
Department	of	Computer	Science

School	of	Computing	and	Information

CS 3551: Advanced Topics in Distributed Information 
Systems - Building Dependable Infrastructure

Dr. Amy Babay, Fall 2024

Day 4: “Randomized Testing of Byzantine 
Fault Tolerant Algorithms”



The Problem

• In theory, BFT protocols guarantee correctness despite arbitrary 
behaviors from faulty nodes and temporary network 
delays/loss/disconnections

• But, protocols may have bugs
– Logic / protocol bugs
– Implementation bugs

• Tools to test correctness in the presence of both Byzantine node 
faults and network faults are lacking
– Most testing tools focus on network and/or crash faults
– State space of possible faults is very large, so generating effective test 

cases is challenging

09/05/2024 University of Pittsburgh CS 3551 2



Contribution

• ByzzFuzz is a tool to automatically find bugs in BFT protocol 
implementations

• Introduces small-scope mutations to effectively find bugs while 
limiting the state space (so that testing can be done in a 
reasonable amount of time)

• Claim: “the first automated testing tool that managed to 
discover previously unknown Byzantine fault tolerance bugs in 
production blockchain systems”

09/05/2024 University of Pittsburgh CS 3551 3



Approach - High Level

• Randomly inject faults with characteristics designed to quickly find bugs
• Network faults: partitions, where each network partition is isolated from all 

others
– E.g. A&B can talk to each other, and C&D can talk to each other, but A&B can’t talk to 

C&D
• Process faults:

– Message omissions: don’t send a specific message
– Structure-aware mutations: manipulate message fields, not arbitrary bits
– Small-scope mutations: keep field values close to their original/correct values

• Numbers: increment or decrement by 1
• Hashes: apply increment/decrement mutation to value before hashing, or use a hash from 

previous round
• Apply faults to an entire round (protocol step, e.g. “pre-prepare for view 1 and 

sequence number 1”)
– Retransmissions allowed once the sender has sent/received a message in a later round

09/05/2024 University of Pittsburgh CS 3551 4



Approach - Implementation

• Randomly generates faults to inject based on input 
parameters:
– c rounds with process faults: randomly select round and subset of 

processes to receive mutated message
– d rounds with network faults: randomly select round and partition

• Network interception layer intercepts all messages
– For each message, determines if it should be dropped or mutated 

based on generated faults; randomly generates mutations

09/05/2024 University of Pittsburgh CS 3551 5



Results

• Claim: ByzzFuzz effectively detects Byzantine fault tolerance bugs in 
consensus implementations (RQ1)

• Evidence:
– Detects already known protocol bugs from the literature:

• PBFT liveness violation with read-only optimization 
• Ripple termination and agreement violations with insufficient UNL overlap 

– Finds new protocol bugs
• New variant of Ripple agreement violation
• ”Potential” termination violation in Tendermint (assumes messages can be buffered 

indefinitely and guaranteed to arrive eventually)
– Finds new implementation bugs

• Ripple termination violation (not checking hash values correctly)
• 3 bugs in simple non-production PBFT implementation

09/05/2024 University of Pittsburgh CS 3551 6



Results

• Claim: ByzzFuzz finds more bugs than a simple baseline fault 
injector (RQ2)
– Baseline fault injector: “arbitrarily injects network and process faults 

without the restriction to round-based structure-aware small-scope 
mutations”

• Evidence:
– Only the Tendermint “potential” termination violation and the known 

Ripple termination violation were found by baseline fault injector

09/05/2024 University of Pittsburgh CS 3551 7



Results

• Claim: Small-scope message corruptions are effective in finding 
bugs (RQ3)

• Evidence: found bugs described; “any-scope” mutations are less 
successful in finding agreement violations

09/05/2024 University of Pittsburgh CS 3551 8

Randomized Testing of Byzantine Fault Tolerant Algorithms 101:17

Table 2. Testing the PBFT implementation using 𝑐 rounds with process faults and 𝑑 rounds with network
faults. For each test configuration, we report the detected number of termination (T), validity (V), integrity
(I), and agreement (A) violations in the columns. For the tests with 𝑐 = 0, we do not inject any small-scope or
any-scope process faults and report the number of violations detected by only injecting 𝑑 network faults. For
the tests with 𝑐 > 0, we inject either small-scope (ss) or any-scope (as) process faults and report the number
of violations in the ss and as columns, respectively.

faults T V I A Total

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 41 0 0 0 41
𝑐 = 0, 𝑑 = 1 34 0 0 0 34
𝑐 = 0, 𝑑 = 2 53 0 0 0 53

ss as ss as ss as ss as ss as

𝑐 = 1, 𝑑 = 0 1 1 4 4 0 0 2 2 4 4
𝑐 = 1, 𝑑 = 1 32 30 2 2 0 0 4 2 36 31
𝑐 = 1, 𝑑 = 2 58 57 2 2 0 0 3 4 61 61
𝑐 = 2, 𝑑 = 0 3 3 6 6 0 0 4 4 7 7
𝑐 = 2, 𝑑 = 1 35 41 6 6 0 0 4 1 40 45
𝑐 = 2, 𝑑 = 2 53 66 3 3 0 0 5 3 59 69

we report the number of violations detected by only injecting 𝑑 network faults. For 𝑐 > 0, we tested
the system with both small-scope (ss) or any-scope (as) process faults. For each configuration of
the parameters, we repeated the tests for 200 times using different random seeds. The columns in
Table 2 list the number of test executions that detect violations to bounded termination (T), validity
(V), integrity (I), and agreement (A), respectively. Note that a test execution may produce multiple
violations, e.g., the same execution can violate both agreement (where the processes diverge in
their decisions for a user request) and bounded termination (where they fail to make an agreement
for another user request). The last column lists the total number of executions with a violation.

Termination violations. We marked an execution as a violation of bounded termination if the
majority of processes fail to process a client request in 20 seconds. The baseline test executions
with termination violations are caused by crashing processes upon parsing errors for syntactically
incorrect messages. The baseline algorithm arbitrarily corrupts the protocol messages, which are
not properly handled in the simple implementation under test, which, in turn, crashes the processes
in the cluster and prevents the processing of the operations. In our experiments, none of the termi-
nation violations generated by the baseline algorithm could detect the bugs in the implementation
of the protocol logic that are detected by the structure-preserving message corruptions.

The violating executions generated by ByzzFuzz detected multiple bugs in the implementation
of the protocol logic as well as the known protocol vulnerability described in Section 3, i.e., which
results in a liveness violation [Berger et al. 2021]. The violations due to implementation bugs are
caused by an error in the assignment of sequence numbers and incorrect processing of prepared
certificates. An example violation manifests in the existence of a network partition in a single
protocol round, preventing some processes in the cluster from participating in the PREPARE round.
The implementation error in the assignment of sequence numbers prevents the processes to reach
an agreement in the later steps of the protocol. Another execution manifests the violation in a more
complicated scenario where the processes running a VIEW-CHANGE after some network faults do not
hear from the leader process and want to move to the next view with the new leader. In order for
the new leader to complete the incomplete requests from previous rounds, the processes send the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 101. Publication date: April 2023.

PBFT

101:22 Levin N. Winter, Florena Buse, Daan de Graaf, Klaus von Gleissenthall, and Burcu Kulahcioglu Ozkan

Table 5. Testing Ripple using small-scope (ss) and any-scope (as) mutations with varying 𝑑 rounds with
network partitions and 𝑐 rounds with process faults.

faults T V I A Total

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 2 0 0 0 2
𝑐 = 0, 𝑑 = 1 11 0 0 0 11
𝑐 = 0, 𝑑 = 2 20 0 0 0 20

ss as ss as ss as ss as ss as

𝑐 = 1, 𝑑 = 0 9 21 0 0 0 0 1 0 10 21
𝑐 = 1, 𝑑 = 1 27 20 0 0 0 0 0 0 27 20
𝑐 = 1, 𝑑 = 2 19 23 0 0 0 0 1 0 20 23
𝑐 = 2, 𝑑 = 0 31 25 0 0 0 0 0 0 31 25

that results in a different fork in the cluster. The experimental results support the effectiveness of
ByzzFuzz in detecting previously known and unknown bugs, addressing RQ1.

For RQ2, we tested Ripple with a baseline fault-injection algorithm that drops or corrupts mes-
sages arbitrarily at random. The baseline algorithm could only detect some termination violations,
which share the root cause of the violation given in [Chase and MacBrough 2018]. However, it
could not detect the termination violation presented in Section 3.2 or any agreement violations.
The experimental results support the effectiveness of small-scope mutations compared to any-

scope mutations, addressing RQ3. The termination violation presented in Section 3.2 can only be
detected using small-scope mutations of the sequence number but not with any-scope mutations.

Analysis of detected violations. We analyzed the test execution traces that violate termination or
agreement and discovered two previously unknown violation scenarios as well as reinstating some
known scenarios from [Amores-Sesar et al. 2020; Chase and MacBrough 2018]. We reported the two
new violation scenarios to Ripple’s developers, and they confirmed them. One of the violations is
caused by an implementation error in the source code, whose fix will be included in version 1.10.0.
The second violation is caused by an insufficient overlap in the UNLs. Since it can be avoided by a
network configuration with a higher percentage of UNL overlap, it does not require any fix in the
source code. In the rest of the section, we summarize four different violation scenarios ByzzFuzz
detected in Ripple.

Violation of termination (1). This is the violation of termination explained in Section 3.2 that is
caused by an implementation bug in Ripple’s source code. The current protocol implementation
processes the incoming VALIDATIONmessages based on the expected scenario with correct processes
in mind. It does not sufficiently check the content of the message and mishandles it in case a
Byzantine process sends a message with the sequence id of the next ledger.
The bug occurs when ByzzFuzz applies a process fault to the VALIDATION message, mutating
⟨VALIDATION,ℎ𝑎𝑠ℎ𝑖 , 𝑡𝑥𝑠, 𝑖, 𝑝𝑟𝑒, 𝑡⟩ to ⟨VALIDATION,ℎ𝑎𝑠ℎ𝑖 , 𝑡𝑥𝑠, i+1, 𝑝𝑟𝑒, 𝑡⟩. When a process receives
that message after reaching a quorum of 80% for ledger 𝑖 , the checkAccept method (Algorithm 2)
causes it to transition into an invalid internal state. This is because, although Ripple has a list of
checks for the sequence number, the current implementation does not sufficiently check whether
the provided hash ℎ𝑎𝑠ℎ𝑖 matches the sequence number 𝑖 + 1. Therefore, it incorrectly considers the
altered pair of hash (ℎ𝑎𝑠ℎ𝑖 ) and sequence number (𝑖 + 1) as the identifier of the last valid ledger,
keeping it in the local variable𝑚𝐿𝑎𝑠𝑡𝑉𝑎𝑙𝑖𝑑𝐿𝑒𝑑𝑔𝑒𝑟 (see the checkAccept method in Algorithm 2).

Since the information in𝑚𝐿𝑎𝑠𝑡𝑉𝑎𝑙𝑖𝑑𝐿𝑒𝑑𝑔𝑒𝑟 is corrupted, the consistency check for the ledger in
the received message fails. The correct processes send a VALIDATIONmessage only for a ledger that

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 101. Publication date: April 2023.

Ripple



Future Work - Discussion
• Generalized “plug-and-play” approach

– Or, at least step-by-step process to apply the framework
– Apply to: Network interception layer, Output formatting / analysis
– Are changes to message structure needed?

• Apply to other protocols
– Prime
– PBFT but many different implementations – what are the most common bug types?
– Multileader / Leaderless – are there fewer bugs? (since most observed violations seem to arise from 

Byzantine leader behavior)
• How can we use ML / AI in BFT testing?
• Expanding fault scenarios

– Asymmetric partitions are realistic for blockchain
– Can we better quantify the impact of small-scope mutations? What if we compare against other types of 

mutation (min/max, addition/subtraction)? See message mutation strategy in “Turret: A Platform for 
Automated Attack Finding in Unmodified Distributed System Implementations” 

– Consider trade-off between expanding scenarios and runtime / time to find violations

09/05/2024 University of Pittsburgh CS 3551 9


