E unibus pluram:
Massive-Scale Software Diversity as a Defense Mechanism

Michael Franz
Donald Bren School of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA
franz@uci.edu

ABSTRACT

We contend that the time has come to revisit the idea of software
diversity for defense purposes. Four fundamental paradigm shifts
that have occurred in the past decade now make it viable to dis-
tribute a unique version of every program to every user. We outline
a practical approach for providing compiler-generated software di-
versity on a massive scale. It is based on an “App Store” containing
a diversification engine (a “multicompiler”) that automatically gen-
erates a unique, but functionally identical version of every program
each time that a downloader requests it. All the different versions
of the same program behave in exactly the same way from the per-
spective of the end-user, but they implement their functionality in
subtly different ways. As a result, any specific attack will succeed
only on a small fraction of targets. An attacker would require a
large number of different attacks and would have no way of know-
ing a priori which specific attack will succeed on which specific
target. Hence, the cost to the attacker is raised dramatically.

Equally importantly, our approach makes it much more difficult
for an attacker to generate attack vectors by way of reverse en-
gineering of security patches. An attacker requires two pieces of
information to extract a vulnerability from a bug fix: the version of
the program that is vulnerable and the specific patch that fixes the
vulnerability. In an environment in which software is diversified
and every instance of every program is unique, we can set things
up so that the attacker never obtains a matching pair of vulnerable
program and its corresponding bug fix that could be used to iden-
tify the vulnerability. We propose a mechanism for incremental
updating of diversified software that has this property.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-

tems; D.2.0 [Software Engineering]: General; D.3.4 [Programming
Languages]: Processors—Compilers; K.6.5 [Management of Com-

puting and Information Systems]: Security and Protection

General Terms
Design, Reliability, Security.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NSPW’10, September 21-23, 2010, Concord, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0415-3/10/09 ...$10.00.

:!
‘l
¥
)
:l

2=, identical binary for all

()

feay) Tegy! Tegy! e
© © E© @ users

- all users susceptible to
identical exploit

Attacker

—

Figure 1: Software monoculture aids attackers.

Keywords

Compiler-generated software diversity, dynamic patching of soft-
ware vulnerabilities, service computing architectures, software vul-
nerabilities, reverse engineering of security patches.

1. INTRODUCTION

Open networks and the computers on them are under constant
attack from a variety of adversaries. Most of these attacks are en-
abled by software vulnerabilities, i.e., errors in operating systems,
device drivers, shared libraries, and application programs that can
be exploited to perform unauthorized operations on the comput-
ers running the software. Although considerable efforts have gone
into finding and eliminating such errors, and although impressive
advances have been made in doing so, the complexity of today’s
software systems is so great that a certain number of residual errors
will probably always be present. The incidence of such errors tends
to be proportional to the overall code size and decrease over time.

The existence of residual software errors becomes a significant
threat when large numbers of computers are affected by the identi-
cal vulnerability at the same time. Unfortunately, this is the situa-
tion today. We currently live in a software monoculture—for some
widely used software, the identical binary code is installed on mil-
lions of computers, and sometimes even hundreds of millions. This

different variants for
different users

© @0
bl
-

Attacker

¢
1
|

a single exploit no longer
affects all users

/ explcut identically

Figure 2: Software diversity lowers effectiveness of attack.

cost to attacker rises
dramatically

makes it easy for an attacker (Figure 1), because the same attack
vector is likely to succeed on a large number of targets [8, 19].

But what if these millions of computers were all running dif-
ferent versions of the software? That is, what if we could ensure
that every computer runs a unique but functionally identical binary
(Figure 2), so that a different attack vector is needed for different
targets. All the different versions would behave in exactly the same
way from the perspective of the end-user, but they would imple-
ment their functionality in subtly different ways. As a result, any
specific attack would succeed only on a small fraction of systems
and would no longer sweep through the whole internet. An attacker
would require a large number of different attacks and would have
no way of knowing a priori which specific attack should be directed
at what specific target. Hence, the cost to the attacker would be
raised dramatically.

The idea of using software diversity as a defense mechanism is
not new, but it has never been realized in practice at any significant
scale. Until quite recently, it would have been prohibitively expen-
sive to create a unique version of every program for every client.

In this paper, we make a passionate argument that such massive-
scale software diversity is now actually technically possible. We
observe that this is enabled by four simultaneous paradigm shifts
that are occurring just now. We present our blueprint for an ar-
chitecture that provides such massive-scale software diversity. We
elaborate on the problem of patching software that has been diver-
sified. We present a list of interesting open research problems that
appear in the context of massive-scale software diversity. We claim
that massive-scale software diversity is a new security paradigm in
itself. Finally, following a section on related work, we conclude the

paper.

2. VULNERABILITIES, EXPLOITS AND A
SOLUTION

A software vulnerability by itself is merely a hazard. In order to
turn such a hazard into a successful attack, an attacker needs to find
a successful exploit strategy. For example, the attacker may know
of a vulnerability that enables a write beyond the end of a certain
buffer on the stack. But in order to exploit this known vulnerability,

creates o,
9 (Y]
: —l ::g:: Software
g’

Software Developer delivers to

-

App Store
\ ' Diversity Engine
\ / within App Store

creates

@ O ¢
[
b

/ \

\
= W |

subsequent downloaders receive functionally identical
but internally different versions of the same software

Figure 3: Diversification mechanism can be hidden entirely
within an online software delivery system (“App Store”) so that
it becomes transparent to both code consumers and software
developers.

the attacker needs to overwrite very specific locations on the stack
with very specific values.

Operating system vendors now add elements of randomness to
their systems, with the aim of making it more difficult for attackers
to design a successful exploit. For example, the latest version of
the Windows operating system now randomizes the starting address
of the stack. Unfortunately, this has not stopped attackers from
devising workarounds.

Designing a successful exploit for a known vulnerability is not
trivial, but a dedicated attacker with ample resources is likely to
succeed in eventually creating an attack. In today’s world, the ef-
fort invested into designing such an exploit can be amortized by its
wide applicability—since millions of users are running the identi-
cal vulnerable binary, just one successful exploit can affect all of
them simultaneously.

It is this fundamental problem that massive-scale software diver-
sity addresses. We advocate the introduction of automated code
variance techniques that result in the binary code images delivered
to subsequent code consumers being subtly different. This process
can be embedded seamlessly into an online software delivery sys-
tem, an “App Store” (Figure 3), and thereby be made entirely trans-
parent to the code consumer (all programs derived from the same
source in this manner have the identical functionality). The mech-
anism can even be set up so that adding software diversity poses
no extra effort to the software programmer (a compiler automati-
cally generates the different versions without any additional human
intervention). But as a result of deploying massive-scale diversity,
any specific exploit will work on only a relatively small number of
targets.

vulnerable
unpatched software

security patch or
replacement software

()

)
'I~
@

¢

W

ZY

..

P

@
)

Attacker can compute an

exploit by comparing
unpatched & patched

software versions

now safe
exploit
users who haven't yet applied the patch are put at risk
by release of the patch

;n!Sf! ! ;ngng E ;n!Sf! E ;n!Sf! !

Figure 4: Existing situation: release of a software update ex-
poses vulnerabilities.

3. DIVERSITY REMOVES REVERSE
ENGINEERING VULNERABILITIES OF
SOFTWARE PATCHES

Massive-scale software diversity removes another major prob-
lem of current software monoculture: the fact that releasing a patch
for a discovered vulnerability alerts adversaries about the existence
of the vulnerability. It is current best practice to fix software vul-
nerabilities as soon as possible after they are discovered. In the
desktop space, this is usually achieved by sending a “patch” to the
compromised host. Such a patch contains the delta between the
original (vulnerable) program and a corrected new version. Since
such fixes usually apply to only a small fraction of a program, it
is more efficient to send just the patch rather than sending a whole
corrected program.

In the mobile space, user-installable programs (“Apps”) are cur-
rently updated by sending complete replacement versions rather
applying an incremental patch, while the mobile operating system
software itself is updated using patches. As Apps on mobile de-
vices grow, it is probably only a matter of time until the App Store
frameworks of the various mobile platforms will support replacing
only part of an App (via a patch) rather than downloading a wholly
new App each time.

A bug fix (in the form of either a patch or a replacement program)
gives a potential adversary information that can be used to precisely
identify the vulnerability being fixed in the new version (Figure 4).
A significant proportion of software exploits today are generated
from reverse engineering of error fixes. As a consequence, it is im-
perative that updates are applied as soon as they are available. The
average time lag between availability of an update and its instal-
lation on a vulnerable target is often a good predictor for overall
vulnerability.

In this context, Apps for mobile devices are actually potentially

replacement software original software

@ Jo

vulnerablllty cannot be
extracted simply by comparing

Figure 5: Solution #1: Software is updated by sending complete
replacement version. Adversary cannot match an original ver-
sion to its replacement and cannot extract a vulnerability.

custom patch for

5 @ — 2

C—
J custom patch is worthless
ID of my unless you have the exact

variant variant it relates to

Figure 6: Solution #2: Software is updated via custom patch.
Patch is meaningless to adversary without the specific original
version that it relates to.

even more vulnerable than desktop applications. This is because
Apps for mobile devices tend to evolve much more quickly than
traditional desktop software. For example, for many Apps in the
Android Marketplace, release cycles are expressed in days rather
than months. The rapid software evolution cycle is more likely to
push out software that is not as mature as it should be, i.e., con-
taining a higher proportion of residual errors than necessary. And
fixing these errors in subsequent releases will give an adversary a
steady stream of hints as to the location of exploitable vulnerabili-
ties.

Massive-scale software diversity makes it much more difficult
for an attacker to generate attack vectors by way of reverse engi-
neering of security patches (Figures 5 and 6). An attacker requires
two pieces of information to extract a vulnerability from a bug fix:
the version of the software that is vulnerable and the specific patch
that fixes the vulnerability. In an environment in which software is
diversified to an extreme degree and every instance of every piece
of software is unique, we can set things up so that the attacker never
obtains a matching pair of vulnerable software and its correspond-
ing bug fix that could be used to identify the vulnerability. In Sec-
tion 7 below, we outline a concrete mechanism that achieves this
goal.

4. PARADIGM SHIFTS AS ENABLERS

Massive-scale software diversity is enabled by four fundamental
paradigm shifts that have occurred almost simultaneously in the
past few years. While each of these is remarkable in its own right,
it is their fortuitous coincidence that is making software diversity
truly scalable, affordable, and practical now. In the following, we

briefly describe each of these paradigm shifts, present evidence that
indicates that the shift is real, and then discuss the consequences
with respect to our vision.

4.1 Paradigm Shift One: Online Software De-
livery

Traditional Approach:

Until quite recently, software was predominantly shipped “in boxes
on a CD.” Mass production of the CDs made it impractical to give
every user a different version.

Paradigm Shift:

Distribution of a unique program version to each and every user be-
comes feasible when software is downloaded via the network rather
than installed from a CD. We are just at the point when many pro-
grams are now installed only via the internet.

Evidence for Paradigm Shift:

The Firefox web browser has been downloaded via the internet
more than one billion times.

New Approach Enabled By Paradigm Shift:

Rather than downloading the same binary to all users, it becomes
possible to send each user a subtly different version with the ex-
act same functionality. From the users’ perspective, nothing at all
has changed, but for an attacker, things have become a lot more
difficult.

4.2 Paradigm Shift Two: Ultra-Reliable Com-
pilers

Traditional Approach:

Not so long ago, the compiler itself was often the largest and most
complex software program on any given system. Hence, it wasn’t
unreasonable to assume that the compiler itself might have errors.
As a partial consequence, traditional software certification and test-
ing has focused on the software binary that is the end-product of
compilation. The idea of executing a binary program coming out
of a compiler without any further testing of the binary itself was
heresy not so very long ago.

Paradigm Shift:

Compilation is now a very predictable process. While almost all
other software programs have grown in size and complexity, some-
times by orders of magnitude, compilers today are not orders of
magnitude more complex than they were 20 years ago. Moreover,
many existing compiler lines are very mature, having been refined
rather than enlarged over sometimes decades. Without exaggera-
tion, one can say that compilers are among the most reliable com-
puter programs in existence. Even dynamic compilation is now
routinely employed with extremely high reliability. Software errors
that can be traced back to compiler errors are as good as unheard of.
Just-in-time compilers and binary translators are now widespread,
and as a result millions of users routinely execute binary code that
comes straight out of a compiler, without any further testing prior
to execution.

Evidence for Paradigm Shift:

Apple has transitioned millions of users from the PowerPC to the
Intel architecture using a fully automated just-in-time compiler (bi-
nary translation engine) without any reported incidents. The reli-
ability of these compilers is stunning, considering that they have

10

been able to automatically translate programs of the size of the Mi-
crosoft Office suite fully unattended, without any testing of the re-
sulting output, and on-the fly.

New Approach Enabled By Paradigm Shift:

Instead of testing and certifying a software binary, it should be suf-
ficient to certify and test a representative binary coming out of a
diversifying compiler (“multicompiler”). The purpose of this test-
ing and certification would be strictly to find errors in the program,
not errors in the compiler itself. We are assuming that we can build
multicompilers that have the same reliability as current unicom-
pilers, a property that could be verified by large-scale automated
regression testing comparing different diversified program versions
generated by a multicompiler against binaries produced by a uni-
compiler. If a difference in reliability were found, we should at
least be able to quantify it.

4.3 Paradigm Shift Three: Cloud Computing

Traditional Approach:

In the past, it would have been impossible to set up the infrastruc-
ture that generates a unique version of each program for each user.
The cost would have been prohibitive.

Paradigm Shift:

There are now remote computing platforms such as the Amazon
Elastic Compute Cloud (EC2) that provide “cycles on demand” for
a low fee. This makes it possible to scale almost instantaneously to
even very large peak demands without any up-front investment.

Evidence for Paradigm Shift:

Many start-up companies are using cloud computing to rapidly scale
up their operations. For example, Animoto is a company that lets
customers upload images and music and automatically creates cus-
tomized Web-based video presentations from them. In mid-April
of 2008, Animoto was hit by a viral popularity surge through Face-
book. After having 5,000 new customers on average per day, they
suddenly had nearly 750,000 people sign up in three days. At
the peak, almost 25,000 people tried Animoto in a single hour.
Using cloud computing, they were able to successfully multiply
their server capacity by a factor of almost 100 virtually instanta-
neously [6].

New Approach Enabled By Paradigm Shift:

Using cloud computing, the cost per unique version of a program
is essentially constant, no matter whether we are generating 1000
versions per day or 10 Million versions per day, and we can react
to changing demand almost instantaneously.

4.4 Paradigm Shift Four: “Good Enough’ Per-
formance

Traditional Approach:

Most of our computing past has been dominated by Moore’s Law:
computers were always getting faster, software kept growing more
complex, and users were willing to upgrade to the newest and lat-
est hardware to be able to run the latest software with the newest
features.

Paradigm Shift:

Suddenly, performance in some domains has become “good enough.”
This does not apply to every domain; for example, games are a no-

table exception. But for many traditional desktop computing cate-
gories, just at the time that Moore’s Law apparently has hit a wall at
which hardware manufacturers find it increasingly difficult to fur-
ther raise clock frequencies, users apparently have mostly decided
that they now have sufficient computing power anyway.

Evidence for Paradigm Shift:

Microsoft has had a difficult time persuading users to upgrade from
Windows XP, and fewer and fewer users see the utility of upgrad-
ing to the latest version of Microsoft Office. At the same time,
a wide range of “netbooks” has appeared in the marketplace that
offers noticeably less (sometimes by as much as 50%) processing
performance than established hardware, and yet these inexpensive
weakly-powered computers are proving to be extremely popular,
because they are “good enough.”

New Approach Enabled By Paradigm Shift:

Because software performance is now mostly “good enough,” users
are likely to accept a small performance penalty if it gives them
added security. So even if a multicompiler were to create program
versions that are less efficient by a small degree, say 5% to 15%
less performance than the optimal version created by a unicompiler,
this no longer automatically dooms the prospect of massive-scale
software diversity becoming a success. Users no longer care so
much about performance and may be willing to accept additional
security as a welcome trade-off in return for a slight runtime cost.

S. RUNTIME COST OF ALTERNATIVE
CODE PATHS

So the next question to ask is: will there actually be a runtime
overhead, and if yes, why and how much? Since no large-scale sys-
tem such as the one we envision has been built, we cannot give a
definitive answer to this question, but having significant expertise
and implementation experience in the area of compiler construc-
tion, we can give an educated estimate.

Today’s unicompilers are focused on finding the “best” of several
possible binary implementations of any source construct. There are
usually many alternative paths to choose from, and compilers use
heuristics to choose the one that is most likely to provide the best
runtime performance. Instead of choosing the “best” of the alter-
native paths, a multicompiler would give successive users different
code paths. Some of the alternative paths will not be as optimized
as the “best” one.

The potential performance loss comes from the difference be-
tween the “best” path and an alternative path chosen by the multi-
compiler for the sake of implementation diversity. In many cases,
there will be no performance difference at all. Very often, there are
many alternative paths that have exactly the same cost. The main
difference between a unicompiler and a multicompiler in these cases
will be that the unicompiler always chooses the exact same path in a
reproducible manner when confronted with such a choice, whereas
the multicompiler will attempt to randomize among the equivalent
paths.

In many cases, there will be sufficiently many alternative paths
that all have the “best” runtime behavior, so the multicompiler will
never have to choose a path that leads to a performance degrada-
tion. But even if a sub-optimal path needs to be chosen now and
then for implementation diversity, we don’t expect any significant
performance loss. When we study compiler optimization results
from academic conferences such as PLDI (Programming Language
Design and Implementation) and CGO (Code Generation and Op-
timization), we find that the incremental benefit of even quite so-

11

phisticated optimizations is usually surprisingly small. In the field
of compiler construction, a speedup of 3% to 5% is often already
considered a significant publishable result. By some measure, this
is a sign of the maturity of the field. But it also means that the
difference between the “best” path and a “sub-optimal” alternative
path is going to be of similar magnitude. After studying the lit-
erature on performance variations resulting from existing compiler
optimizations, we expect that a slowdown of 5% is probably the
maximum runtime cost that would arise out deploying “standard”
compilation mechanisms to achieve code variability.

Furthermore, hardware evolution keeps diminishing the perfor-
mance differential between the “best” and a “sub-optimal” code
path. For example, consider the pervasive use of caches in modern
processors. In conjuction with out-of-order instruction execution,
this has significantly reduced the importance of a good register allo-
cator. In many cases today, it no longer matters from a performance
perspective whether a value is in a register or in the cache. But from
the perspective of software diversity as seen by an attacker, this is a
fundamental difference that requires a completely different plan of
attack.

One could of course also consider variation mechanisms that lie
outside of the scope of existing compilers precisely because they
clearly degrade performance. In certain high-assurance contexts,
one may want to explicitly sacrifice execution performance for even
greater code variability.

6. COST OF COMPILERS IN THE CLOUD

Cloud computing has seen explosive growth over the very re-
cent past and is now available from many commercial providers.
For example, Amazon’s Elastic Compute Cloud (EC2) is a service
that provides remote rental of dedicated compute servers over the
network. The service offers a selection of standardized computer
configurations to choose from, so that performance is predictable,
and is billed per instance-hour consumed.

Running a compiler is mostly a compute-intensive medium through-
put process. In order to estimate what it would cost to provide such
a service “in the cloud,” we measured the time required to com-
pile the open-source Firefox browser on a modern server dedicated
exclusively to this task. We chose Firefox as our model program
because on one hand we are contributors to the browser and have
its complete source tree readily available, and because on the other
hand, most people are familiar with Firefox no matter what plat-
form they use in their day-to-day computing tasks. Firefox is a very
substantial program; it has about 30 million lines of code. As a mat-
ter of comparison, Linux 2.6.33 (released February 2010) contains
about 13 million lines of code, and Windows 7 reportedly consists
of approximately 50 million lines of code.

The time to compile Firefox on a dedicated server is about 30
minutes. Hence, in order to create 1000 diversified instances of
Firefox, we would need about 500 compute hours from a cloud
computing provider.

The server we used to compile Firefox is roughly equivalent to
Amazon’s “High-CPU Medium Instance” that can be rented by the
hour via the EC2 service. Using Amazon’s cost estimate web page,
we find that renting such a “High-CPU Medium Instance” server
for a month (730 hours) with 100 GB of upload bandwidth and
200 GB of download bandwidth would cost $131.60 at early 2010
pricing levels. This translates into a price of 9 cents per build for an
application the size of Firefox, a price that could easily be absorbed
into the retail cost of a commercial product and that most users
might be more than willing to pay to voluntarily obtain their own
custom “diversified” version of an otherwise “free” product.

..

«@)
<
-,

9,

y77
V77
RS
=
y77
V77

v1.0

\)
\)
\ J

«_

Diversification Engine

/1N

Client Computers

7 software evolves over time

random seeds
drive diversification

different variants
of same software version

client receives three pieces of
information:

- original version number,
- random seed, and
- diversified binary code

Figure 7: Initial generation and delivery of software variants.

7. SOFTWARE UPDATES AND PATCHES

An interesting problem arises from the necessity of updating
software that has been diversified. In Section 3 above, we already
mentioned the current practice of providing “delta only” software
updates through a “patch” that modifies the binary image on the
client computer from the old version to the new version. This
approach is no longer so straightforward when each client com-
puter is running a different binary. While a straightforward solu-
tion would consist of simply having each client download an en-
tirely new diversified version of the updated software, this would
often result in very voluminous downloads for only relatively small
actual changes.

On the other hand, there must be no mechanism by which an
attacker could determine which specific version of a binary is run-
ning on a client. Hence any update mechanism that transfers only
the “delta” between versions must be driven by the client, in that the
client communicates to the update mechanism which specific paths
were chosen in the compilation of its software version, and the up-
date mechanism then crafts an update patch specific to the particu-
lar client. Note that patch construction can yet again be farmed out
to a cloud computing mechanism and is thereby almost infinitely
scalable.

As a possible solution, we envisage a multicompiler that chooses
a different random seed for each version it generates. The random
seed drives a random number generator that in turn drives selec-
tion of code paths during compilation. The eventual delivery to the
client has three components: the random seed, a unique v/ D iden-
tifying the version of the source program that was used for generat-
ing the diversified software binary, and the diversified binary itself
(Figure 7).

When the client later requests an update, it returns the random

12

seed and the source program vID to the update mechanism. The
update mechanism contains a multicompiler that is run both on the
new version (to be installed on the client) and on the old version
currently installed on the client (identified by the vI D), using the
random seed to drive the diversification. This results in two Apps
on the updater, a new version (to be the end result of the update on
the client) and an old version (the identical App that is currently
installed on the client). The updater can then compute a patch by
comparing these two versions (Figure 8).

One could imagine even smarter ways of providing updates. For
example, one could decompose the original software into “tiles”
along procedure boundaries or similar compiler-related constructs.
When an update occurs, a reachability analysis in the compiler
would compute which of the tiles are affected by the change. When
computing the patch, the multicompiler would then only need to
operate on the tiles that are affected by the change, often greatly
reducing the effort required for the update. The update mechanism
could also make a trade-off decision between sending a full new
version (at higher bandwidth costs) or computing a patch (at higher
compute costs).

Among the more advanced open problems is the question of
how one would implement remote attestation of software metrics
in the absence of a fixed binary from which a hash can be com-
puted. There are scenarios in which a client computer might want to
“prove” to a remote server that it is running a specific “well known
version” of a program that has not been tampered with. For in-
stance, access to a video streaming service might require the client
to “prove” that it is incapable of recording the stream. New re-
search will be needed to answer the question of how to do this in a
world in which every instance of the client software is unique.

(0]

<

Diversification Engine

‘ Ll

client requests update stating its current
version number and random seed

old version on client

newest version

variants are generated
using client's random seed

computed patch v1.1 - v1.3 for
client using random seed

Figure 8: Generation and delivery of patches on demand.

8. TRUSTING THE DELIVERY SYSTEM

Users might be hesitant to download software without being able
to determine whether a binary received over the network is legiti-
mate. In the current “single version” practice, it is possible (but not
customary outside specific high-assurance domains) to compute a
fingerprint or checksum of a downloaded binary and compare it to
the value of a “known good version.” This capability disappears
when every downloaded binary is unique.

One way of establishing trust in code transmitted over a network
has in the past been the verification of the code itself prior to ex-
ecution. For example, the Java bytecode format contains intrinsic
provisions for the client to check the type safety and referential in-
tegrity of a program prior to its execution. This approach is limited
to programs written in certain type-safe languages, such as Java and
Cit.

Interestingly, all of today’s existing “App Store” platforms have
more or less abandoned the approach of code verification on the
target, even in such cases where the Apps have actually been de-
veloped in type-safe languages and on-device verification would in
principle be possible. Instead, code verification, if used at all, has
been moved “upwards” in the delivery pipeline (Figure 9). For ex-
ample, on the Android platform, Apps are developed in Java using
the standard Java development toolchain. But then they are con-
verted off-line into a type-unsafe execution format for the register-
based Dalvik virtual machine, which can be executed more effi-
ciently than Java bytecode and is not subject to the Java licensing
restrictions.

As a consequence, in most of the existing mobile device plat-
forms, the delivery system must be trusted. In the Apple iPhone/
iPad/iTunes ecosystem, developers deliver binaries in the ARM
processor’s native instruction format to the App Store, while in
the Android ecosystem, developers usually deliver binaries in the

13

Dalvik virtual machine’s native bytecode format (.dx)—although
apparently also some native ARM applications exist. The whole
path between the developer and the eventual mobile device must be
protected against tampering, which includes the necessity of hav-
ing to protect the applications as they are hosted in the App Store
itself.

The software delivery system we have sketched out here follows
this established “App Store” architecture and adds the variant-gene-
rating “multicompiler” as an additional step in the path from code
producer to code consumer. As in the existing App Store delivery
systems, our approach requires that the generated versions queued
up for delivery are protected against tampering, and it requires that
the delivery handshake to the target is secured (via some crypto-
graphic mechanism). Our approach is applicable both to executable
machine code as well as to the bytecodes of virtual machines such
as Dalvik.

Another potential issue is the reliability of the code variabil-
ity generator itself. In Section 4.2 we talked of “ultra-reliable”
compilers as a paradigm shift, and compilers have indeed become
extremely reliable. There are many deployment scenarios today
where users routinely execute code coming out of a compiler with-
out any further testing done on the end product of compilation. On
one hand, language runtimes such as the Java Virtual Machine and
Microsoft’s Dot Net Common Language Runtime have provided
just-in-time compilation for a decade now. On the other hand,
binary translators have been deployed “under the hood” in prod-
ucts such as Transmeta’s family of processors (mapping x86 to a
custom VLIW architecture) and Apple’s Rosetta engine (mapping
PowerPC code to x86). No matter how successful and trouble-free
these compilers have proven to be, it may yet present a challenge to
persuade users to accept unsupervised automatic compilation with-
out subsequent testing as an integral part of the default software
delivery pipeline.

Objective C

A
y

....
&)
SSA

p77
LSS

|
LLVM

Java
«— Crypto Verification
Signing
Crypto
Signing

Android

Java Compiler

.NET Supported
Language
.

P72y
et

7

.NET Assembly
CIL
—
Java Class Verification
Java
‘ Verification Crypto
—
Signing
Crypto
Signing

Silverlight - .NET

[Windows Phone 7 Series]

Windows Phone 7

Blackberry

Figure 9: Current code-signing based approaches.

9. OPEN RESEARCH PROBLEMS

Massive-scale software diversity does not yet exist. As a result,
almost all questions regarding metrics, i.e., what are the costs ver-
sus the benefits of certain design choices, are completely open at
this time and cannot really be answered without building an actual
working system and experimenting with it. But even when it comes
to the overall architecture and mechanisms, there are surprisingly
many alternatives.

We present some examples of interesting research questions. Most
probably, these questions only scratch the surface of the design
space and even more interesting ones will emerge as someone ac-
tually implements a massive-scale software diversity system.

9.1 Generating Alternative Paths

Instead of choosing just a single “best” code path for a source
construct being compiled, a multicompiler chooses among many
alternative paths. At first glance, this is not very different from
the activity of a traditional compiler, except that the alternatives are
preserved rather than discarded in favor of the “best” one. But when
digging deeper, many intriguing questions emerge. For example:

e How do you choose among alternative paths in such a way
that the process is reproducible when needed (e.g., for gen-
erating patches), but simultaneously doesn’t give any advan-
tage to an attacker? There are pobably even better solutions
than the idea of a random seed that drives a random number
generator, as outlined above in Section 7.

e When there are a great many alternative paths at any choice
point, can we limit the choice to only those paths that won’t
incur a performance loss? How many different choices do
you need at minimum to achieve the desired variability?

14

e Some code paths are correlated. For example, choosing a cer-
tain register allocation at some choice point constrains other
code paths “downstream.” How do we navigate these de-
pendencies to ensure that sufficiently many versions can ul-
timately be generated?

e s there perhaps a trade-off between maximizing inter-version
code variability (by making the path chooser take large strides)
and prematurely exhausting the reachable path space? Does
that suggest we should have an a priori estimate of the antic-
ipated number of unique versions to be ultimately generated
from any source program so that we can choose the correct
inter-version path distance?

9.2 Variability Techniques Beyond Current
Compilers

There are probably diversity-enhancing techniques outside of the
scope of existing compilers that could further increase the variabil-
ity to an attacker without changing the functionality for the end-
user. This would include mechanisms that incur more substan-
tial runtime costs than merely not choosing the “best” path. One
could probably borrow ideas from existing research on code obfus-
cation [4].

Among the techniques employed by code obfuscators is control-
flow obfuscation, i.e., modifying the control flow of a program
by re-distributing actions across basic blocks without changing ac-
tual program behavior. Unlike code obfuscators, we are less con-
cerned about algorithm recapture and more focused on enhancing
instruction-level code variability. As a result, a multicompiler will
probably focus less on code obfuscation techniques that insert su-
perfluous control-flow paths into a program, but it may readily em-
ploy code re-factoring strategies.

We envisage a scenario in which large-scale software diversifi-
cation will eventually be applied to all software, including system
libraries and large parts of operating systems. Not only will this
mitigate attacks that are exploiting errors in the libraries and op-
erating systems themselves, it will also help to defeat “arc injec-
tion” attacks that use existing library code sequences (“‘gadgets”)
as stepping stones [18]. To this effect, code variability techniques
will need to be engineered to prevent a canon of identical “gadgets”
to exist across many diversified versions of the same library.

9.3 Systemic Properties

Assuming that a functioning multicompiler can be implemented,
the research community could then leverage the vast collections
of historical vulnerabilities and exploits to determine some more
“systemic” unknown parameters of the proposed approach. Some
example open questions of this kind include the following:

o Is the concept more defeatable if the variation engine is pre-
dictable? Is this approach more like cryptography, which
depends on keeping a key private, even if the algorithm is
known, or will knowledge of the algorithm reduce the effec-
tiveness of the technique?

e Even if a flaw cannot be exploited to fully compromise a
system, what does this technique do to avoid simply taking
a system down (crashing it) by corrupting the stack? That is
to say, can we systematically choose variations that will en-
sure survivability of the majority of versions, beyond merely
guarding against takeover by an adversary.

e Given how many possible vulnerabilities are likely to exist,
what are the odds that there will be enough possibilities for
diversity to cover all possible vulnerabilities? How much
diversity is possible in comparison to the amount of code
running, and the number of vulnerabilities or flaws in that
code?

Clearly, it would be valuable to know the answers to these ques-
tions.

10. CLAIM OF A NEW PARADIGM

The author hopes to have convinced the reader not only that
massive-scale software diversity is now within practical reach, but
also that it will usher in a new paradigm of software security. Many,
if not most, of the assumptions and models underlying current com-
puter security threats are a direct result of the existing software
monoculture. Computer viruses and worms, root kits, botnets, ...
— the root cause for the existence of all these troubles is the fact
that too many computers run the identical software binaries. Adopt-
ing a strategy of uniqueness of every single program on every single
host at internet scale is something fundamentally new, a paradigm
shift.

11. RELATED WORK

The idea of using diversity to improve robustness has a long his-
tory in the fault tolerance community. The basic idea has been to
generate multiple independent solutions to a problem (e.g., mul-
tiple versions of a software program, developed by independent
teams in independent locations using even different programming
languages), with the hope that they will fail independently. The
expectation is then that at any given point in time, a majority of
the versions will be functioning correctly [14, 1]. An abundance of
evidence suggests that such n-version development techniques are

15

more reliable, and more cost-effective, than producing one “good”
version, especially in situations where the cost of failure is high [9].
This is in spite of the fact that many n-version software systems in
practice exhibit a surprising amount of coincident failures of mul-
tiple supposedly independent program versions [12, 5].

More recently, along with a rising awareness of the threat posed
by an increasingly severe computer monoculture, diversity has also
been proposed as a means for improving software security. Most
of the past approaches have been based on some form of obfus-
cation [3, 13]. Some research ideas on operating system random-
ization [2, 20] have since found their way into commercial operat-
ing systems. Other suggested obfuscation techniques have included
load-time binary transformation [11] or even “private machine ar-
chitectures” based on virtual machines [10].

Unlike these approaches, massive-scale software diversity as pre-
sented here is not primarily focused on obfuscation. Instead, it ex-
ploits the randomness that is already inherent in compilation (in
many cases, alternative paths are truly equivalent and the choice
made by current unicompilers, although consistent, is algorithmi-
cally arbitrary). In this respect, the scope of this technique also goes
several orders of magnitude beyond earlier work by Forrest et al. [7]
that pioneered the idea of compiler-guided code variance. Thirteen
years of technical innovation since that earlier work and the advent
of cloud computing have changed the landscape fundamentally. It
is now perfectly feasible to create a unique custom version of every
program in existence for every user that wants one, and the cost
estimate of 9 cents for a significant program that we gave in Sec-
tion 6 is entirely realistic. Moreover, each of these unique versions
is created by a full start-to-finish compilation process of the whole
program, rather than merely parametrizing some part or perform-
ing only “peephole” optimizations, so that every conceivable valid
permutation of the whole program is a possible option for the code
variation generator.

Finally, massive-scale software diversity is related to the author’s
own earlier work on combining software diversity with parallelism
and checkpointing [17, 15, 16]. The earlier approach was to run
several slightly different versions of the same program in lockstep
on a multicore processor and monitor for differences in behavior.
The main emphasis was on the monitoring and control layer: be-
cause the versions operate in lockstep but behave like just a single
program, system events such as user input, file accesses and sig-
nals need to be virtualized and dispatched to the various versions
at the same logical (as opposed to temporal) point. Further, the
need to run the versions in lockstep with relatively small skew lim-
its the variations that are possible between versions. The approach
introduced here has no such constraints, because each version is
run independently of all the others. As a consequence, far more
ambitious code variations can be employed.

12. SUMMARY AND CONCLUSION

Adopting massive-scale software diversity will have a dramatic
impact on the way that software is distributed and is likely to change
many of the assumptions and models underlying current threats to
deployed software. When every software binary is unique, it be-
comes much less likely that a single attack will affect large num-
bers of targets simultaneously. Hence, the impact of phenomena
such as “viruses” and “worms” will be greatly reduced.

More subtly, the distribution of unique binaries also has the ef-
fect that adversaries can no longer simply analyze their own copies
of any given piece of software to find exploitable vulnerabilities,
because any vulnerabilities they may find will no longer automat-
ically translate to all other instances of the same software. Hence,
even directed attacks against specific targets running some unique

version of some software will become much more difficult, as long
as the attacker has no way of determining which specific binary is
present on what target.

Finally, massive-scale software diversity makes it much more
difficult for an attacker to generate attack vectors by way of reverse
engineering of software updates. We have outlined a mechanism
for intelligently updating software that has been diversified at in-
ternet scale.

Without doubt, the new paradigm of massive-scale software di-
versity will change many of the existing approaches to software
security. It will make the digital domain safer. It will also be a
great canvas for researchers, because it presents many challenging
open problems.

13. ACKNOWLEDGEMENT

The artistically challenged author wants to thank Michael Bebenita
for turning his rough pencil sketches into the stunning computer-
drawn figures you see in the paper. Thanks also go to one of the
anonymous reviewers for pointing out some additional “systemic”
research questions that have now been added to Section 9.3.

Parts of this work were supported by the United States National
Science Foundation (NSF) under Grants No. CNS-0905684 and
CNS-0627747. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the author and do
not necessarily reflect the views of the National Science Founda-
tion.

14. REFERENCES

[1] A. Avizienis and L. Chen. On the implementation of
n-version programming for software fault tolerance during
execution. In IEEE COMPSAC 77, pages 149-155, 1977.
M. Chew and D. Song. Mitigating buffer overflows by
operating system randomization. Technical Report
CMU-CS-02-197, Department of Computer Science,
Carnegie Mellon University, Dec. 2002.

F. Cohen. Operating system protection through program
evolution. Computers and Security, 12(6):565-584, Oct.
1993.

C. Collberg and J. Nagra. Surreptitious Software:
Obfuscation, Watermarking, and Tamperproofing for
Software Protection. Addison Wesley, 2009.

D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee,

D. E. McAllister, M. A. Vouk, and J. J. P. Kelly. An
experimental evaluation of software redundancy as a strategy
for improving reliability. IEEE Transactions on Software
Engineering, 17(7):692-702, 1991.

M. Fitzgerald. Cloud computing: So you don’t have to stand
still. New York Times, May 25th, 2008.

(2]

(3]

(4]

(3]

(6]

16

[7] S. Forrest, A. Somayaji, and D. Ackley. Building diverse
computer systems. In 6th Workshop on Hot Topics in
Operating Systems (HotOS-VI), pages 67-72, 1997.

D. Geer, R. Bace, P. Gutmann, P. Metzger, C. P. Pfleeger,

J. S. Quartermain, and B. Schneier. Cyberinsecurity: The
cost of monopoly: How the dominance of Microsoft’s
products poses a risk to security. Technical report, Computer
and Communications Industry Association, 2003.

L. Hatton. N-version design versus one good version. /[EEE
Software, 14(6):71-76, 1997.

D. A. Holland, A. T. Lim, and M. L. Seltzer. An architecture a
day keeps the hacker away. SIGARCH Computer
Architecture News, 33(1):34-41, 2005.

J. E. Just and M. Cornwell. Review and analysis of synthetic
diversity for breaking monocultures. In 2004 ACM Workshop
on Rapid Malcode (WORM ’04), pages 23-32, 2004.

J. C. Knight and N. G. Leveson. An experimental evaluation
of the assumption of independence in multiversion
programming. IEEE Transactions on Software Engineering,
12(1):96-109, 1986.

C. Pu, A. Black, C. Cowan, and J. Walpole. A specialization
toolkit to increase the diversity of operating systems. In
ICMAS Workshop on Immunity-Based Systems, Nara, Japan,
Dec. 1996.

B. Randell. System structure for software fault tolerance.
IEEFE Transactions on Software Engineering, 1:220-232,
1975.

B. Salamat, A. Gal, and M. Franz. Reverse stack execution in
a multi-variant execution environment. In 2008 Workshop on
Compiler and Architectural Techniques for Application
Reliability and Security (CATARS’08), June 2008.

B. Salamat, A. Gal, T. Jackson, K. Manivannan, G. Wagner,
and M. Franz. Multi-variant program execution: Using
multi-core systems to defuse buffer-overflow vulnerabilities.
In 2008 International Workshop on Multi-Core Computing
Systems (MuCoCoS 2008), March 2008.

B. Salamat, T. Jackson, A. Gal, and M. Franz. Intrusion
detection using parallel execution and monitoring of program
variants in user-space. In Eurosys 2009, April 2009.

H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
Proceedings of CCS 2007, pages 552—-61. ACM Press, Oct.
2007.

M. Stamp. Risks of monoculture. Communications of the
ACM, 47(3):120, 2004.

J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime
randomization for security. In 22nd International Symposium
on Reliable Distributed Systems (SRDS’03), pages 260-269,
2003.

[8

—_—

[9

—

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

