CS 3551: Advanced Topics in Distributed Information
Systems - Building Dependable Infrastructure

Day 4: “Randomized Testing of Byzantine
Fault Tolerant Algorithms”

Dr. Amy Babay, Fall 2024

!*:*:] UIl.lVCI’ Slty Of Department of Computer Science
\® / PlttSbllI'gh School of Computing and Information

The Problem

* |n theory, BFT protocols guarantee correctness despite arbitrary
behaviors from faulty nodes and temporary network
delays/loss/disconnections

* But, protocols may have bugs
— Logic / protocol bugs

— Implementation bugs

* Tools to test correctness in the presence of both Byzantine node
faults and network faults are lacking

— Most testing tools focus on network and/or crash faults

— State space of possible faults is very large, so generating effective test
cases is challenging

09/05/2024 University of Pittsburgh CS 3551 2

Contribution

e ByzzFuzz is a tool to automatically find bugs in BFT protocol
implementations

* Introduces small-scope mutations to effectively find bugs while
limiting the state space (so that testing can be done in a
reasonable amount of time)

e Claim: “the first automated testing tool that managed to
discover previously unknown Byzantine fault tolerance bugs in
production blockchain systems”

09/05/2024 University of Pittsburgh CS 3551 3

Approach - High Level

 Randomly inject faults with characteristics designed to quickly find bugs

* Network faults: partitions, where each network partition is isolated from all
others

— E.g. A&B can talk to each other, and C&D can talk to each other, but A&B can’t talk to
C&D
* Process faults:
— Message omissions: don’t send a specific message
— Structure-aware mutations: manipulate message fields, not arbitrary bits

— Small-scope mutations: keep field values close to their original/correct values
* Numbers: increment or decrement by 1

* Hashes: apply increment/decrement mutation to value before hashing, or use a hash from
previous round

e Apply faults to an entire round (protocol step, e.g. “pre-prepare for view 1 and
sequence number 1”)

— Retransmissions allowed once the sender has sent/received a message in a later round

09/05/2024 University of Pittsburgh CS 3551 4

Approach - Implementation

 Randomly generates faults to inject based on input
parameters:

— ¢ rounds with process faults: randomly select round and subset of
processes to receive mutated message

— d rounds with network faults: randomly select round and partition

* Network interception layer intercepts all messages

— For each message, determines if it should be dropped or mutated
based on generated faults; randomly generates mutations

09/05/2024 University of Pittsburgh CS 3551

Results

e Claim: ByzzFuzz effectively detects Byzantine fault tolerance bugs in
consensus implementations (RQ1)

 Evidence:

— Detects already known protocol bugs from the literature:

* PBFT liveness violation with read-only optimization

* Ripple termination and agreement violations with insufficient UNL overlap
— Finds new protocol bugs

* New variant of Ripple agreement violation

e "Potential” termination violation in Tendermint (assumes messages can be buffered
indefinitely and guaranteed to arrive eventually)

— Finds new implementation bugs
* Ripple termination violation (not checking hash values correctly)
* 3 bugs in simple non-production PBFT implementation

09/05/2024 University of Pittsburgh CS 3551 6

Results

* Claim: ByzzFuzz finds more bugs than a simple baseline fault
injector (RQ2)

— Baseline fault injector: “arbitrarily injects network and process faults
without the restriction to round-based structure-aware small-scope
mutations”

 Evidence:

— Only the Tendermint “potential” termination violation and the known
Ripple termination violation were found by baseline fault injector

09/05/2024 University of Pittsburgh CS 3551 7

Results

* Claim: Small-scope message corruptions are effective in finding
bugs (RQ3)

e Evidence: found bugs described; “any-scope” mutations are less
successful in finding agreement violations

faults T v I A Total faults T \% I A Total

. fagel;nf) ;li g g g ;1411 baseline 2 0 0 0 2

c=0.d=2 53 0 0 0 53 c=0,d=1 11 0 0 0 11
c=0,d=2 20 0 0 0 20

SS as SS as SS as SS as SS as

c=1d=0 1 1 4 4 0 0 2 2 4 a4 SS as ss as SS as SS as Ss as

I I e N A A A AT

S D SR c=1,d=1 27 20 0 0 0 0 0 0 27 20

c=2d=1 35 4 6 6 0 0 4 1 40 45 c=1L,d=2 19 23 0 0 0 0 1 0 20 23

c=2d=2 53 66 3 3 0 0 5 3 59 69 c=2,d=0 31 25 0 O O 0O O O 31 25

PBFT Ripple

09/05/2024 University of Pittsburgh CS 3551 8

Future Work - Discussion

* Generalized “plug-and-play” approach
— Or, at least step-by-step process to apply the framework
— Apply to: Network interception layer, Output formatting / analysis
— Are changes to message structure needed?
e Apply to other protocols
— Prime
— PBFT but many different implementations — what are the most common bug types?

— Multileader / Leaderless — are there fewer bugs? (since most observed violations seem to arise from
Byzantine leader behavior)

* How can we use ML / Al in BFT testing?
* Expanding fault scenarios
— Asymmetric partitions are realistic for blockchain

— Can we better quantify the impact of small-scope mutations? What if we compare against other types of
mutation (min/max, addition/subtraction)? See message mutation strategy in “Turret: A Platform for
Automated Attack Finding in Unmodified Distributed System Implementations”

— Consider trade-off between expanding scenarios and runtime / time to find violations

09/05/2024 University of Pittsburgh CS 3551

