
HIERARCHICAL 
LOAD 
BALANCING
ISMAEL ALONSO



THE PROBLEM

¡ Suppose you have a set of agents (or nodes) capable of processing “Jobs”

¡ Any one of these agents are assigned jobs externally

¡ Clients connect to them and send them work directly

¡ If a subset of these agents has a bigger load than the rest the response time may degrade

¡ There is a caveat here, we’ll get to this later

¡ How to notice there is a problem and what to do in response?



THE PROBLEM

¡ We have several options

¡ Fully centralized load balancing

¡ Doesn’t scale well

¡ Fully distributed load balancing

¡ Takes some time to reach good decisions

¡ Can we compromise?



HIERARCHICAL LOAD BALANCING

¡ Yes, we can!

¡ We are going to form groups of nodes, each one having a leader

¡ Any one node may only communicate with a leader or with their children

¡ Unless… more on this later.

¡ Child nodes can be the leaders of their own subgroup

¡ Effectively, the hierarchy will end up looking like a tree.



BUILDING THE HIERARCHY

¡ We now have choices

¡ Branching factor (2 in my case)

¡ Full tree vs complete tree vs a train wreck of a tree

¡ Spatial locality or tunneling may influence tree building

¡ Truth is, I arranged them as they came

¡ Complete tree though, there is some order to my universe

¡ How?

¡ Remember that all nodes need to be leaves independently of whether they are leaders



TIME TO PUT THE NODES TO WORK

¡ Originally three problems:

¡ Fibo: linear

¡ Sieve of Eratosthenes: n log(log(n))

¡ Square sum (n2)

¡ This turned out to be a problem to test the system

¡ We’ll see why in a minute



WHAT THEN?

¡ Now we need to know the load 
of the nodes in the hierarchy

¡ What do you report though?

¡ Remember this mess? à à à

¡ 1 cannot report its own to 0

¡ 0 cannot have a combined 
report at L0

¡ Merge up whatever you have

¡ Its good enough, trust me 👌



YOU GOT MAIL!

¡ An imbalance has been found!

¡ A node is 10% above or below average load

¡ Freeze!

¡ Or don’t, but you run the risk of balancing jobs that were completed at balance time

¡ Collect all the jobs, aggregate them and pass them up

¡ JK, just job metadata: estimated length and owner

¡ Each leader defers decisions until its own leader has made decisions

¡ Leaders can choose to further aggregate jobs by combining them (this is an optimization)



MORE ON 
COLLECTION

¡ I bet you still remember these 
shenanigans à à à

¡ Aggregating the jobs is not
easy, requires synchronization

¡ Like a lot of it

¡ Cannot pass anything up until
you have a complete picture



PROBLEM #1

¡ Unless a node is over capacity, any utilization metric is worthless

¡ Suppose you got a node at 20% capacity and another one at 70% capacity

¡ Congrats, it’s load balancing time!

¡ Wait, there are no jobs in the queues… wat?

¡ To be more specific, hierarchical load balancing in this system is only good if two conditions are met 
simultaneously:

¡ One node is grossly overutilized

¡ One node is at least somewhat underutilized



PROBLEM #2

¡ Okay, so, to test this thing we’ll skew the job allocation distribution.

¡ Sure, let’s set up a thread that sends jobs to certain nodes with a frequency and an input size.

¡ K cool:

¡ n=10002 and T=50ms: load is 1.4x10-4% (hmmm… right…)

¡ n=25002 and T=40ms: load is 0.01% (whalp, k)

¡ n=60002 and T=40ms: int overflow for estimated job size (!!). Also load ~0.2 (better, but not good enough)

¡ Ended up putting nodes to sleep while counting it as working for jobs

¡ They got off easy, I know…



WE HAVE JOB INFO AT THE TOP NOW

¡ RefineLB? What’s that?

¡ As it turns out this is a Charm specific thing and I wanted to build my own

¡ Each processor has a set of jobs it owns, ordered by size

¡ The processors are also ordered in decreasing order of load (work allocated)

¡ Jobs over the average load are donors

¡ Jobs under the average load are recipients



IZZY’S LAW OF LOADS

¡ A node that’s already overloaded will tend to stay loaded

¡ Don’t know if this is a thing, just a suspicion

¡ Donors will donate until they’re under the average

¡ Recipients will receive until they’re above the average

¡ Repeat until there’s not longer both donors and recipients

¡ Selected job is one that’s just under the potential room of load a recipient can take to go above

¡ Or the one immediately above if none below



PROPAGATING THE 
CHANGES DOWN THE 
PIPE

¡ A leader will communicate with 
all its children about the decisions 
made

¡ The first level is easy, nothing 
external to the process really 
needs to be considered

¡ I’m sure at this point we’re 
drinking buddies with this bad 
boy à à à

¡ Whalp, there’s a few edge 
cases…





SO… AGREEMENT?

¡ Once everyone is on the same page about what jobs we need to steal from other nodes…

¡ We just ask for them… nicely.

¡ Once we get what we want we resume operations and wait some time to start checking whether there is an 
imbalance again.



MY SYSTEM

¡ A little overengineered, perhaps

¡ Controllers spawn nodes in a single machine

¡ Nodes do the work

¡ Controllers spawn them as processes, so getting info out of them isn’t trivial

¡ We got a dedicated logging node, started directly from a terminal we have access to

¡ Fixed location

¡ There is a client, just runs the show



MY SYSTEM

¡ At some point late last week realized I didn’t have time to prep it to run in multiple machines

¡ Single local controller spawns as many nodes as we need

¡ Remember they don’t do real work anymore, so we can spawn virtually an unlimited amount of them

¡ Demo?



ANALYSIS

¡ Load information is readily available and cheap to send/aggregate

¡ To get job info, as many RTTs as levels the tree has are required

¡ Propagating the load balancing decisions takes a variable amount of time

¡ The big fish executes the process for as many levels as the tree has, but at the end of the process its info is final

¡ Nodes closer to leaves must wait until the chain of command has decided what to do (up to log n RTTs)

¡ Fetching your jobs takes one RTT




