
Fast	
  Total	
  Ordering	
  for	
  Modern	
  Data	
  Centers	
  
Amy	
  Babay,	
  Yair	
  Amir	
  –	
  {babay,	
  yairamir}@cs.jhu.edu	
  

Johns	
  Hopkins	
  University	
  Distributed	
  Systems	
  and	
  Networks	
  Lab	
  –	
  www.dsn.jhu.edu	
  

Background:	
  Totally	
  Ordered	
  MulOcast	
  
•  Agreed	
  Delivery	
  (Total	
  Order):	
  all	
  group	
  members	
  
deliver	
  messages	
  in	
  the	
  same	
  order	
  

•  Safe	
  Delivery	
  (Stability):	
  a	
  group	
  member	
  only	
  
delivers	
  a	
  message	
  aRer	
  all	
  other	
  members	
  have	
  
received	
  it	
  (and	
  will	
  deliver	
  it,	
  unless	
  they	
  crash)	
  

Why	
  Another	
  Protocol?	
  
•  Network	
  trade-­‐offs	
  changed	
  

-  Throughput	
  improvements	
  outpaced	
  latency	
  
improvements	
  

-  Buffering	
  in	
  switches	
  
•  ExisOng	
  token-­‐based	
  protocols	
  don’t	
  fully	
  uOlize	
  
modern	
  networks	
  

Accelerated	
  Ring	
  Protocol	
  
•  Key	
  difference	
  from	
  previous	
  protocols:	
  
parOcipants	
  can	
  pass	
  the	
  token	
  before	
  they	
  finish	
  
mulOcasOng	
  
-  Correct	
  semanOcs	
  maintained	
  through	
  careful	
  

protocol	
  modificaOons	
  

1-­‐Gigabit	
  Network	
  Results	
   10-­‐Gigabit	
  Network	
  Results	
  

Can	
  simultaneously	
  improve	
  throughput	
  by	
  25-­‐40%	
  
and	
  latency	
  by	
  25-­‐40%;	
  reaches	
  6	
  Gbps	
  with	
  8850-­‐
byte	
  datagrams	
  (daemon-­‐based)	
  

	
  

Background:	
  Token-­‐based	
  Protocols	
  
•  ParOcipants	
  pass	
  a	
  token	
  in	
  a	
  logical	
  ring	
  
•  The	
  token	
  carries	
  the	
  sequence	
  number	
  of	
  the	
  last	
  
message	
  sent	
  

•  A	
  parOcipant	
  mulOcasts	
  messages	
  while	
  it	
  holds	
  
the	
  token,	
  then	
  updates	
  the	
  token	
  and	
  passes	
  it	
  on	
  

Can	
  simultaneously	
  improve	
  throughput	
  by	
  45%	
  and	
  
latency	
  by	
  30%;	
  reaches	
  network	
  saturaOon	
  

	
  

A"

B"

C"

Time%

2% 3%1% 4% 5% 5%

12% 13%11% 14% 15% 15%

7% 8%6% 9% 10% 10%

17% 18%16% 19% 20% 20%

(a) Original Ring Protocol

A"

B"

C"

2% 5%1% 3% 4% 5%

7% 10%6% 8% 9% 10%

12% 15%11% 13% 14% 15%

17% 20%16% 18% 19% 20%

Time%

(b) Accelerated Ring Protocol

Figure 1: Example execution with 3 participants sending a total of 20 data messages in the original Ring protocol and the
Accelerated Ring protocol. Data messages are shown as white boxes, while token messages are shown as black boxes. The
number in each box represents the sequence number on a data message and the sequence field on the token.

1. Agreed delivery guarantees that messages delivered within
a particular configuration are delivered in the same total
order by all members of that configuration. The total or-
der respects causality.

2. Safe delivery guarantees that if a participant delivers a
message in some configuration, each other member of the
configuration has received that message and will deliver
it, unless it crashes. This property is often called stability.

Note that the Accelerated Ring protocol can also provide
FIFO and Causal delivery, but the delivery latency is similar
to that of Agreed delivery. Since the guarantees of Agreed
delivery subsume those of FIFO and Causal delivery, these
services are not discussed separately.

The complete Accelerated Ring protocol consists of an
ordering protocol and a membership algorithm. Since the
Accelerated Ring protocol directly uses the membership al-
gorithm of GNOCS, which is based on the Totem member-
ship algorithm [5, 7], we focus on the ordering protocol,
which is novel, in this paper. However, both components are
necessary to support the above system model and service se-
mantics.

3. Accelerated Ring Protocol
The following description specifies the normal-case opera-
tion of the Accelerated Ring protocol with a static set of par-
ticipants. We assume that the membership of the ring has
been established, and the first regular token has been sent.
Participant failures, network partitions and merges, and to-
ken losses are not considered here, as they are handled by
the membership algorithm. The membership algorithm is ex-
actly the algorithm used by the variant of the Totem Ring
protocol [5, 7] that is implemented in GNOCS.

3.1 Overview
Figure 1 shows an example execution with three participants
sending a total of twenty messages in the original Totem
Ring protocol (Figure 1a) and the Accelerated Ring protocol
(Figure 1b).

As shown in Figure 1a, in the original protocol, each
participant sends five messages when it receives the token
and then passes the token to the next participant. The token
carries the sequence number of the last message that was
sent, so the next participant knows exactly which sequence
numbers it can assign to its messages. For example, when
Participant B receives the token with sequence number 5
from Participant A, it can send message 6, since it knows
that no sequence number higher than 5 has been assigned to
a message.

In the accelerated protocol, each participant similarly
sends five data messages upon receiving the token, but it
sends some of those messages after passing the token to the
next participant. In the example in Figure 1b, each partici-
pant sends its first two data messages, then sends the token,
and then sends its last three data messages. Note, however,
that the sequence numbers carried by the token are exactly
the same as in the original protocol. Even though Partici-
pant A does not send messages 3, 4, and 5 until after it has
passed the token to Participant B, it has already decided ex-
actly which messages it will send. Therefore, the token that
Participant B receives still carries the sequence number 5, re-
flecting all the messages that Participant A will send during
the current rotation of the token around the ring (also called
a token round). Just as in the original protocol, Participant
B learns that no sequence number higher than 5 has been
assigned to a message and can send messages with sequence
numbers starting at 6. Unlike protocols that improve perfor-
mance by providing a speculative result before reaching a

4 2015/3/26

A	
  simple,	
  powerful	
  improvement	
  that	
  allows	
  a	
  useful	
  protocol	
  to	
  scale	
  	
  
three	
  orders	
  of	
  magnitude	
  over	
  20	
  years.	
  (www.spread.org)	
  

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

4"

4.5"

0" 200" 400" 600" 800" 1000" 1200"

La
te
nc
y(
(m

s)
(

Agreed(Delivery(Throughput((Mbps)(

Original"Spread"

Original"
Daemon9based"

Original"Library9
based"

Accelerated"
Spread"

Accelerated"
Daemon9based"

Accelerated"
Library9based"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

0" 1000" 2000" 3000" 4000" 5000"

La
te
nc
y(
((m

s)
(

Agreed(Delivery(Throughput((Mbps)(

Original"Spread;"
1350"byte"payloads"

Original"Daemon>
based;"1350"byte"
payloads"
Original"Library>
based;"1350"byte"
payloads"
Accelerated"
Spread;"1350"byte"
payloads"
Accelerated"
Daemon>based;"
1350"byte"payloads"
Accelerated"
Library>based;"1350"
byte"payloads"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

0" 2000" 4000" 6000" 8000"

La
te
nc
y(
(m

s)
(

Agreed(Delivery(Throughput((Mbps)(

Accelerated"
Spread;"1350"byte"
payloads"
Accelerated"
Daemon=based;"
1350"byte"payloads"
Accelerated"
Library=based;"1350"
byte"payloads"
Accelerated"
Spread;"8850"byte"
payloads"
Accelerated"
Daemon=based;"
8850"byte"payloads"
Accelerated"
Library=based;"8850"
byte"payloads"0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

10"

0" 200" 400" 600" 800" 1000" 1200"

La
te
nc
y(
(m

s)
(

Safe(Delivery(Throughput((Mbps)(

Original"Spread"

Original"
Daemon:based"

Original"Library:
based"

Accelerated"
Spread"

Accelerated"
Daemon:based"

Accelerated"
Library:based"


