munication. FTB establishes agreement with 5 f �1 replicas
in 3h phases. FTB also uses the pipelining stretch mechanism
of Kauri, where the leader continuously initiates consensus
instances before receiving a response from its child nodes for
the first instance (similar to the out-of-order processing used
by many BFT protocols).

D Impact of a Geo-distributed Setup
In this part, we measure the performance of protocols in

a wide-area network. Replicas are deployed in 4 different
AWS regions, i.e., Tokyo (TY), Seoul (SU), Virginia (VA),

and California (CA) with an average Round-Trip Time (RTT)
of TY ⌦ SU: 33 ms, TY ⌦ VA: 148 ms, TY ⌦ CA: 107
ms, SU ⌦ VA: 175 ms, SU ⌦ CA: 135 ms, and VA ⌦ CA:
62 ms. The clients are also placed in Oregon (OR) with an
average RTT of 97, 126, 68 and 22 ms from TY, SU, VA and
CA respectively. We use a batch size of 400 and perform
experiments in a failure-free situation. In this experiment,
the pipelining stretch of Kauri and FTB is increased to 6.
Figure 26 depicts the results.

Zyzzyva demonstrates the best performance when n is
small. However, when n increases, its performance is signifi-
cantly reduced (87% throughput reduction and 115x latency
when n increases from 4 to 100). This is because, in Zyzzyva,
clients need to receive reply messages from all replicas. Simi-
larly, SBFT incurs a significant reduction in its performance
due to its optimistic assumption that all replicas participate in
a timely manner. In both protocols, replicas (client or leader)
wait for D = 500 ms to receive responses from all replicas be-
fore switching to the normal path. This reduction can be seen
in PBFT as well (84% throughput reduction when n increases
to 100) due to its quadratic communication complexity. PoE
incurs a smaller throughput reduction (51%) in comparison
to Zyzzyva, SBFT, and PBFT because it does not need to wait
for all replicas and it has a linear communication complex-
ity. Increasing the number of replicas does not significantly
affect the throughput of FTB compared to other protocols
(36% throughput reduction when n increases to 99) due to its
logarithmic message complexity and pipelining.

Interestingly, HotStuff shows very low throughput. In Hot-
Stuff, the leader of the following view must wait for the pre-
vious view’s decision before initiating its value. Even though
Chained-HotStuff is implemented in Bedrock, the leader still
needs to wait for one communication round (an RTT). As a
result, in contrast to the single datacenter setting where each
round takes ⇠1 ms, request batches are proposed on average
every ⇠190 ms. Similarly, in Themis and FLB, the leader
must wait for certificates from n� f replicas before initiating
consensus on the next request batch. In Themis, network la-
tency also affects achieving order-fairness as replicas might
propose different orders for client requests. This result demon-
strates the significant impact of the out-of-order processing
of requests on the performance of the protocol, especially in
a wide area network.

398 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 24: FLB Figure 25: FTB

4 16 32 64 100

30

60

90

120

Number of replicas

Th
ro

ug
hp

ut
[k

tra
ns

/s
ec

]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

4 16 32 64 100
0

1

2

3

Number of replicas

La
te

nc
y

[s
]

Figure 26: Performance with a geo-distributed setup

5 f � 1 replicas (following the lower bound results on fast
Byzantine agreement [12, 161]). The ordering stage of FLB
is similar to the fast path of SBFT in terms of the linearity
of communication and the number of phases. However, FLB
expands the network size to tolerate f failures (in contrast
to SBFT, which optimistically assumes all replicas are non-
faulty).
Fast Tree-based balanced BFT (FTB). A performance bot-
tleneck of consensus protocols is the computing and band-
width capacity of the leader. While Kauri [202] leverages a
tree communication topology (design choice 14) to distribute
the load among all replicas, Kauri requires 7h phases of com-
munication to commit each request, where h is the height of
the communication tree.

FTB (Figure 25) reduces the latency of Kauri based on
two observations. First, we noticed that while Kauri is imple-
mented on top of HotStuff, it does not use the leader rotation
mechanism. As a result, it does not need the two linear phases
of HotStuff (2h phases in Kauri) that are added for the purpose
of leader rotation (design choice 3). Second, similar to FLB,
we can use the phase reduction through redundancy function
(design choice 2) to further reduce 2h more phases of com-
munication. FTB establishes agreement with 5 f �1 replicas
in 3h phases. FTB also uses the pipelining stretch mechanism
of Kauri, where the leader continuously initiates consensus
instances before receiving a response from its child nodes for
the first instance (similar to the out-of-order processing used
by many BFT protocols).

D Impact of a Geo-distributed Setup
In this part, we measure the performance of protocols in

a wide-area network. Replicas are deployed in 4 different
AWS regions, i.e., Tokyo (TY), Seoul (SU), Virginia (VA),

and California (CA) with an average Round-Trip Time (RTT)
of TY ⌦ SU: 33 ms, TY ⌦ VA: 148 ms, TY ⌦ CA: 107
ms, SU ⌦ VA: 175 ms, SU ⌦ CA: 135 ms, and VA ⌦ CA:
62 ms. The clients are also placed in Oregon (OR) with an
average RTT of 97, 126, 68 and 22 ms from TY, SU, VA and
CA respectively. We use a batch size of 400 and perform
experiments in a failure-free situation. In this experiment,
the pipelining stretch of Kauri and FTB is increased to 6.
Figure 26 depicts the results.

Zyzzyva demonstrates the best performance when n is
small. However, when n increases, its performance is signifi-
cantly reduced (87% throughput reduction and 115x latency
when n increases from 4 to 100). This is because, in Zyzzyva,
clients need to receive reply messages from all replicas. Simi-
larly, SBFT incurs a significant reduction in its performance
due to its optimistic assumption that all replicas participate in
a timely manner. In both protocols, replicas (client or leader)
wait for D = 500 ms to receive responses from all replicas be-
fore switching to the normal path. This reduction can be seen
in PBFT as well (84% throughput reduction when n increases
to 100) due to its quadratic communication complexity. PoE
incurs a smaller throughput reduction (51%) in comparison
to Zyzzyva, SBFT, and PBFT because it does not need to wait
for all replicas and it has a linear communication complex-
ity. Increasing the number of replicas does not significantly
affect the throughput of FTB compared to other protocols
(36% throughput reduction when n increases to 99) due to its
logarithmic message complexity and pipelining.

Interestingly, HotStuff shows very low throughput. In Hot-
Stuff, the leader of the following view must wait for the pre-
vious view’s decision before initiating its value. Even though
Chained-HotStuff is implemented in Bedrock, the leader still
needs to wait for one communication round (an RTT). As a
result, in contrast to the single datacenter setting where each
round takes ⇠1 ms, request batches are proposed on average
every ⇠190 ms. Similarly, in Themis and FLB, the leader
must wait for certificates from n� f replicas before initiating
consensus on the next request batch. In Themis, network la-
tency also affects achieving order-fairness as replicas might
propose different orders for client requests. This result demon-
strates the significant impact of the out-of-order processing
of requests on the performance of the protocol, especially in
a wide area network.

398 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Results

• Claim: Bedrock makes it easier to implement BFT protocols

09/03/2024 University of Pittsburgh CS 3551 9

instance to synchronize nodes within a view.
These case studies demonstrate the value of Bedrock in

providing a unified platform for analyzing a range of exist-
ing BFT protocols. Note that the Bedrock platform enables
users to implement new dimensions or design choices. For
example, recently directed acyclic graph (DAG)-based BFT
protocols [42,100,101,119,148,231,247] have emerged as an
efficient way of establishing consensus. In DAG-based proto-
cols and in each round, replicas independently send their own
block of transactions as well as references to 2 f +1 received
blocks (in the previous round) to other replicas in parallel.
The references that blocks carry then become the backbone
of a causally ordered DAG structure. DAG-based protocols
provide higher throughput by separating transaction dissemi-
nation (by all replicas) from ordering. One can evolve PBFT
to a DAG-based protocol in three steps (using three design
choices); linearization, pipelining, and parallelization, with
some minor modifications. Linearization makes PBFT linear
(design choice 1), pipelining enables a node to piggyback the
messages of a new consensus instance on the second round
messages of the previous instance (as it is used in Chained-
HotStuff [4]), and parallelization enables multiple replicas to
propose messages in parallel (as used in multi-leader proto-
cols [136, 233], discussed in Appendix A, 3).

Bedrock’s utility can go beyond an analysis platform to-
wards a discovery tool as well. Appendix C demonstrates two
BFT protocols (FLB and FTB) uncovered using Bedrock.
5 Bedrock Implementation

Bedrock enables users, e.g., application developers, to im-
plement and evaluate different BFT protocols. Bedrock is
implemented in Java. The modular design of Bedrock enables
a fair and efficient evaluation of BFT protocols using identical
libraries, cryptographic functions, etc. The Bedrock platform
consists of four main components: the core unit, the state
manager, the plugin manager, and the coordination unit.
The core unit defines entities, e.g., clients and nodes, and
maintains the application logic and application data. Client
transactions are executed using the application logic resulting
in updating the data. Entities track the execution of requests
through various state variables, e.g., view and sequence num-
ber. Within the core unit, different workloads and benchmarks
can be defined. Client requests can be initiated using a con-
stant interval or a dynamic interval updated based on a moving
average of response times. Different utility classes, such as
Timekeeper to handle timers, and BenchmarkManager to mea-
sure and report results are also defined within the core unit.
The state manager enables the core unit to track the states
and transitions of each entity according to the utilized BFT
protocol, e.g., different stages of a replica or different phases
of consensus. Bedrock defines a domain-specific language
(DSL) to rapidly prototype BFT protocols. The DSL code
written in the protocol config defines different dimensions and
the chosen value for each dimension, the list of roles, phases,
states, exchange messages, quorum conditions of the protocol,

PBFT Zyzzyva SBFT Tendermint FaB HotStuff Kauri Themis
0

10,000

20,000

30,000

16,200
14,300

29,100

23,400

14,900

4,800
6,900 6,100

158 112 198 109 135 187 207 213

Protocol

Li
ne

s
of

co
de

Original Bedrock

Figure 6: Lines of code in Bedrock and the original implementation

and also, the list of protocol-specific plugins required to run
the protocol. The EO-YAML and Apache Commons Lang libraries
are used for parsing, loading, and holding the protocol config
data. Appendix E demonstrates the PBFT code using the DSL.
The protocol config greatly reduces the effort needed to write
a BFT protocol. Figure 6 compares the lines of code in the
original open-source implementation of several known proto-
cols and their implementation in Bedrock., e.g., the original
Zyzzyva source code includes more than 14000 lines while its
config in Bedrock is only 112 lines2. Overall, using Bedrock,
the code size is reduced by orders of magnitude. Each proto-
col, in addition to the config file, uses a set of plugins defined
in Bedrock, as explained in the next part. Chained-HotStuff,
as a protocol that uses the most plugins (five), requires only
412 more lines of code to implement its five plugins, several
of them are shared with multiple protocols.
The plugin manager serves two purposes. First, it enables
the implementation of protocol-specific behaviors that cannot
be handled by the protocol config defined in the state man-
ager. For example, the speculative execution in Zyzzyva [157]
or handling view-change without using a different process
or states in Tendermint [162]. Second, it enables Bedrock
users to define their own dimensions/values to support more
protocols or to update existing dimensions without requiring
changes to the platform code or rebuilding the platform bina-
ries. For example, if a developer wants to use a new digest
or signature algorithm for an existing or a new protocol, the
algorithm can be implemented within a plugin.

Four types of plugins have been defined in the current ver-
sion of Bedrock. Role plugins that define specific behavior
for a certain role in a specific sequence number, view number,
state, etc., e.g., message dissemination by the primary node in
CheapBFT [146] where nodes are divided into active and pas-
sive nodes. Message plugins that define specific methods to
process incoming or outgoing messages, e.g., perform digest
validation. Transition plugins that specify an action to be per-
formed during or after a state transition, e.g., how to process
checkpoint messages. Pipeline plugins that enable manipu-
lating the flow of messages, e.g., Chained-HotStuff [252] (as
discussed in Appendix A, O 2).
The coordination unit manages the run-time execution of
Bedrock. The coordination unit consists of a coordinator and a
set of executors. The coordinator manages the benchmark pro-

2 We count only the lines of source code related to the core consensus
protocol and not the applications or the utilized libraries.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 379

Results

• Claim: Bedrock makes it easier to empirically compare the
performance of different BFT SMR protocols

09/03/2024 University of Pittsburgh CS 3551 10

4 16 32 64 100

50

100

150

200

250

Number of replicas

Th
ro

ug
hp

ut
[k

tra
ns

/s
ec

]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

4 16 32 64 100
0

30

60

90

120

Number of replicas

La
te

nc
y

[m
s]

Figure 7: Performance with different number of replicas

cess and setups all entities by initializing replicas and clients,
sending config parameters to executors, enabling plugins to
run additional initialization steps, starting and stopping exe-
cution threads, and reporting results. The executors, on the
other hand, run the utilized BFT protocol.

The data (e.g., messages, requests, blocks) for the events
and messages transmitted between nodes and clients is de-
fined using the Google Protocol Buffers syntax and then
compiled using the protoc tool.
6 Experimental Evaluation

Our evaluation studies the practical impact of the design
dimensions and the exposed trade-offs presented as design
choices on the performance of BFT protocols under one uni-
fied platform. We use typical experimental scenarios used for
existing BFT protocols and permissioned blockchains, includ-
ing (1) varying the number of replicas, (2) under a backup fail-
ure, (3) multiple request batch sizes, and (4) a geo-distributed
setup (presented in Appendix D).

All protocols listed in Table 1 are implemented in Bedrock.
Note that the original implementations of such BFT protocols
utilize different (often old, inefficient) libraries, crypto algo-
rithms, etc. Hence, it was unfair to experimentally compare
such original implementations with their implementations
in bedrock. Using the platform, we also experimented with
many new protocols resulting from the combination of design
choices. Due to space limitations, we present the performance
evaluation of a subset of protocols. In particular, we evaluate
PBFT, Zyzzyva, SBFT, FaB, PoE, (Chained-) HotStuff, Kauri,
Themis, and two of the more interesting new variants (FLB
and FTB). This set of protocols enables us to see the impact of
design choices 1, 2, 3, 6, 7, 8, 10, 11, 13, and 14 (discussed in
Section 4). We also use the out-of-order processing technique
for protocols with a stable leader and the request pipelining
technique for protocols with a rotating leader. In our experi-
ments, Kauri and FTB are deployed on trees of height 2 and
the order-fairness parameter g of Themis is considered to be
1 (i.e., n = 4 f + 1). We use 4 as the base pipelining stretch
for both Kauri and FTB and change it depending on the batch
size and deployment setting (local vs. geo-distributed).

The experiments were conducted on the Amazon EC2 plat-
form. Each VM is a c4.2xlarge instance with 8 vCPUs and
15GB RAM, Intel Xeon E5-2666 v3 processor clocked at
3.50 GHz. When reporting throughput, we use an increasing
number of client requests until the end-to-end throughput is

1 5 10 20

50

100

150

200

250

f value

Th
ro

ug
hp

ut
[k

tra
ns

/s
ec

]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

1 5 10 20
0

20

40

60

80

f value

La
te

nc
y

[m
s]

Figure 8: Performance with different f value

saturated and state the throughput and latency just below sat-
uration. The results reflect end-to-end measurements from
the clients. Clients execute in a closed loop. We use micro-
benchmarks commonly used to evaluate BFT systems, e.g.,
BFT-SMART. The results are the average of five runs.
6.1 Fault Tolerance and Scalability

In the first set of experiments, we evaluate the performance
of the protocols by increasing the number of replicas n (each
runs on a separate VM) from 4 to 100 in a failure-free situ-
ation. For some protocols, the smallest network size might
differ, e.g., FaB requires 5 f +1 = 6 replicas. We use a batch
size of 400 (we discuss this choice later) and a workload with
client request/reply payload sizes of 128/128 byte. Figure 7
reports the results.

Zyzzyva shows the highest throughput among all protocols
in small networks due to its optimistic ordering stage (design
choice 8). However, as n increases, its throughput significantly
reduces as clients need to wait for reply from all replicas.
Increasing the number of replicas also has a large impact on
PBFT and FaB (65% and 63% reduction, respectively) due to
their quadratic message complexity.

On the other hand, the throughput of Kauri and FTB is
less affected (31% and 32% reduction, respectively) by in-
creasing n because of their tree topology (design choice 14)
that reduced the bandwidth utilization of each replica. Simi-
larly, PoE, SBFT and HotStuff incur less throughput reduction
(39%, 55% and 45% respectively) compared to PBFT and
FaB due to their linear message complexity (design choice 1).
In Bedrock, Chained-HotStuff has been implemented using
the pipelining technique, resulting in lower average latency.
In comparison to HotStuff, SBFT has slightly lower through-
put in large networks (e.g., 8% lower when n = 100) because
the leader waits for messages from all replicas. SBFT, on the
other hand, shows higher throughput compared to HotStuff
in smaller networks (e.g., 12% higher when n = 4) due to
its fast ordering stage (design choice 6). PoE demonstrates
higher throughput compared to both SBFT and HotStuff, es-
pecially in larger networks (e.g., 39% higher than SBFT and
26% higher than HotStuff when n = 100). This is expected
because, in PoE, the leader does not need to wait for messages
from all replicas and optimistically combines signatures from
2 f +1 replicas (design choice 7). Compared to PBFT, while
HotStuff shows better throughput (e.g., 48% higher when
n = 64), the latency of PBFT is lower (e.g., 32% lower when

380 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

4 16 32 64 100
0

40

80

120

160

Number of replicas

Th
ro

ug
hp

ut
[k

tra
ns

/s
ec

]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

4 16 32 64 100
0

30

60

90

120

Number of replicas

La
te

nc
y

[m
s]

Figure 9: Performance with faulty backups

n = 64). One reason behind the high latency of HotStuff is its
extra communication round (design choice 3).

Supporting order-fairness (design choice 13) leads to de-
ficient performance of Themis compared to HotStuff (83%
lower throughput when n=5). In Themis, replicas order trans-
actions and send batches of transactions to the leader, and
the leader needs to generate a fair order. As the number of
replicas increases, Themis incurs higher latency (the latency
increases from 9 to 137 ms as n increases to 101), mainly
due to the overhead of generating the dependency graph and
reaching a fair order by the leader. Using design choice 2 and
reducing the number of communication phases results in 41%
higher throughput and 46% lower latency of FTB compared
to Kauri in a setting with 99 replicas (100 for Kauri).

Finally, using design choices 1 and 2, FLB demonstrates
better performance for large n (2.25x throughput and 0.55x
latency compared to PBFT). This is because FLB reduces
both message complexity and communication phases, and
replicas do not need to wait for responses from all replicas.

Figure 7 depicts the results with different numbers of repli-
cas. However, with the same number of replicas, different
protocols tolerate different numbers of failures. For instance,
PBFT requires 3 f + 1 and when n = 100 tolerates 33 fail-
ures while FaB requires 5 f +1 and tolerates 19 failures with
n = 100. To compare protocols based on the maximum num-
ber of tolerated failures, we represent the results of the first
experiments in Figure 8. With f = 20, Themis incurs the high-
est latency because it requires 81 (4 f +1) replicas and deals
with the high cost of achieving order-fairness.
6.2 Performance with Faulty Backups

In this set of experiments, we force a backup replica to fail
and repeat the first set of experiments. Figure 9 reports the
results. Zyzzyva is mostly affected by failures (82% lower
throughput) as clients need to collect responses from all repli-
cas. A client waits for D = 5ms to receive reply from all repli-
cas and then the protocol switches to its normal path.

We also run this experiment on Zyzzyva5 to validate design
choice 10, i.e., tolerating f faulty replicas by increasing the
number of replicas. With a single faulty backup, Zyzzyva5
incurs only 8% lower throughput when n = 6.

Backup failure reduces the throughput of SBFT by 42%.
In the fast path of SBFT, all replicas need to participate, and
even when a single replica is faulty, the protocol falls back to
its slow path, which requires two more phases. Interestingly,

200 400 800
0

50

100

150

200

batch size

Th
ro

ug
hp

ut
[k

tra
ns

/s
ec

]

PBFT Zyzzyva SBFT PoE FaB HotStuff Kauri Themis FLB FTB

200 400 800
0

20

40

60

batch size

La
te

nc
y

[m
s]

Figure 10: Impact of request batching

while the throughput of PoE is reduced by 26% in a small net-
work (4 replicas), its throughput is not significantly affected
in large networks. This is because the faulty replica (which
participates in the quorum construction but does not send reply
messages to the clients) has a higher chance of becoming a
quorum member in small networks.

Faulty backups also affect the performance of HotStuff,
especially in small networks. This is expected because Hot-
Stuff uses the rotating leader mechanism. When n is small,
the faulty replica is the leader of more views during the exper-
iments, resulting in reduced performance. HotStuff demon-
strates its best performance when n = 31 (still, 36% lower
throughput and 2.7x latency compared to the failure-free sce-
nario). While Themis uses HotStuff as its ordering stage,
a single faulty backup has less impact on its performance
compared to HotStuff (25% reduction vs. 66% reduction in
throughput). This is because Themis has a larger network size
(4 f +1 vs. 3 f +1) that reduces the impact of the faulty replica.
In Kauri and FTB, we force a leaf replica to fail in order to
avoid triggering a reconfiguration. As a result, the failure of a
backup does not significantly affect their performance (e.g.,
3% lower throughput with 31 replicas in Kauri). Finally, in
small networks, FLB demonstrates the best performance as it
incurs only 8% throughput reduction.

6.3 Impact of Request Batching
In the next set of experiments, we measure the impact of

request batching. We consider three scenarios with batch sizes
of 200, 400 and 800. The network includes 16 non-faulty repli-
cas (17 replicas for Themis, 14 replicas for FLB and FTB).
Figure 10 depicts the results. Increasing the batch size from
200 to 400 requests improves the performance of all protocols.
This is because, with larger batch sizes, more transactions can
be committed while the number of communication phases and
exchanged messages is the same and the bandwidth and com-
puting resources are not fully utilized yet. Different protocols
behave differently when the batch size increases from 400 to
800. First, Kauri and FTB still process a higher number of
transactions (42% and 34% higher throughput) as both proto-
cols balance the load and utilize the bandwidth of all replicas.
Second, SBFT and FaB demonstrate similar performance as
before; a trade-off between smaller consensus quorums and
a higher cost of signature verification and bandwidth utiliza-
tion. Third, the performance of Themis decreases (24% lower

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 381

