
Toward Intrusion Tolerance as a Service:
Confidentiality in Partially Cloud-Based BFT

Systems
Maher Khan and Amy Babay

University of Pittsburgh, School of Computing and Information
{maherkhan, babay}@pitt.edu

Abstract—Recent work on intrusion-tolerance has shown that
resilience to sophisticated network attacks requires system repli-
cas to be deployed across at least three geographically distributed
sites. While commodity data centers offer an attractive solution
for hosting these sites due to low cost and management over-
head, their use raises significant confidentiality concerns: system
operators may not want private data or proprietary algorithms
exposed to servers outside their direct control.

We present a new model for Byzantine Fault Tolerant repli-
cated systems that moves toward “intrusion tolerance as a
service”. Under this model, application logic and data are only
exposed to servers hosted on the system operator’s premises.
Additional offsite servers hosted in data centers can support the
needed resilience without executing application logic or accessing
unencrypted state. We have implemented this approach in the
open-source Spire system, and our evaluation shows that the
performance overhead of providing confidentiality can be less
than 4% in terms of latency.

I. INTRODUCTION

Intrusion tolerance, or the ability to operate correctly even
while partially compromised by an attacker, is an increasingly
important concern for high value systems. Critical infras-
tructure, such as power grid Supervisory Control and Data
Acquisition (SCADA), represents one example. Because these
systems are targets for sophisticated nation-state-level attacks,
there has been considerable research on how to make them
intrusion tolerant through Byzantine Fault Tolerant (BFT)
replication of the control servers (e.g. [1], [2], [3], [4], [5]).

While this line of work has led to solutions that can provide
strong correctness and performance guarantees in the face of
sophisticated attacks, in order for it to have an impact on
real systems, it must be deployed, and correctly deploying
and managing intrusion-tolerant replicated systems remains
challenging. There have been efforts to make this easier (e.g.
through the development of tools like BFT-SMaRt [6], [7]),
but it still requires a relatively high level of expertise. In the
power grid domain, it is unlikely to be feasible for every utility
operator to develop and maintain this expertise in-house [8],
and this is likely to be true across other domains as well.

Further complicating the deployment and management of
intrusion-tolerant services, recent work shows that resilience
to sophisticated network attacks that can isolate a targeted site
from the rest of the network requires a significantly higher
number of system replicas than traditional BFT systems and

requires them to be deployed across at least three geographi-
cally distributed sites [4]. Commodity data centers offer an at-
tractive solution to reduce the cost and management overhead
of constructing and operating the additional required sites,
and the work in [4] shows how existing power grid control
centers can be augmented with additional data center sites to
create a cost-effective solution. However, using commodity
data centers raises significant confidentiality concerns [8]: for
many applications, system operators are likely to consider
exposing private data or proprietary algorithms to servers
outside their direct control to be an unacceptable trade-off.

We present a new model for BFT systems that moves toward
offering “intrusion tolerance as a service”. Under this model,
application logic and data are only exposed to servers hosted
on the system operator’s premises. However, the intrusion-
tolerant system architecture can be designed by a service
provider, and additional offsite servers can be hosted in data
centers managed by the service provider to provide the needed
resilience to system compromises and network attacks. These
offsite servers participate in the BFT replication protocol, but
do not execute application logic and only store encrypted state
and updates. We show that our approach is able to provide the
same resilience to system compromises and network attacks
as in [4], without requiring application state and logic to be
exposed to data center replicas.

We implement our new partially cloud-based architecture
and protocols in Confidential Spire, a SCADA system for
the power grid based on Spire 1.2 [4], [9]. We evaluate
the performance overhead of providing confidentiality in an
emulated power grid SCADA setup and find that Confidential
Spire only adds an overhead of about 2ms compared to
Spire 1.2 when tolerating one intrusion (less than 4% increase
in latency), and an overhead of 6.8ms when tolerating two
intrusions (less than 13% increase in latency). In both cases,
latency is below 100ms for all requests, meeting the timing
requirements of power grid SCADA systems [10], [11].

The contributions of this work are:

• The design of the first BFT system that can leverage
offsite data centers to achieve resilience to simultaneous
network attacks and system compromises, without requir-
ing confidential state or algorithms to be exposed to data
center servers.

1



• Extensions to the basic system to provide well-defined
confidentiality guarantees in the case that an on-premises
server is compromised.

• An implementation and evaluation of the system in the
context of SCADA for the power grid. We show that
the performance overhead of providing confidentiality is
acceptable, and the system can meet the latency require-
ments of power grid SCADA.

II. BACKGROUND AND RELATED WORK

A. BFT Basics

Byzantine Fault Tolerant (BFT) state machine replication
is a well-known technique to provide intrusion tolerance,
enabling a system to guarantee safety (correctness and consis-
tency of the system state) and liveness (progress in processing
updates) even if up to some threshold number of replicas are
compromised (e.g. [12]). The number of tolerated compro-
mises is most often f out of 3f+1 total replicas [12], although
some systems can tolerate f out of 2f + 1 total replicas with
additional assumptions or trusted hardware [13], [14], [15],
[16]. Some systems additionally guarantee performance under
attack, rather than only liveness [17], [18], [19], [20].

To support long system lifetimes, it is necessary to employ
proactive recovery, which allows replicas to be periodically
taken down and restored to a known clean state [12], [21].
Providing continuous availability with proactive recovery typ-
ically requires 3f + 2k + 1 total replicas to simultaneously
tolerate up to f compromised replicas and k recovering
replicas [22].

B. BFT and Network Attacks

The motivation for our work comes from the recent Spire
intrusion-tolerant SCADA system for the power grid [4], [9],
which showed that at least three geographically distributed
sites are needed to withstand sophisticated network attacks
that can target and isolate a site from the rest of the network.
The intuition for this is the following: since BFT replication
protocols require more than half of the system replicas (in fact,
2f+k+1 out of 3f+2k+1) to be up, correct, and connected
in order to make progress, any system that distributes replicas
across fewer than three sites can be prevented from making
progress by isolating a single site. Clearly, if all replicas are
located in a single site, a denial of service attack targeting that
site can prevent it from communicating with remote clients and
thus render it unable to receive and process their updates. If
replicas are split across only two sites, targeting the larger of
the two sites will disconnect a majority of the system replicas,
leaving the rest unable to make progress without them.

Due to the high expense of constructing additional control
centers with full capabilities for communicating with Remote
Terminal Units (RTUs) and Programmable Logic Controllers
(PLCs), and controlling power grid equipment, Spire intro-
duced an architecture that uses two power grid control centers
(which typically exist today for fault tolerance purposes) and
supplements them with additional data center sites that do not
need to communicate with RTUs and PLCs. The use of data

centers can also reduce the management overhead of the higher
number of replicas that Spire needs to support its threat model
(12 total replicas to support f = 1 and 1 disconnected site).

However, data center replicas are still required to maintain
a full copy of the system state and execute application logic to
process incoming updates. This raises confidentiality concerns,
as it requires SCADA operators to expose their private system
state and algorithms to offsite replicas potentially hosted by
a third party. Today, if a system operator wants to avoid
trusting a third party with this information, they must take
on the responsibility for managing the full deployment (and
constructing their own additional sites to host system replicas).

Our goal in this paper is to address this issue through a
new hybrid model for partially cloud based systems: system
operators host and manage “on-premises” replicas distributed
across two geographic sites that they manage and control,
while a service provider hosts and manages additional replicas
located in data center sites. In our model, not only do service-
provider-managed replicas not need to communicate with
clients, but they only see encrypted state and do not execute
application logic.

C. Confidential BFT

Our goals are closely related to prior work on confidential
BFT systems. These systems fall into two main categories:
approaches based on secret sharing, and approaches based on
privacy firewalls.

Secret Sharing. Confidential BFT systems based on secret
sharing include DepSpace [23], Belisarius [24], and CO-
BRA [25]. These systems protect confidentiality of the system
state as long as no more than f replicas are compromised.
To do this, clients encode data using an (f + 1, n)-threshold
secret sharing scheme, where f + 1 shares out of n total
shares are needed to reconstruct the confidential data. Since
each replica only receives one share, this guarantees that up to
f compromised replicas are unable to successfully reconstruct
the data. COBRA [25] additionally provides for share renewal,
allowing it to tolerate up to f compromises per renewal epoch
(as opposed to over the entire life of the system).

This approach offers strong confidentiality guarantees that
initially appear to fit our goal well: in fact, such an approach
could enable management of the entire replicated system to
be offloaded to a service provider, with all replicas hosted
in data centers, while still guaranteeing that the system state
remains confidential. However, due to practical limits on the
types of operations that can be performed on the encrypted
data, current systems typically support a limited set of op-
erations, such as basic key-value storage operations [25] or
tuple space storage [23], with Belisarius also offering the
ability to perform addition on stored values [24]. Moreover,
even if these systems supported general operations (e.g. via
secure multiparty computation or homomorphic encryption),
the operations themselves must be executed at all servers and
therefore cannot be kept private. For certain applications, it
may be desirable to keep application code or algorithms private

2



(e.g. because the algorithms are proprietary or otherwise
sensitive).

Secret sharing has also been used to create encrypted BFT-
replicated storage systems. DepSky [26] is a cloud-of-clouds
storage system that uses BFT replication with secret sharing
to store data across several different cloud providers and
guarantees data availability, integrity and confidentiality as
long as no more than f of 3f + 1 clouds fail in a Byzantine
manner. SCFS [27] is a distributed file storage system that
can use DepSky as a backend to store encrypted files and
shares of the encryption keys on several clouds. RockFS [28]
is built on top of SCFS and improves on it by tolerating
some malicious client-side behaviour: (1) it prevents illegal
modification of client credentials by using a secret sharing
scheme, (2) it prevents illegal access to the client’s local cache
by encrypting it, and (3) it allows administrators to undo any
illegal modification of client files in the cloud by keeping a
log of every modification.

While these systems enable confidential, intrusion-tolerant
data storage in the cloud, they do not address Byzantine
behaviour of the applications that generate or modify the data;
both DepSky and SCFS assume that clients are not malicious,
while RockFS can prevent or recover from specific types of
malicious client behaviour. In contrast, we aim to support
intrusion tolerance at the application level, not only for its
data storage.

Privacy Firewall. Confidential BFT based on privacy fire-
walls was introduced by Yin et al. [29] and later built on by
Duan and Zhang [30]. This approach is based on separating
agreement from execution [29]: replicas are split into an
agreement cluster that uses a BFT agreement protocol to
establish a total order on incoming client updates and an
execution cluster that executes the ordered stream of updates
and generates client replies. A privacy firewall is constructed
between the execution cluster and agreement cluster to filter
replies sent by the execution cluster and to ensure that no
confidential information is allowed to exit the execution cluster
(as long as no more than a threshold f of the firewall nodes
are compromised).

This approach again has properties that appear to fit our goal
well: using the strategy of separating agreement and execution,
an attractive possibility is for execution nodes to be hosted
on-premises, while agreement nodes can be hosted in remote
data centers and managed by a service provider. This would
not require agreement nodes to carry out application logic or
understand the updates they order (as ordering can be done on
encrypted updates [29], [30]).

However, the existing solutions do not fully meet our needs.
They assume a model where all agreement and execution
replicas are hosted in a single site, and the objective is
to prevent a compromised execution node from exfiltrating
confidential information over the network. Therefore, their
architectures place the agreement cluster between the clients
and execution nodes, and only allow agreement nodes to
communicate with clients or other entities outside the site.
However, in many contexts, it may not be desirable or even

possible for data centers to communicate with clients (e.g. in
the power grid context, this is typically not feasible [4]).

The execute-verify model of Eve [31] and execute-order-
validate paradigm of Hyperledger [32] address this issue by
performing execution before ordering, but in doing so add
complexity at the application layer (e.g. to deal with state
rollback), without solving the following more fundamental
problem: these approaches cannot be straightforwardly ex-
tended to support the multi-site model needed to cope with
network attacks. We show that the observation in [4] implies
that system state must be stored in at least three distinct sites
in order to maintain continuous availability in the presence
of network attacks, preventing a clean separation between
execution and agreement unless system operators are willing to
build and manage at least three (execution) sites. In addition,
it is not clear how to apply the privacy firewall concept in
a multi-site deployment, as it strongly relies on a specific
physical network setup.

III. SYSTEM AND THREAT MODEL

A. System Model

We introduce a new system model for partially cloud-based
BFT systems. In this model, system management is shared
between system operators who are responsible for managing
an application and are typically experts in the application
domain, and service providers who offer data center hosting
capabilities (and potentially other services).

In our model, a system is physically deployed across loca-
tions owned and operated by the system operator (on-premises
sites) and infrastructure operated by the service provider (data
center sites). We refer to system replicas located in on-
premises sites as on-premises replicas and replicas located in
data center sites as data center replicas.

Our goal is to provide strong intrusion tolerance guarantees
without significantly increasing the management overhead
for system operators. In many applications that require fault
tolerance, operators are likely to already maintain two on-
premises sites (e.g. for primary-backup). In contrast to adding
servers to an existing site, creating a new one involves
provisioning the physical location/building to house it, hir-
ing management personnel (since fault independence requires
a sufficient geographical distance from existing sites), and
for some applications, provisioning specialized equipment to
communicate with client sites. Therefore, we assume two on-
premises sites and design our architecture to avoid constructing
any additional on-premises sites.

Due to privacy concerns (and potentially feasibility con-
straints), clients only communicate with on-premises replicas
(they do not communicate directly with data center replicas).

B. Threat Model

We consider the same broad threat model as in [4], which
includes both system-level compromises of the server replicas
and network-level attacks that aim to disrupt communication
among replicas and/or between replicas and clients.

3



We consider a broad range of network attacks, but, as
in [4], we reduce this to a simpler model through the use
of an intrusion-tolerant overlay network to connect the sites
to one another [33], [34]. With the use of the intrusion-tolerant
network, the network attacks we still need to address are
reduced to sophisticated (resource-intensive) denial of service
attacks that can target and isolate a single geographic site. We
assume that at any time, up to one site (either on-premises
or data center) may be subject to such an attack and thus
disconnected from the rest of the network.

As in other intrusion-tolerant replicated systems, we as-
sume that up to a threshold number f of replicas may be
compromised. Compromised replicas may behave arbitrarily
and collude with one another. As in prior work, we employ
proactive recovery to allow the system to tolerate up to f
compromises within a limited time window, as opposed to
over the entire system lifetime. We assume that replicas are
recovered one at a time, and that one replica’s recovery finishes
before the next replica’s recovery starts.1 Thus, at any time our
threat model includes up to f compromised replicas, up to one
replica that is unavailable because it is going through proactive
recovery, and one disconnected (or otherwise unavailable)
geographic site.

We assume each replica has access to a hardware-protected
private key (e.g. using the TPM) that it can use for signing,
but that cannot be deleted, modified, or exfiltrated from the
machine. This key is used to bootstrap after proactive recovery,
when the replica generates a new session-level signing key. We
assume an attacker cannot break cryptographic protocols.

C. Service Properties

Our safety, liveness, and performance guarantees are essen-
tially the same as those specified in [4], although we adapt
them to a generic replicated system; where [4] specifically
considered SCADA Masters, HMIs, RTUs, and PLCs, we state
our guarantees in terms of generic servers and clients.

Definition 1 (Safety). If two correct on-premises replicas
execute the ith update, then those updates are identical, and
the state resulting from the execution of that update at the two
replicas is also identical.

Our system guarantees safety as long as no more than
f replicas are simultaneously compromised. Note that while
safety as defined above is maintained in the presence of
an unlimited number of compromised clients, compromised
clients may still cause the system to take incorrect actions
by submitting malicious updates; we only guarantee that all

1This requires certain synchrony assumptions: an attacker must not be able
to arbitrarily prolong a replica’s recovery (see [35]). However, in practice these
can be met: simple trusted devices can trigger recovery by cycling the power
to a replica, and recovery intervals on the order of one replica per day are
sufficient [36]. If an adversary can prevent a replica from collecting messages
needed for recovery for a full day, that replica is effectively disconnected.
The intrusion-tolerant overlay makes such disconnections very difficult, and
our system technically allows recoveries of replicas in a disconnected site to
overlap, as long as the total number of recovering replicas is no more than
the size of the largest site plus one.

replicas will observe and execute these updates in a consistent
way (this is a general limitation in BFT replication). We do
not consider data center replicas as executing updates here, as
we only care about the state as it is visible to clients.

Definition 2 (Bounded Delay). The latency for an update
introduced by a correct authorized client to be executed by
at least f + 1 correct on-premises replicas (and thus have its
effects made visible) is upper bounded.

To guarantee bounded delay, we require that the conditions
of our threat model are met: at most f replicas are compro-
mised, at most one replica is undergoing proactive recovery,
and at most one site is downed or disconnected due to network
attack. In addition, the remaining replicas (i.e. all correct, non-
recovering replicas located outside the disconnected site) must
be able to communicate with one another, and the remaining
correct on-premises replicas must be able to communicate
with clients. Finally, communication among the remaining
correct replicas must meet the network stability requirements
of Prime [37], which is used as our underlying agreement
protocol and requires that the latency variance between each
pair of correct servers is bounded (see [4] for additional
discussion).

Our new contribution is to combine the above guarantees
with the following confidentiality property.

Definition 3 (Complete Confidentiality). System state and
state manipulation algorithms remain confidential (known only
to on-premises replicas).

Our base system provides this guarantee as long as no on-
premises replica is compromised. An unlimited number of
data center replicas may be compromised without violating
confidentiality. Note that a compromised client may always
leak its own state or updates; our model does not prevent this,
nor does any other confidential BFT work we are aware of.
When we refer to system state in Definition 3, we refer to the
full state of the system maintained by the on-premises replicas.

Note that this guarantee is not comparable to those of the
confidential BFT systems discussed in Section II-C: if any
on-premises server is compromised (over the entire lifetime
of the system), it can cause confidentiality to be violated.
However, we argue that the novel combination of guarantees
we provide represents a significant advance over the state
of the art. The Spire system provided a level of attack
resilience in terms of safety and performance guarantees
that was not possible before, but introduced a trade-off in
terms of confidentiality. For a baseline system that provides
fault tolerance through standard primary-backup mechanisms
hosted fully on-premises, transitioning to the Spire architecture
offers much stronger safety and performance guarantees, but
at the cost of somewhat weaker confidentiality guarantees. In
the baseline system, confidentiality may be violated if an on-
premises server is compromised. However, if data center sites
are introduced, confidentiality is violated if either a data center
server or an on-premises server is compromised, and even in
the case where no server is compromised, certain information

4



Data Center Spines

Prime

Encrypted 
Storage

Prime

Encrypted 
Storage

Prime

Encrypted 
Storage

On-Premises Site

Spines

Application 
Replica

Prime

Spines

Application 
Replica

Prime

Application 
Replica

Prime

Application 
Replica

Prime

Data CenterSpines

Prime

Encrypted 
Storage

Prime

Encrypted 
Storage

Prime

Encrypted 
Storage

Spines

On-Premises Site

Application 
Replica

Prime

Spines

Application 
Replica

Prime

Application 
Replica

Prime

Application 
Replica

Prime

Spines

Proxy

Client Client

Client Site

Client Client…

Proxy

Client Client

Client Site

Client Client……
Fig. 1. System architecture overview, showing 2 on-premises sites (each containing 4 replicas) and 2 data centers (each containing 3 replicas).

is made accessible to the service provider managing the
data center servers. Our architecture eliminates this trade-off:
the strictly improved safety and performance guarantees are
provided while maintaining the same level of confidentiality as
in the baseline system. This is likely to substantially increase
its acceptability to system operators. In Section V-D, we
discuss how the system can at least limit the amount of state
that can be disclosed if an on-premises server is compromised.

IV. PARTIALLY CLOUD-BASED BFT ARCHITECTURE

The key observation behind our system design, and the
reason that a straightforward separation of execution replicas
running in on-premises sites and agreement replicas running in
cloud data center sites cannot support our required guarantees,
is that network-attack resilience requires system state to be
stored in at least three distinct geographic sites. As discussed
in Section II-B, the work in [4] observed that because BFT
replication protocols require (more than) a majority of replicas
to be connected in order to safely make progress and order
updates, they cannot guarantee continuous availability in the
presence of network attacks unless at least 3 sites are used:
otherwise a network attack targeting a single site can isolate a
majority of the system, leaving the remainder unable to make
progress, and rendering the system unavailable.

In fact, exactly the same observation applies to the storage
of system state. To see why this is the case, consider a system
with exactly two on-premises sites. Under our threat model,
any one site may be disconnected at any time, so the system
must be able to make progress with only a single on-premises
site up and connected to the data center sites. Consider that on-
premises site A is up, connected to data center sites and client
sites, and receiving, submitting for ordering, and executing
incoming client updates, while on-premises site B is under
denial-of-service attack and isolated from the rest of the
network. Then, the attacker shifts focus to instead target on-
premises site A: site A is now isolated, while site B rejoins

the network and is now connected to the data center and client
sites. As before, the conditions of our threat model are met,
so the system should be able to process updates and make
progress. However, on-premises site B has missed all of the
client updates that were processed while it was disconnected. If
data center sites do not store any system state, it is impossible
for the replicas in site B to catch up and recover the state to
resume safely executing updates. In order to support our threat
model, a disconnected on-premises site must be able to rejoin
the network, catch up, and resume processing updates without
communicating with the other on-premises site.

Therefore, our approach is for data center replicas to
store encrypted updates and state checkpoints. By encrypting
updates and checkpoints with keys known only to the on-
premises replicas, we can allow data center replicas to store
them, without being able to decrypt and interpret them. This
allows a disconnected on-premises site to rejoin the network,
collect state, and resume processing updates based only on
information obtained from data center replicas, but without
requiring data center replicas to access unencrypted state or
perform any application-specific logic.

A. System Architecture

An overview of our architecture is shown in Figure 1. Our
high-level architecture is based on the Spire architecture [4].
System replicas are distributed across two on-premises sites
and a configurable number of data center sites. Sites are
connected through an instance of the Spines intrusion tolerant
network [33], [34] to provide resilience to a broad range of
network attacks. On-premises sites are additionally connected
to client sites through a separate Spines instance. Proxies
support clients that cannot be modified to use a BFT protocol.
Clients in a single physical location may be grouped behind a
single proxy, or each client can have its own proxy. A proxy
collects updates from its respective client(s), digitally signs
them so that server replicas can verify their authenticity, and

5



submits them to the system by sending them to on-premises
servers. Client proxies also validate responses received from
the server replicas: specifically, server replicas generate thresh-
old signatures on responses using an (f + 1, n)-threshold
scheme, so the proxy can verify a single signature to confirm
that at least one correct replica agreed on the message.

The key difference from [4] is the separation of functionality
between on-premises and data center replicas. In our system,
all replicas host an instance of the Prime intrusion-tolerant
replication engine [38] and participate in the replication pro-
tocol. However, only on-premises servers host application
replica instances. Client updates received by on-premises
servers are encrypted before being submitted for ordering
and sent to data center servers. Post-ordering, updates are
decrypted and executed at (only) the on-premises application
replicas, while those same updates are stored in encrypted
form at the data center servers.

B. Replica Distribution

In configuring the system, replicas must be distributed
across sites such that the system is able to safely process
updates and meet its bounded delay guarantee under the full
threat model we consider. Prime (when configured to support
proactive recovery, as in [4]) requires a total of 3f + 2k + 1
replicas to tolerate f compromised replicas and k unavailable
replicas, where a replica may be unavailable either because it
is going through proactive recovery or because it has been
disconnected from the network (or because it has simply
crashed). In order to guarantee progress, with bounded delay,
at least 2f + k + 1 of those replicas must be up, correct, and
connected (with sufficient network stability).

The work in [4] showed that in order to ensure 2f + k+ 1
correct replicas are always available, it is necessary to ensure
that no single site contains more than k−1 servers: otherwise
the disconnection of a single site, plus an ongoing proactive
recovery elsewhere in the system could cause more than k
replicas to become unavailable at the same time, preventing the
system from making progress. That work shows that providing
this guarantee requires setting k ≥

⌈
3f+S+1

S−2

⌉
, where S is

the total number of sites (on-premises + data center), and
distributing replicas as evenly as possible across sites [4], [39].

However, an additional constraint under our threat model
comes from the separation of functionality between on-
premises and data center replicas: only on-premises replicas
can execute updates and communicate with clients. To verify
that a received message is correct, a client must be able to
confirm that f + 1 servers agreed to it (to ensure at least
one correct server was involved). This means that generating
verifiable responses requires that f+1 on-premises replicas are
available at any time: data center replicas cannot participate
in generating client responses, as this requires knowledge of
update contents, system state, and application logic.

In the worst case, under our threat model, one of the two
on-premises sites may be disconnected, and the other may
contain f compromised replicas and one replica undergoing
proactive recovery. Therefore, in order to ensure that f + 1

2 on-premises 2 on-premises 2 on-premises
+ 1 data center + 2 data centers + 3 data centers

f = 1 6+6+6 (18) 4+4+3+3 (14) 4+4+2+2+2 (14)
f = 2 9+9+9 (27) 6+6+5+4 (21) 6+6+3+3+3 (21)
f = 3 12+12+12 (36) 8+8+6+6 (28) 8+8+4+4+4 (28)

TABLE I
SYSTEM CONFIGURATIONS TOLERATING A PROACTIVE RECOVERY,

DISCONNECTED SITE, AND 1, 2, OR 3 INTRUSIONS.

correct replicas are available at all times, each of the two on-
premises sites must contain at least 2f+2 total replicas (2f+
2 replicas− 1 recovering replica− f compromised replicas =
f +1 available correct replicas). However, since we must still
have k strictly greater than the size of the largest site, this
adds the restriction k ≥ 2f + 3.

Together, the two above restrictions give us the requirement:

k ≥ max

(
2f + 3,

⌈
3f + S + 1

S − 2

⌉)
After finding the minimal value of k using this formula, the

total number of required replicas is calculated from the original
formula: n = 3f + 2k + 1. To distribute these replicas across
the sites, we must first ensure that at least 2f + 2 replicas
are placed in each on-premises site, and then distribute the
remaining replicas across the sites such that the total number
of replicas per site is as even as possible. The results of
this process for several different system options are shown
in Table I. In Table I, we consider configurations tolerating
1-3 intrusions (f = 1, f = 2, and f = 3), with replicas
distributed across two on premises sites and 1-3 data centers.
The first 2 numbers per cell denote the number of replicas in
each on-premises site, while the following numbers represent
the number of replicas in the data centers, and the final number
in parentheses represents the total number of replicas. For
example, configuration “4+4+3+3” represents 4 replicas in
each on-premises site, and 3 replicas in each data center, for
a total of 14 required replicas.

While the total number of replicas is considerably higher
than the typical 3f+1, this is because we (1) support proactive
recovery (which requires 3f+2k+1 replicas) and (2) provide
stronger guarantees, tolerating not only f compromises, but
also network attacks that can disconnect an entire site. This
threat model was first introduced in [4], which showed that for
the case of f = 1, 12 replicas are needed. We slightly increase
that number to 14, but we believe this is justified to provide the
confidentiality needed to trust a cloud provider and thus avoid
the need for the system operator to manage the large set of sites
and replicas themselves. If we consider a system operator who
already supports fault tolerance, deploying primary and backup
sites, each of which includes primary and backup replicas, we
only require that they add 2 on-premises servers per site: the
remaining sites and replicas are fully managed by the cloud
provider.

V. PROTOCOLS FOR PARTIALLY CLOUD-BASED BFT

Having described how to distribute replicas and set up the
system, we next describe the protocols used to submit and
process updates.

6



A. Introducing Client Updates

Clients submit updates to the system through proxies. The
proxy digitally signs each update using its private key before
sending it to the on-premises servers. On-premises servers can
then verify the signature on the update, encrypt it, and inject
it into Prime for ordering.

However, our new model introduces a challenge, as data
center replicas need to verify that each update submitted
for ordering actually came from a correct client (and was
not maliciously generated by an adversary), yet data center
replicas do not have the ability to decrypt client updates. In
fact, they should not be required to maintain any information
about client identities or public keys (in some cases, client
IP address or locations may be a sensitive type of state
that system operators would like to avoid revealing [8]).
Requiring updates to be signed by the on-premises server
injecting them is not sufficient, as any individual server could
be compromised and manufacture a large number of spurious
updates, forcing the system to work to order the bogus updates.

Our approach is for on-premises servers to cooperate to
generate a threshold signature on each introduced update. To
do this, we require each client to send its updates to 2f+k+1
on-premises replicas, which guarantees that at least f + 1
correct replicas will receive the request. Upon receiving a
client request, the on-premises replica first checks its validity,
then encrypts the request message body. Then, it creates
a partial threshold signature (using an (f + 1, n)-threshold
scheme) for the encrypted client update and multicasts this
partial threshold signature to all other on-premises replicas.
Upon collecting f+1 partial signatures, an on-premises replica
combines them to form the full threshold signature, and injects
the threshold-signed update into Prime for ordering. All other
replicas, including the data center replicas, can verify the full
threshold signature to validate that a request is legitimate.

Client update encryption presents one remaining challenge:
the individual on-premises replicas all need to perform the
encryption independently but come up with the same en-
crypted content, so that the threshold signature shares that they
independently generate will combine correctly. To do this, we
assume on-premises replicas maintain two shared secret keys
per client: the first is the shared key used to perform symmetric
encryption and decryption of updates for that client, while
the second is used as one of the inputs to a pseudorandom
function used to generate initialization vectors, similarly to
the approach in [30]. Details about our implementation can be
found in Section VI-B. For now, we assume that all of these
per-client key pairs are stored in persistent read-only memory
and reloaded from there after proactive recovery, although we
discuss how to weaken this restriction in Section V-D.

B. Ordering Updates and Disseminating Results

Once an on-premises server generates a full threshold signa-
ture on an encrypted client update and injects it into Prime, it
is assigned an ordinal, or sequence number in the global total
ordering through the Prime agreement protocol [37], and then
delivered to the application to be decrypted and executed (in

the case of on-premises servers) or simply stored in encrypted
form along with its ordinal (at data center servers).

As part of executing an ordered update, application replicas
may generate a response message that needs to be sent to a
client. To generate a single response that can be verified by a
client proxy based on a single service public key, application
replicas generate a threshold signature on the response, again
using an (f + 1, n)-threshold scheme to ensure the message
is agreed on by at least one correct replica. This is the same
approach as in [4], but in our case, only on-premises replicas
can participate in generating the response. Our replica distri-
bution framework (Section IV-B) guarantees that it is always
possible to generate such a signature under the conditions of
our threat model.

C. Checkpoints and State Transfer

Since storing every ordered client request will eventually
exhaust replicas’ storage capacity, we keep only a limited
number of the latest encrypted client requests and replace older
requests by encrypted checkpoints. At specified checkpoint
intervals (i.e. every C ordered updates), each on-premises
replica creates and encrypts a checkpoint that represents its
state up through the execution of the last ordered client update
(similar to [12] and others). Note that an on-premises replica
does not consider itself to have fully executed a particular
update until it has generated and sent a threshold-signed
client response message for any outgoing messages that were
generated as a result of its execution. The latest (threshold-
signed) outgoing message for each client is included in the
system state, since these may need to be retransmitted.

After generating an encrypted checkpoint, the on-premises
replica then creates and signs a checkpoint message that
contains the encrypted checkpoint, as well as the (cleartext) se-
quence number it corresponds to (the global sequence number
of the last ordered update that was executed and reflected in the
state). The replica then multicasts this checkpoint message to
all other replicas (including both on-premises and data center
replicas). When a replica (on-premises or data center) receives
f + 1 identical encrypted checkpoints from different replicas
for the same sequence number, then this encrypted checkpoint
can be marked as correct: at least 1 correct replica has agreed
that this checkpoint represents the system state at the given
sequence number.

Data center replicas do not create their own checkpoints.
Instead, when a data center replica collects a correct encrypted
checkpoint, it creates and signs a checkpoint message con-
taining that encrypted checkpoint, and then multicasts this
checkpoint message to all other replicas. When a replica (on-
premises or data center) receives 2f+k+1 identical encrypted
checkpoints from different replicas for the same sequence
number, then this encrypted checkpoint can be marked as
stable: even if f replicas sending checkpoints are malicious,
and k immediately become disconnected/unavailable, at least
f+1 correct replicas still remain that can help another replica
catch up to this checkpoint.

7



Upon collecting a stable checkpoint for a given sequence
number, a replica may safely garbage collect stored updates
and checkpoints for all prior sequence numbers (similar to [12]
and others), as long as it has also fully executed all sequence
numbers up through the sequence of the stable checkpoint
(note that since data center replicas do not participate in
generating client responses, they consider an update to be fully
executed as soon as it is ordered).

When a replica detects that it has fallen behind (e.g. because
it went through proactive recovery, or was disconnected and
missed some updates), it submits a state transfer request to
Prime for ordering. When this request is ordered, the other
replicas (including data center replicas) execute it by send-
ing the recovering replica their stable encrypted checkpoint,
digests for any correct checkpoints they have with sequence
numbers higher than the stable checkpoint, and the list of
ordered, encrypted client requests with sequence numbers
between the stable checkpoint and the global sequence number
of the state transfer request from this recovering replica.

In order to catch up to the latest state, the recovering replica
waits to receive a set of state transfer responses such that it
has (1) a correct checkpoint, with at least f + 1 matching
checkpoints/digests to guarantee its validity, and (2) a set
of updates such that for every sequence number between its
latest correct checkpoint and its target recovery ordinal (i.e.
the sequence number at which its state transfer request was
ordered), it has f + 1 identical updates from distinct replicas.
Once these requirements are met, if the recovering replica is
a data center replica, then it simply stores the latest correct
checkpoint and all following correct updates in the already
encrypted format. If the recovering replica is an on-premises
replica, it additionally decrypts the encrypted checkpoint and
the list of client requests, and then applies the decrypted
checkpoint and client requests in order of increasing global
ordinals to bring its application state up to date.

D. Key Renewal

As described so far, a single on-premises compromise can
leak encryption keys. If the keys are sent to a data center
replica, it will be able to decrypt all following updates and
checkpoints. While system operators could recover from such
a situation (if it was detected) by manually backing up the
system, taking replicas down, bringing them back up with new
keys, and re-instantiating the system, this is a labor intensive
operation that is likely to require system downtime.

Therefore, we extend the basic protocol with an automatic
key renewal mechanism that, combined with proactive recov-
ery, limits the amount of confidential state a compromised
on-premises replica can disclose. The basic idea is that on-
premises servers maintain a separate shared symmetric en-
cryption key and shared pseudorandom function key for each
client in the system, and a given client key pair (encryption
key + pseudorandom function key) is only valid for a fixed,
predetermined range of client update sequence numbers. When
servers get near the end of the range of sequence numbers the
current client key pair is valid for, they each (independently)

randomly generate a new pair of keys and propose their
generated key pair by injecting it into Prime for ordering
together with the proposed client sequence number range it
should be valid for.

Since all correct replicas observe the ordered stream of
messages from Prime in the same way, they can use the global
ordering of proposals to determine the new key pair in a
consistent way. For example, we can determine the keys as
a combination of the first f +1 proposals, guaranteeing that it
includes random input from at least one correct replica, so that
the process cannot be controlled solely by malicious replicas.
Since the replica distribution process described in Section IV-B
guarantees that f +1 correct on-premises are always available
under our threat model, it is always possible to collect f + 1
proposals, so this approach is live. A correct server will not
agree to inject a client message for ordering (i.e. will not
generate its signature share as described in Section V-A) unless
it has received f +1 valid proposals ordered by Prime for the
sequence range covering that message and thus determined the
correct key to use for encryption.

While this process allows replicas to agree on new keys
to use for encrypting client updates such that all (correct)
replicas will apply the same new keys starting at the same
client sequence number, there are still several issues to resolve
to provide well defined confidentiality guarantees.

Encrypting Key Proposals. First, the new key proposals
themselves must also be encrypted, since they are disseminated
to data center replicas as part of the ordering process. It is
not possible to avoid storing these updates at the data center
replicas for exactly the same reason that data center replicas
must store general client updates: in order to ensure continuous
availability under our threat model, on-premises replicas that
have been disconnected and are rejoining the system must be
able to recover the state and resume executing updates based
only on input from the data center replicas.

But, what keys can we use to encrypt the key proposal
messages? Clearly, it is not safe to use the previous client
encryption key, since the purpose of the key refresh is to re-
cover from the case where the previous key was compromised.
But, if some other key is used, then rejoining/recovering on-
premises replicas must be able to recover that key from the
data centers, which means that key needs to be stored in
encrypted form, and we have the same problem again.

To solve this issue, we rely on a hardware-based root of
trust. We assume each on-premises replica is configured at the
time the system is set up with a shared symmetric encryption
key that can only be accessed from within trusted hardware
(e.g. TPM or Intel SGX [40]) and persists across reboots. An
attacker who compromises a server but does not have physical
access may use the key for encryption while it has access to
the machine, but cannot exfiltrate, modify, or delete the key.
This permanent key is used to encrypt new key proposals:
with this approach, they cannot be decrypted by data center
replicas (or external observers), but can be decrypted by
recovering/rejoining on-premises replicas (without requiring
the recovering/rejoining replicas to retrieve keys from data

8



center replicas). We note that this assumption of a limited
degree of trusted hardware is not an unreasonable requirement,
as proactive recovery already requires each replica to maintain
a persistent hardware-based (TPM) asymmetric private signing
key that it uses to authenticate itself and establish new session-
level signing keys during its recovery process.

Adapting State Transfer. Given that key proposal messages
will eventually be garbage collected, we must also extend state
checkpoints to additionally include the current encryption and
pseudorandom function keys for each client and their validity
periods (i.e. the highest sequence number they can be used
for), as well as any valid pending key proposal messages. By
pending key proposal message, we mean a key proposal that
has been ordered, but not yet used to generate a new key, as not
enough proposals for the same client and validity period were
ordered before the checkpoint was taken. With this extension,
checkpoints are also encrypted using the hardware-protected
symmetric key (although it is also possible to treat checkpoints
as another logical client, with a new session-level key agreed
on for each checkpoint. In this case, it is only necessary to
encrypt the part of the checkpoint containing the session keys
with the persistent hardware-protected key).

Limiting Disclosure. Finally, in order to guarantee limits on
the amount of confidential state a compromised on-premises
replica can expose, we must ensure that compromised replicas
cannot control the selection of future encryption keys that will
be used after they have gone through the proactive recovery
process and been restored to a correct state. To do this, we
enforce that new key proposals are only accepted as valid if
they are introduced at the correct logical time. That is, we
define a sequence number slack parameter x that represents
how far in advance of the sequence range a key is intended to
be active for it can be proposed. For example, if we consider
x = 10 and a key validity period of 100 updates, a new
key proposal for range 101-200 will not be considered as
valid (and included in the computation of the actual new key)
unless it is ordered after update 90 for the relevant client in
the global total ordering created by Prime. Since all correct
replicas observe the ordered stream of updates in the same
way, all will make the same decision as to a key proposal’s
validity.

An additional concern may be that a compromised replica
could, while it is compromised, generate, encrypt, and sign
proposals for future client sequence numbers, and send them
to a malicious external collaborator to inject at the appropriate
time. However, since such messages are required to be signed
with the replica’s session-level signing key, which is refreshed
following a proactive recovery, this is not a problem.

Our key renewal procedure does not provide complete
confidentiality (in the sense of Definition 3) in the presence of
a compromised on premises replica, but it limits the damage
such a replica can do. In particular, for a client key validity
period V and slack parameter x, it guarantees that any keys
leaked by a compromised replica will only be able to decrypt
a maximum of V + x updates per client that are issued after
the replica is recovered (of course, the compromised replica

may leak all updates issued while it is compromised). In
addition, since checkpoints are encrypted with keys that cannot
be exfiltrated from their physical machine, no checkpoint
constructed after the replica is recovered can be decrypted
using keys it leaked while compromised. Thus, as long as
replicas are periodically proactively recovered and clients
continue to issue updates, the system will eventually return
to a situation where its state is fully confidential, if no new
on-premises compromises occur. Unfortunately, this does not
apply to state manipulation algorithms: since those are likely
to change rarely, once a replica with access to those algorithms
is compromised, we can no longer provide guarantees of their
confidentiality.

VI. CONFIDENTIAL SPIRE IMPLEMENTATION

We have implemented our architecture and protocols in
Confidential Spire, a SCADA system for the power grid
that provides the Safety, Bounded Delay, and Confidentiality
guarantees defined in Section III-C under the threat model
stated in Section III-B. Our Confidential Spire implementation
is built on the open source Spire version 1.2 [9], which
implements the architecture described in [4], and provides
Safety and Bounded Delay (but not Confidentiality) under our
same threat model.

In Confidential Spire, SCADA control centers serve as the
on-premises sites, and the clients submitting updates to the
system are Remote Terminal Units (RTUs) and Programmable
Logic Controllers (PLCs) that interact with the power grid
equipment, and Human Machine Interfaces (HMIs) that oper-
ators use to issue commands and view the system state.

The Spire 1.2 implementation already includes a SCADA
master application and RTU/PLC proxies. Its system com-
ponents communicate over the Spines intrusion-tolerant net-
work [34], and updates are ordered using the Prime intrusion
tolerant replication engine [38]. An intrusion-tolerant commu-
nication library (the Intrusion-Tolerant Reliable Channel, or
ITRC) manages communications between client proxies and
the control center servers, as well as between Prime and the
SCADA Master application.

A. Confidentiality-Preserving Intrusion Tolerant Middleware

Confidential Spire adapts and extends Spire’s intrusion-
tolerant communication library into a Confidentiality-
Preserving Intrusion-Tolerant Middleware (CP-ITM). While
the CP-ITM serves the same basic functions as Spire’s ITRC,
it additionally supports encryption and decryption of client
updates, the creation (and encryption) of periodic checkpoints,
and a new checkpoint-based state transfer protocol. The CP-
ITM is intended to be a generic middleware that can handle
client communication and state management/transfer for any
application.

B. Encryption and Decryption Details

The CP-ITM encrypts client requests before injecting them
into Prime and decrypts them before delivering them to the
SCADA Master application. For each client, the CP-ITM

9



maintains a shared symmetric encryption key and a pseudo-
random function key (which can be periodically refreshed as
described in Section V-D, though this is not yet implemented).
To encrypt a request, the CP-ITM generates a hash-based
message authentication code (HMAC) based on the update
request itself and the shared pseudorandom function key for
that client, following the approach of [30]. Then, the client
update request is encrypted using AES-256 in CBC mode with
this HMAC as the initialization vector (IV) and the client’s
shared encryption key.

Since the encryption key and pseudorandom function key
for each client are shared across all control center CP-ITM
instances, they all generate the same encrypted result for a
client request by using the above method. We note that even if
a client issues the same request multiple times, it will not result
in the same encrypted output, as the client sequence number
is included in the message content over which the HMAC is
generated and in the content that is encrypted. The CP-ITM
can decrypt encrypted content using the shared encryption key
for that client and the IV (HMAC) which is included in the
message header as cleartext.

C. Checkpointing and State Transfer Implementation

When the CP-ITM running in a control center replica
determines that a new checkpoint is needed (i.e. that C
updates have been ordered since the previous checkpoint),
it requests the SCADA master to package and send back a
snapshot of the current state of the system. Before the CP-
ITM multicasts this checkpoint to other replicas, it encrypts the
checkpoint and the associated ordered sequence number using
the same method as described in Section VI-B. Every CP-
ITM instance maintains an additional shared pseudorandom
key and encryption key (in addition to the client key pairs)
for encrypting and decrypting the checkpoints (which can
be hardware-protected, as discussed in Section V-D). In this
way, all control center CP-ITM instances can independently
generate identical encrypted checkpoints.

When a replica requires a state transfer, its CP-ITM collects
the correct encrypted checkpoint and the correct set of updates
following the protocol in Section V-C. When the CP-ITM is
done collecting, if it is running on a data center replica, then
it simply stores the encrypted checkpoint and updates and
continues operations in normal status. However, if the CP-ITM
is running on a control center replica, it decrypts and sends the
correct checkpoint to the SCADA Master to apply, and then
decrypts and sends each collected update request in the order
of their sequence numbers to the SCADA Master. Finally, it
does the same with any new ordered encrypted client requests
that were pending while waiting to collect state, and resumes
normal operations.

VII. EVALUATION

We first evaluate the overhead of providing confidentiality in
our approach by comparing our Confidential Spire implemen-
tation to Spire 1.2 [9], and then evaluate our implementation’s
performance under particular types of attacks.

For all experiments, we emulate a power grid SCADA setup
with control centers and data centers spanning about 250
miles of the US East Coast. Experiments are conducted in
a local area network, but latencies between sites are emulated
to reflect this geographic distribution. We emulate ten power
grid substations each injecting updates via proxies at a rate of
one per second per substation.

A. Performance Overhead of Confidentiality

To assess the performance overhead of our approach, we
compare Confidential Spire to Spire 1.2 in two different con-
figurations: one tolerating one compromised replica (f = 1)
and one tolerating two compromised replicas (f = 2). Both
configurations additionally tolerate a proactive recovery and
disconnected site to support our full threat model.

We consider configurations using two control center sites
and two data center sites, as these were shown to be the most
practical for Spire [4]. The 4-site configurations are also the
most reasonable for Confidential Spire, as they allow us to use
fewer total replicas compared to configurations using only one
data center, but using additional data center sites beyond two
does not provide further benefits, due to the requirements on
the number of replicas per control center (see Table I).

Therefore, for the f = 1 configurations, we evaluate
configuration “3+3+3+3” (three replicas in each of 2 control
centers and 2 data centers) for Spire 1.2 and configuration
“4+4+3+3” (four replicas in each of 2 control centers and 3
replicas in each of 2 data centers) for Confidential Spire. For
tolerating 2 simultaneous intrusions, we use the “5+5+5+4”
configuration for Spire 1.2, and the equivalent “6+6+5+4”
configuration in Confidential Spire. We ran each configuration
for 1 hour and report the resulting update latencies in Table II.

From the results for the f = 1 configurations, we can
see that Confidential Spire adds a small constant latency
overhead of about 2ms. This increase in overhead is small
because it avoids adding any new wide-area communication
on the critical path compared with Spire 1.2. While Con-
fidential Spire requires control center replicas to cooperate
to generate a threshold signature on each incoming client
request, it is always possible for a replica to collect the
needed f + 1 signature shares from replicas within its own
site, since each on-premises site contains 2f + 2 replicas.
Hence, Confidential Spire only utilizes the local-area network
for the added communications. The sum of computational
overhead, to compute the signatures and to encrypt/decrypt the
requests, and the local-area network communications overhead
is small compared to the multiple rounds of wide-area network
message exchanges needed for the agreement protocol. While
Confidential Spire also adds computation and communication
for checkpoint creation and exchange, this occurs off the
critical path of request processing and thus does not have a
significant effect on latency.

In the f = 2 case, we can see that Confidential Spire’s
“6+6+5+4” configuration adds somewhat more overhead, in-
creasing average latency by about 6.8ms as compared to
Spire’s “5+5+5+4” configuration. This is about 3.5 times the

10



f Setup Avg
Latency

%
<100ms

%
<200ms

0.1
percentile

1
percentile

50
percentile

99
percentile

99.9
percentile

Spire 1 3+3+3+3 51.7 ms 100 100 39.7 ms 41.0 ms 51.7 ms 62.4 ms 63.9 ms
2 5+5+5+4 54.4 ms 100 100 42.5 ms 43.6 ms 54.4 ms 65.6 ms 67.7 ms

Confidential
Spire

1 4+4+3+3 53.6 ms 100 100 41.6 ms 42.8 ms 53.6 ms 64.2 ms 66.1 ms
2 6+6+5+4 61.2 ms 100 100 46.0 ms 47.5 ms 61.1 ms 78.4 ms 86.2 ms

TABLE II
SPIRE AND CONFIDENTIAL SPIRE PERFORMANCE ON LAN WITH EMULATED LATENCIES BETWEEN SITES FOR 36000 UPDATES OVER 1 HOUR

average latency increase noted above in the f = 1 case. This
can be explained by increasing communication overheads, due
to the all-to-all communication patterns, as the number of
replicas increases. However, this is still acceptable, as the
results show that our Confidential Spire implementation still
meets the timeliness requirements for power grid SCADA
systems (processing updates within 100ms), even while tol-
erating 2 intrusions. The observed 99.9 percentile latency
is 86.2ms, and no update crossed the 100ms threshold. We
expect that these can even be further reduced through improved
engineering of the communication protocols to reduce the rate
at which traffic is sent, and of the cryptographic mechanisms
to reduce processing overheads. As shown by [36] and noted
in [4], the majority of the advantages of proactive recovery
can be obtained by tolerating two intrusions, instead of only
one, making “6+6+5+4” a useful configuration to support.

B. Attack Evaluation of Confidential Spire

We next evaluate Confidential Spire’s ability to meet the
timeliness requirements of power grid SCADA systems while
under attack. Such systems require responses within 100ms
in the normal case but may tolerate latencies up to 200ms in
certain situations [10], [11]. We consider the effect of proactive
recovery on performance, as well as network attacks that cause
a site to be disconnected. While we do not explicitly evaluate
malicious actions by protocol replicas, we note that many types
of malicious actions closely resemble proactive recovery of the
leader replica in terms of performance: once the leader takes
a malicious action (e.g. sending conflicting messages), a view
change is triggered to elect a new leader.2 The Confidential
Spire “4+4+3+3” configuration’s performance under all com-
binations of recoveries and site disconnections is illustrated
in Figure 2. We can see that proactive recovery of a leader
replica, which occurs between 1:00 and 1:30, causes one client
update to spike over 100ms, when the system must perform
a view change. Recovery of a non-leader replica (the more
common case), which occurs between 3:15 and 3:45, has
almost no impact on performance. In this case, we only see
one client update with higher than average latency, but it is
still below the 100ms threshold.

Similarly, there is no latency spike when we disconnect
a non-leader site, at 4:19, since there is no view change.
However, we can see a few client updates spiking, with
one rising above 100ms, though still under 200ms, when the

2It is possible to reduce the performance impact of proactive recovery by
preemptively changing the leader, but since our implementation does not do
that, our experimental results accurately reflect the case where timeouts must
expire before changing the leader.

Fig. 2. Latency in the presence of proactive recoveries and site disconnections.

leader-site is disconnected at 2:00, since this requires a view
change. We also note a small (but still acceptable) increase in
average latency for the duration of the time either the leader or
non-leader site is disconnected in this experiment, as in both
cases it renders the fastest quorum of replicas unavailable, and
requires communication with a more distant site to occur on
the critical path. However, when reconnecting a disconnected
site, we can see significant latency spikes, crossing the 200ms
threshold and reaching up to 450ms (e.g. at 2:30 and 5:00).
This is due to the large number of checkpoint messages and
update messages being sent over the network from the correct
replicas to help catch up the lagging replicas in the site which
just rejoined the network. While this is a limitation of our
current implementation, we note that this is not an inherent
limitation of the protocol, and should be fixable by engineering
a better message flow control for the checkpoint messages
and update messages that are being sent to catch up the other
replicas. Overall, these results indicate that, even with the
overhead of providing confidentiality, our system can provide
the necessary performance, even while under attack.

VIII. CONCLUSION

We presented a new partially cloud-based BFT architecture
that can leverage offsite data centers to tolerate simultaneous
network attacks and system compromises, without exposing
confidential system state or proprietary algorithms to data
center servers. In case on-premises servers are compromised,
we also extended our basic protocol to include a key renewal
mechanism that limits the amount of confidential information
that can be disclosed. We implemented and evaluated our new
model in Confidential Spire, a SCADA system for the power
grid, and found that our new architecture meets SCADA timing
requirements with only a small increase in overall latency to
provide confidentiality guarantees.

11



REFERENCES

[1] W. Zhao and F. E. Villaseca, “Byzantine fault tolerance for electric
power grid monitoring and control,” in Int. Conf. Embedded Software
and Systems, July 2008, pp. 129–135.

[2] N. A. C. Medeiros, “A fault- and intrusion- tolerant architecture for EDP
distribuicao SCADA system,” Master’s thesis, Univ. of Lisbon, 2011.

[3] J. Kirsch, S. Goose, Y. Amir, D. Wei, and P. Skare, “Survivable SCADA
via intrusion-tolerant replication,” IEEE Trans. Smart Grid, vol. 5, no. 1,
pp. 60–70, Jan 2014.

[4] A. Babay, T. Tantillo, T. Aron, M. Platania, and Y. Amir, “Network-
attack-resilient intrusion-tolerant SCADA for the power grid,” in 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Luxembourg City, Luxembourg, June 2018, pp. 255–
266.

[5] A. Nogueira, M. Garcia, A. Bessani, and N. Neves, “On the challenges
of building a BFT SCADA,” in 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2018, pp.
163–170.

[6] A. Bessani, J. Sousa, and E. E. P. Alchieri, “State machine replication for
the masses with BFT-SMART,” in 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2014, pp. 355–362.

[7] “bft-smart,” https://github.com/bft-smart, retrieved 2020-11-23.
[8] A. Babay, J. Schultz, T. Tantillo, and Y. Amir, “Toward an intrusion-

tolerant power grid: Challenges and opportunities,” in IEEE 38th In-
ternational Conference on Distributed Computing Systems (ICDCS),
Vienna, Austria, July 2018, pp. 1321–1326.

[9] “Spire: Intrusion-tolerant SCADA for the power grid,” http://www.dsn.
jhu.edu/spire/, retrieved 2020-11-24.

[10] IEEE, “Ieee standard communication delivery time performance require-
ments for electric power substation automation,” IEEE Std 1646-2004,
pp. 1–24, 2005.

[11] J. Deshpande, A. Locke, and M. Madden, “Smart choices for the smart
grid,” Alcatel-Lucent Technolgy White Paper, 2011.

[12] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, Nov. 2002.

[13] M. Correia, N. F. Neves, and P. Verissimo, “How to tolerate half less
one byzantine nodes in practical distributed systems,” in IEEE Int. Symp.
Reliable Distributed Systems (SRDS), Oct 2004, pp. 174–183.

[14] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
append-only memory: Making adversaries stick to their word,” SIGOPS
Oper. Syst. Rev., vol. 41, no. 6, pp. 189–204, Oct. 2007.

[15] M. Correia, N. Neves, and P. Verissimo, “BFT-TO: Intrusion tolerance
with less replicas,” The Computer Journal, vol. 56, no. 6, pp. 693–715,
June 2013.

[16] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo,
“Efficient byzantine fault-tolerance,” IEEE Transactions on Computers,
vol. 62, no. 1, pp. 16–30, Jan 2013.

[17] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Byzantine replication under
attack,” in IEEE Int. Conf. Dependable Systems and Networks (DSN),
June 2008, pp. 197–206.

[18] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making
byzantine fault tolerant systems tolerate byzantine faults,” in USENIX
Symp. Networked Syst. Design and Implem. (NSDI), 2009, pp. 153–168.

[19] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin one’s
wheels? byzantine fault tolerance with a spinning primary,” in IEEE Int.
Symp. Reliable Distributed Systems (SRDS), Sept 2009, pp. 135–144.

[20] Z. Milosevic, M. Biely, and A. Schiper, “Bounded delay in byzantine-
tolerant state machine replication,” in IEEE Int. Symp. Reliable Dis-
tributed Systems (SRDS), Sept 2013, pp. 61–70.

[21] T. Roeder and F. B. Schneider, “Proactive obfuscation,” ACM Trans.
Comput. Syst., vol. 28, no. 2, pp. 4:1–4:54, Jul. 2010. [Online].
Available: http://doi.acm.org/10.1145/1813654.1813655

[22] P. Sousa, A. Bessani, M. Correia, N. F. Neves, and P. Verissimo, “Highly
available intrusion-tolerant services with proactive-reactive recovery,”
IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 4, pp. 452–465, 2010.

[23] A. N. Bessani, E. P. Alchieri, M. Correia, and J. S. Fraga, “DepSpace:
A byzantine fault-tolerant coordination service,” in Proceedings of
the 3rd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2008, ser. Eurosys ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 163–176. [Online]. Available:
https://doi.org/10.1145/1352592.1352610

[24] R. Padilha and F. Pedone, “Belisarius: BFT storage with confidentiality,”
in IEEE 10th International Symposium on Network Computing and
Applications, 2011, pp. 9–16.

[25] R. Vassantlal, “Confidential BFT state machine replication,” Master’s
thesis, Universidade de Lisboa, 2019. [Online]. Available: http:
//hdl.handle.net/10451/40304

[26] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Depsky:
dependable and secure storage in a cloud-of-clouds,” Acm transactions
on storage (tos), vol. 9, no. 4, pp. 1–33, 2013.

[27] A. N. Bessani, R. Mendes, T. Oliveira, N. F. Neves, M. Correia,
M. Pasin, and P. Verissimo, “Scfs: A shared cloud-backed file system.”
in USENIX Annual Technical Conference. Citeseer, 2014, pp. 169–180.

[28] D. R. Matos, M. L. Pardal, G. Carle, and M. Correia, “Rockfs: Cloud-
backed file system resilience to client-side attacks,” in Proceedings of
the 19th International Middleware Conference, 2018, pp. 107–119.

[29] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin,
“Separating agreement from execution for byzantine fault tolerant
services,” in Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, ser. SOSP ’03. New York, NY, USA:
Association for Computing Machinery, 2003, p. 253–267. [Online].
Available: https://doi.org/10.1145/945445.945470

[30] S. Duan and H. Zhang, “Practical state machine replication with con-
fidentiality,” in IEEE 35th Symposium on Reliable Distributed Systems
(SRDS), 2016, pp. 187–196.

[31] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and
M. Dahlin, “All about eve: Execute-verify replication for multi-core
servers,” in 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12). Hollywood, CA: USENIX Association,
Oct. 2012, pp. 237–250. [Online]. Available: https://www.usenix.org/
conference/osdi12/technical-sessions/presentation/kapritsos

[32] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh,
K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco,
and J. Yellick, “Hyperledger fabric: A distributed operating system
for permissioned blockchains,” in Proceedings of the Thirteenth
EuroSys Conference, ser. EuroSys ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3190508.3190538

[33] D. Obenshain, T. Tantillo, A. Babay, J. Schultz, A. Newell, M. E. Hoque,
Y. Amir, and C. Nita-Rotaru, “Practical intrusion-tolerant networks,” in
IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS), June 2016, pp. 45–56.

[34] “The Spines Messaging System,” www.spines.org, retrieved 2020-12-09.
[35] P. Sousa, N. F. Neves, and P. Verissimo, “Hidden problems of asyn-

chronous proactive recovery,” in Proceedings of the Workshop on Hot
Topics in System Dependability, 2007.

[36] M. Platania, D. Obenshain, T. Tantillo, R. Sharma, and Y. Amir,
“Towards a practical survivable intrusion tolerant replication system,”
in 2014 IEEE 33rd International Symposium on Reliable Distributed
Systems. IEEE, 2014, pp. 242–252.

[37] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine replication
under attack,” IEEE Trans. Dependable and Secure Computing, vol. 8,
no. 4, pp. 564–577, July 2011.

[38] “Prime: Byzantine replication under attack,” www.dsn.jhu.edu/prime,
retrieved 2020-12-09.

[39] T. Tantillo, “Intrusion-tolerant SCADA for the power grid,” Ph.D.
dissertation, Johns Hopkins University, 2018.

[40] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint
Arch., vol. 2016, no. 86, pp. 1–118, 2016.

12


