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Abstract—Even with the rise of cyberattacks on high-value sys-
tems, we still do not see widespread adoption of intrusion-tolerant
replication protocols, despite their long history in the research
community and potential to support the needed resiliency. A
key barrier is that deploying and managing intrusion-tolerant
systems in practice requires substantial investment in additional
physical infrastructure, as well as specialized technical expertise.

In this work, we address this gap by designing a hybrid
management model: while the system operator manages their
application, a service provider hosts and manages the intrusion-
tolerant replication service using cloud infrastructure. We de-
velop the protocols to support this system architecture, without
revealing application state, algorithms, or client information to
the cloud provider, even when application servers are compro-
mised. We implement and evaluate our approach in the context of
an industrial control system and show that it meets the system’s
performance and resilience requirements.

I. INTRODUCTION

Cyberattacks on high-value systems continue to increase,
with power grid, pipeline, and hospital systems (among others)
experiencing high profile attacks [16], [30], [2]. In this hostile
environment, intrusion-tolerant or Byzantine Fault Tolerant
(BFT) replication can improve systems’ resilience, allowing
them to operate correctly even while partially compromised by
an attacker [13]. However, despite a long history of research
on BFT replication, these techniques have not been widely
adopted in industry.

There has been progress in making BFT replication easier
to integrate into practical systems, with libraries such as
UpRight [14] and BFT-SMaRt [9], [12]. However, a barrier to
deployment is that integrating an existing application with a
BFT library is not enough to withstand sophisticated attacks. A
practical intrusion-tolerant system must not only employ BFT
agreement, but must also use proactive recovery to periodically
refresh system replicas [13], [38], employ diversity to ensure
replicas cannot be compromised by shared vulnerabilities [20],
[33], and be deployed across multiple geographic sites to
overcome sophisticated network attacks that can isolate a
site [7]. Such a system requires a relatively large number of
diverse replicas distributed over multiple diverse geographic
sites, and becomes complex to manage and expensive to build.

For critical infrastructure applications (e.g. power grid,
pipeline, water treatment, and healthcare systems), it is un-
likely that each system operator will be able to build such a
system for themselves. Moreover, even if this was feasible,

a system built by any single operator has inherent fragility
in that the entire system is under a single management
domain, and therefore subject to shared vulnerabilities and/or
misconfigurations. In practice, a single-operator system is also
likely to be more limited in its geographic span and physical
redundancy due to the cost of building dedicated infrastructure.
On top of these challenges, maintaining and managing the
system over time requires specialized expertise to reason about
the underlying BFT replication protocols.

Our objective is to make intrusion tolerance accessible to
system operators by allowing operators to essentially purchase
intrusion-tolerant-replication-as-a-service from a cloud service
provider. We aim to make it possible for operators to deploy
extremely resilient systems, while limiting the amount of
new physical infrastructure and new software components or
diverse variants that they need to deploy and manage.

Our core contribution is to introduce a hybrid management
model, in which system operators maintain control of their
applications but use a generic intrusion-tolerant replication
service managed by a cloud service provider to provide the
needed resilience. We show that this approach significantly
reduces the management demands on the system operator,
while withstanding a highly demanding threat model that
includes both intrusions and network attacks. In fact, the
hybrid management model further enhances resilience by
introducing management diversity. We show that this makes it
possible to tolerate a new class of failure that affects an entire
management domain.

We define an intrusion-tolerant ordering and encrypted
storage service that can be provided by a cloud-managed
BFT Replication Engine. The management and physical de-
ployment of this service is completely decoupled from the
applications it serves. Neither the system operator nor the
cloud provider needs to know any internal details of the other:
each simply needs to know a single public key to use to
authenticate received messages, and a single multicast address
to send messages to.

This decoupling makes it feasible for the cloud service
provider to build a highly resilient BFT engine by amor-
tizing costs over many applications and system operators
(customers). The BFT engine can be physically hosted in
cloud data centers that are distributed over a broad geographic
area and connected redundantly via multiple Internet Service
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Providers (ISPs). The service provider also has an incentive
to invest in expensive diversity techniques, such as N-version
programming [5] to create diverse BFT engine variants, since
these variants can be used for many applications. Moreover,
as the service provider improves their BFT engine, all of
their customers can immediately benefit with no additional
effort. Because management is decoupled, the service provider
can perform software upgrades of the BFT engine, improving
performance and fixing bugs, without any involvement from
or coordination with the operators they serve.

At the same time, this decoupling allows system operators
to retain full control over their applications. For many high-
value applications, running the application itself in the cloud is
infeasible or undesirable. Some systems need specialized hard-
ware or client communication infrastructure (e.g. clients that
do not communicate over IP) that the cloud infrastructure does
not support, while for many others, operators are unwilling
to store potentially sensitive data in the cloud. Our approach
allows system operators to host their applications on-premises
in sites and servers they fully control, and enforces strict
confidentiality of the system operator’s data: only encrypted
state and requests are stored in the cloud. No application state,
state manipulation algorithms, or client information is exposed
to the cloud. This is critical to make the use of the cloud
acceptable in practice [24], [6].

To realize this vision, we design a new system architecture
and protocols to support our hybrid management model and
intrusion-tolerant ordering and encrypted storage service. To
provide a simple interface based on a single public key, our
architecture employs threshold signatures to authenticate all
messages sent between the cloud and application domains.
However, this requires developing new protocols to process
requests, address replay attacks that become possible in this
model, and enable transferring encrypted state checkpoints to
the cloud and retrieving them as needed to recover from site
failures, network attacks, or management domain failures.

The main contributions of our work are:

• We define a new hybrid management model for intrusion-
tolerant systems, where system operators control their
applications, but leverage intrusion-tolerant ordering and
encrypted storage services from a cloud provider.

• We design a concrete system architecture that implements
the hybrid management model and enforces the confiden-
tiality of application state, algorithms, and client request
patterns.

• We show that this system architecture can provide re-
silience to a broad threat model that includes intrusions
and network attacks, and is able to recover from man-
agement domain failures that affect all replicas hosted by
the system operator (on-premises).

• We implement and evaluate the architecture in the context
of an industrial control application. We show that, while
it increases latency by about 9ms (18%) compared to a
fully system-operator-managed BFT system, it still meets
the application’s performance requirements.

II. BACKGROUND AND RELATED WORK

A. BFT Basics

Byzantine Fault Tolerant (BFT) replication protocols enable
systems to work correctly in the presence of compromised
servers [13]. These protocols are based on state machine
replication [37]: replicas run an agreement protocol to estab-
lish a total order on requests submitted to the system, and
all correct replicas execute requests in the determined order.
Traditionally, BFT replication protocols require 3f+1 total
replicas to tolerate f compromised/Byzantine replicas [13].

Proactive Recovery: Basic BFT replication only supports
f compromises over the entire lifetime of the system. To
support long system lifetimes, BFT systems employ proactive
recovery, periodically taking down each replica and restoring
it to a known good (non-compromised) state [13], [38]. Since a
replica becomes unavailable while undergoing proactive recov-
ery, guaranteeing continuous availability in the presence of f
compromises and k simultaneous proactive recoveries requires
increasing the total number of replicas to 3f+2k+1 [38].

Network Attacks: Recent work has considered the impact
of network attacks on BFT replication [7], [24]. To withstand
sophisticated network attacks that can target and isolate a site
(e.g. [42], [21]), replicas must be deployed across at least
three geographically distributed sites: otherwise, an attack that
isolates a single site can disconnect a majority of replicas,
preventing the system from processing requests (at least 2f+
k+1 correct connected replicas are needed in a system with
3f+2k+1 total replicas) [7]. While multi-site architectures
distributing replicas across three or more sites can guarantee
both network-attack resilience and intrusion tolerance, they
require a relatively large infrastructure investment: the work
in [7] shows that 18 replicas distributed across three sites (or
12 replicas across four sites) are needed to simultaneously
tolerate one compromise (f=1) and one site disconnection
while supporting one proactive recovery. We aim to support
this level of resilience, while minimizing complexity and cost
for the system operator.

B. Separating Agreement from Execution

Our hybrid-management approach builds on work that sep-
arates agreement from execution by dividing replicas into
an agreement cluster, which runs a BFT protocol to totally
order client requests, and an execution cluster, which executes
requests in the order determined by the agreement cluster and
generates client responses [44]. This separation also makes
it possible to insert a privacy firewall between the execution
and agreement clusters to prevent compromised replicas from
leaking confidential data [44], [17]. The privacy firewall filters
messages to prevent confidential data from leaving the execu-
tion cluster. UpRight [14], Eve [22], HyperLedger Fabric [4],
and Spider [18] also separate agreement from execution, and
some recent BFT protocols separate dissemination of requests
from ordering [23], [15], [39].

We similarly separate agreement from execution, but in-
troduce the separation of management; our version of the

2



agreement cluster (BFT engine) is managed by the cloud
service provider, while our execution cluster (application) is
managed by the system operator. This introduces new privacy
concerns, since system operators are often unwilling to expose
confidential data, algorithms, or client information to the
service provider managing the replication service. The work
in [44] and [17] partially addresses privacy by encrypting
client requests and replies and using a privacy firewall to filter
messages. However, in those works, only the data itself is
protected. Client identities, locations, and request patterns are
not considered to be confidential, and clients communicate di-
rectly with the agreement cluster. In our model, the agreement
cluster (BFT engine) runs in the cloud and should not have
access to the system’s clients, or any information about them.

In addition, we target a stronger threat model that in-
cludes network attacks and management domain failures. This
changes the division of responsibilities between clusters by
requiring cloud/agreement replicas to store (encrypted) state.

C. Cloud-Based BFT and Confidentiality

Prior work has used the cloud to reduce costs and/or
simplify deployment for BFT systems. However, none of the
existing works simultaneously (1) provide intrusion tolerance
for arbitrary state machine replication applications (2) cleanly
separate management of the BFT replication engine from the
application, and (3) enforce confidentiality of application state,
logic, and client IDs and request patterns.

Some prior work has investigated fully cloud-based BFT
replication to make deployment easier (e.g. BFT-Dep [26]) or
improve performance (e.g. Spider [18]), but these works as-
sume the system operator is not concerned with confidentiality
and is able to run the entire application in the cloud.

Other work has considered the confidentiality implications
of cloud-based BFT systems, developing secret-sharing ap-
proaches to maintain confidentiality for BFT-replicated ap-
plications in the cloud (e.g. DepSpace[10], Belisarius [31],
and COBRA [43]). These approaches have been used to
build BFT-replicated storage systems, such as DepSky [8],
SCFS [11], and RockFS [28]. However, these systems do not
support arbitrary state machine replication applications. Prac-
tical secret-sharing schemes today support limited operations
such as key-value storage [43], tuple space operations [10], or
addition on stored values [31]. One possibility is to use a BFT
storage solution to replicate encrypted state and consider the
application as a client of the storage system, but in that case
the application itself is not intrusion tolerant (and techniques
like the ones we propose would be needed to change that).
Alternatively, secure multiparty computation or homomorphic
encryption could enable general operations on encrypted data,
but these approaches are computationally expensive and, more
fundamentally, do not keep the application logic confidential
(only the data it operates on). Recent approaches using Trusted
Execution Environments (TEEs) to provide confidential com-
puting in the cloud via encrypted VMs [36] could keep both
data and logic confidential. However, this requires additional
assumptions on trusted hardware, and does not resolve the

question of who is responsible for managing the encrypted
VMs in the cloud.

To provide intrusion tolerance for general applications,
while offloading part of the system management to a cloud
provider, the work in [24] developed an architecture for par-
tially cloud-based BFT systems. This approach is the closest
to ours, in that management of the physical infrastructure
is split between a system operator and an external service
provider. The system operator manages on-premises sites,
where they host replicas that communicate with clients, ex-
ecute application logic, and participate in the BFT replication
protocol. The service provider manages additional cloud sites,
which host replicas that participate in the BFT replication
protocol and store encrypted state. This approach supports
multi-site network-attack-resilient configurations without re-
quiring system operators to build and manage additional sites,
and maintains confidentiality of application state, application
logic, and client locations. But, it still exposes client IDs and
request patterns to the cloud, and, even more importantly is
an integrated system, where the assumption is that the system
operator manages all of the software and simply uses cloud
resources to avoid deploying additional physical sites.

III. ARCHITECTURE OVERVIEW

Our architecture is designed to provide intrusion tolerance
for any application that can work with the state machine
replication model. Similar to [24], we consider on-premises
sites that are managed by system operators, and cloud sites
that are managed by service providers. Different from [24],
we enforce a strict separation of responsibilities between the
cloud and on-premises sites, as shown in Figure 1. The service
provider is responsible for deploying and managing the BFT
Replication Engine which runs only in the cloud. The BFT
Replication Engine consists of a set of cloud replicas (CRs)
running a BFT replication protocol (any one of the many

Fig. 1: Decoupled Intrusion-Tolerant Architecture

3



existing BFT protocols can be used). It provides an intrusion-
tolerant ordering and encrypted state maintenance service
that is used to turn the application, which runs only in the on-
premises site(s), into an Intrusion-Tolerant Application. Note
that the service provider running the BFT replication engine
may be an existing cloud provider, or, we envision that our
new architecture can allow a specialized intrusion-tolerance-
as-a-service provider to emerge. The service provider can scale
their service effectively by using the same infrastructure and
BFT Replication Engine to support many applications.

The system operator is responsible for deploying and man-
aging the Intrusion-Tolerant Application which consists of
a set of on-premises replicas (ORs). On-premises replicas
accept incoming requests from clients and forward them to
the BFT Replication Engine for ordering. The cloud replicas
establish a total order on the requests, and the on-premises
replicas execute requests according to this total order and
return responses to clients.

On-Premises Domain: In our architecture, we consider
clients and on-premises replicas to be part of the same man-
agement domain, and clients communicate only with the on-
premises replicas. This is a good fit for many industrial control
or enterprise applications where the on-premises replicas and
the clients are managed by the same entity. For example,
in an industrial control context, on-premises replicas may
be replicas of a Supervisory Control and Data Acquisition
(SCADA) server, and clients may be Remote Terminal Units or
Programmable Logic Controllers that send data to and receive
commands from the SCADA system. Or, we could consider
replicas of an Electronic Health Record (EHR) database, and
clients that are authorized devices or users accessing the ser-
vice via a VPN. Clients authenticate themselves to the system
by signing their requests using private keys; the corresponding
public keys are known by the on-premises replicas.

Cloud Domain: The cloud replicas represent a separate
management domain, managed by the cloud service provider.
To preserve confidentiality, on-premises replicas encrypt each
client request (including client IDs and sequence numbers)
before forwarding it to the cloud replicas for ordering.

In addition to performing ordering, the BFT Replication
Engine stores each ordered encrypted request. It periodically
garbage collects these requests, replacing them with encrypted
state checkpoints from the Intrusion-Tolerant Application. This
enables on-premises replicas to recover their state entirely
from the cloud, making it possible to tolerate sophisticated
network attacks, as well as management domain failures in
which all on-premises replicas lose their state (see Section IV).

Simplifying Interfaces via Threshold Signatures: To
make the interface between the cloud and on-premises do-
mains as simple as possible and avoid requiring either domain
to know internal configurations of the other, we use threshold
signatures. In our architecture, all messages between domains
must be threshold-signed. With this approach, the cloud repli-
cas only know a single public key to authenticate messages
sent by on-premises replicas, and the on-premises replicas
similarly only need to know a single public key to authenticate

messages sent by the cloud replicas.
We use an (fo+1,no)-threshold scheme for each on-

premises site, where fo+1 shares out of no total shares are
needed to generate a valid signature (where no is the number
of on-premises replicas per site). Thus, a valid threshold
signature guarantees that at least one correct on-premises
replica agreed to the content of the message. Key shares can
be refreshed without changing the public service key [45],
[35]. Similarly, messages sent from the cloud replicas to the
on-premises replicas are signed using an (fc+1,nc)-threshold
scheme (where nc is the total number of cloud replicas).

Strengthening Confidentiality via Privacy Firewalls: We
envision two separate networks: one connecting the clients
with the on-premises sites, and the other connecting the cloud
sites with the on-premises sites. Ideally, each on-premises
replica connects to each of these networks using separate
network interfaces, with another interface used for local-area
communication with the other replicas in its site. To ensure
that confidential data does not leave an on-premises site, even
in the presence of a compromised on-premises replica, we
can insert privacy firewalls (PFs) [44], [17] between the on-
premises replicas and each of the two wide-area networks. The
cloud-side PF filters messages sent from on-premises replicas
to the cloud, and the client-side PF filters messages sent from
the on-premises replicas to the clients. Since all messages that
leave an on-premises site must be threshold signed, the privacy
firewall implementation is simple: each privacy firewall knows
the relevant public key and only forwards outgoing messages
that have a valid threshold signature.

We consider each privacy firewall to be a black box, which
can be a complex configuration from prior work (e.g. [44],
[17]) or a single node. Note that while a single-node privacy
firewall may appear to be a single point of failure, since we
consider a wide-area setting, availability already depends on
the router for the site, and a privacy firewall could be integrated
with the site router, so it does not meaningfully expand the
system’s attack surface (see Section IV for details).1

IV. THREAT MODEL

Our threat model tolerates a configurable number of server
compromises and site disconnections, similar to [7]. In a
server compromise, the attacker gains control of a server
(on-premises or cloud) and can cause it to behave arbitrar-
ily (Byzantine failure). In a site disconnection, an attacker
disconnects a site (on-premises or cloud) from the network
and prevents it from communicating with replicas or clients
located in other sites (e.g. via a denial of service attack).

In order to force an attacker to exceed the tolerated num-
ber of server compromises within a limited time window,
we support proactive recovery [38], [13]. During proactive

1If weaker confidentiality guarantees are acceptable, the privacy firewall
can be left out of the architecture. In that case, our confidentiality guarantees
are the same as in [24]. In our specification, privacy firewalls forward
incoming messages to replicas within a site, but we can remove them by
having on-premises replicas directly join the relevant multicast group. In our
implementation, we use Spines [40] for inter-site multicast.
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recovery, a replica becomes temporarily unavailable until its
recovery is completed. To support the assumption that the
attacker does not exceed the tolerated threshold, the system
must employ diversity (e.g. using N-version programming [5],
[25], OS diversity [19], compile-time diversification [32],
and/or different hardware and ISPs). Note that while the
system operator must still employ diversity for the on-premises
replicas, our architecture significantly reduces their required
number of diverse variants; see Section VIII for analysis.

Due to the full separation of the Intrusion-Tolerant Applica-
tion and the BFT Replication Engine, the number of tolerated
server compromises and site disconnections, as well as the
number of supported proactive recoveries, can be configured
separately for each of them.

On-premises Threat Model: Simultaneously, in each on-
premises site, fo on-premises replicas can be compromised,
and ko on-premises replicas can be performing proactive
recovery. At the same time, do on-premises sites can be
disconnected.

Cloud Threat Model: Simultaneously, fc cloud replicas
can be compromised, kc cloud replicas can be performing
proactive recovery, and dc cloud sites can be disconnected.

Management Domain Failures: In addition to the basic
threat model, our new hybrid management model makes it
possible to recover from a management domain failure, in
which all on-premises replicas managed by a system operator
lose their state. This threat model can capture relevant practical
attacks such as ransomware: if a ransomware attack on the on-
premises replicas causes them all to lose access to their state
(because it has been maliciously encrypted), the replicas can
be taken down, cleaned, restarted, and the latest state restored
from the cloud replicas. The system will suffer an outage
during the recovery, but can seamlessly resume operations
without losing the results of any previously executed requests.2

We do not tolerate cloud domain failures, as recovering
cloud replicas may not be able to establish the latest ordinal
executed by an on-premises replica (e.g. only a single replica
has executed the ordinal, but it then becomes unreachable).
However, highly resilient systems can still be built by ensuring
sufficient resilience of the cloud domain. Cloud providers
can deploy replicas across multiple data centers and specify
the risk of simultaneous unavailability in their SLA. A spe-
cialized intrusion-tolerance-as-a-service provider can increase
management diversity by deploying replicas across infrastruc-
ture managed by different underlying cloud providers. This
type of cloud-of-clouds approach is also considered in other
works [8], [11], which explicitly store data across multiple
cloud providers (e.g. Amazon, Azure, etc).

Service Properties: Our safety and liveness guarantees are
similar to other BFT works, although we adapt them to account
for the separation between on-premises and cloud replicas. We
also guarantee confidentiality of the application data. Specif-

2Even if the attack resulted from executing one of the updates, since the
cloud replicas do not execute updates, they are not affected by the same attack.
Thus, the operator could recover on-premises replicas to the latest checkpoint,
and manually omit the update that triggered the attack.

ically, we adopt the definitions for safety and confidentiality
from [24], and the definition for liveness from [13].

Definition 1 (Safety). If two correct on-premises replicas
execute the ith update, then those updates are identical, and
the state resulting from the execution of that update at the two
on-premises replicas is also identical. [24]

Our system guarantees safety as long as no more than fo on-
premises replicas in each on-premises site and no more than
fc total cloud replicas are compromised simultaneously (once
a compromised replica goes through proactive recovery and is
restored to a correct state, it is no longer compromised). Note
that as in [24], the safety definition only includes on-premises
replicas, as cloud replicas do not execute updates.

In general, we assume that correct (non-compromised) repli-
cas follow the protocol correctly and do not lose their state.
However, we also maintain safety in the case of an on-premises
management domain failure (i.e. all on-premises replicas lose
their state), as long as no more than fc cloud replicas are
compromised (and no correct cloud replicas lose their state).
Compromised privacy firewalls cannot affect safety.

Definition 2 (Liveness). Clients eventually receive replies to
their requests [13].

To guarantee liveness, we require that the conditions of both
the on-premises and cloud threat models are met: at most fo
on-premises replicas per on-premises site and fc total cloud
replicas are compromised, at most ko on-premises replicas
per on-premises site and kc cloud replicas are undergoing
proactive recovery, and at most do on-premises sites and dc
cloud sites are disconnected from the network. We also require
that the privacy firewalls are up and correct (note that we can
tolerate failed or compromised privacy firewalls, but, since
a failed/compromised firewall effectively disconnects its site
from the network, such failures count against the do tolerated
on-premises disconnections).

Liveness also requires that correct system components that
are not in the disconnected sites are able to communicate suc-
cessfully. Specifically, we require that all correct on-premises
replicas in a given on-premises site are able to communicate
with each other and with the privacy firewalls for that site;
all cloud replicas are able to communicate with all other
correct, not-disconnected cloud replicas and with the cloud-
side privacy firewalls for the not-disconnected on-premises
sites; and the client-side privacy firewall in each on-premises
site is able to communicate with clients. Communication
between the cloud replicas must meet any network synchrony
requirements of the specific BFT protocol being used.

Definition 3 (Complete Confidentiality). System state and
state manipulation algorithms remain confidential (known only
to on-premises replicas) [24].

We guarantee complete confidentiality even if an unlimited
number of cloud replicas are compromised. We maintain this
guarantee when up to fo on-premises replicas per on-premises
site are compromised, as long as the privacy firewalls are up
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and correct. If a privacy firewall and an on-premises replica in
the same site are compromised, confidentiality can be violated.

Note that when an on-premises replica is compromised, it
may be able to use side-channel attacks to potentially reveal
confidential information, but, in contrast to all prior work,
our architecture can only leak information if such attacks
are successful. The work in [24] cannot maintain complete
confidentiality in the presence of compromised on-premises
replicas; solutions using privacy firewalls [44], [17] provide
stronger guarantees for confidential state, but inherently reveal
client information to agreement nodes; and in secret sharing
based solutions [31], [43], replicas similarly communicate di-
rectly with clients, and execute state manipulation algorithms.
We consider side-channel attacks outside the scope of this
paper. However, the privacy firewall can provide mechanisms
to make them more difficult (as discussed in [44]).

V. SYSTEM CONFIGURATION

Our decoupled system architecture can be configured based
on the threat model the operator wants to tolerate. For the
on-premises threat model, we require the total number of on-
premises sites So≥do+1, and the number of replicas in each
on-premises site no≥2fo+ko+1. This guarantees that at least
one site with fo+1 correct replicas is always available, which
is the minimum needed to generate valid threshold signatures.

The required number of cloud sites and replicas depends
on the BFT protocol used, but for protocols that normally
use 3f+2k+1 replicas to withstand f compromises and k
proactive recoveries (the most common setting), we adapt the
replica distribution formula from [7]. We require the total
number of cloud sites Sc≥2dc+1 and set the total number
of cloud replicas nc=3fc+2

⌈
3fcdc+dc+Sckc

Sc−2dc

⌉
+1, with replicas

distributed evenly across the sites. This guarantees that a
quorum of cloud replicas is always available under our threat
model. Note however, that if the nc replicas do not divide
evenly among the cloud sites, additional replicas may be
needed (see Appendix for details and derivation).

Figure 1 shows a configuration with 4 on-premises replicas
in each of 2 sites and 12 cloud replicas distributed across
4 sites. This configuration tolerates one compromise, one
disconnection, and one proactive recovery in each of the on-
premises and cloud threat models (fo=fc=do=dc=ko=kc=
1). To make site disconnections more difficult to execute
successfully, we use an intrusion-tolerant network that uses an
overlay approach to connect sites with redundancy [29], [7].
However, we make this optional for the on-premises network.

For system operators who currently use a primary and a
backup site for fault tolerance, the configuration in Figure 1
offers the full resilience benefits of our architecture with min-
imal additional infrastructure. Operators only need to contract
with a cloud provider and, assuming they have a primary
and backup server in each site already, add two servers to
each site. However, other options are possible. For example,
if cloud sites have very high availability, we can consider
a configuration with dc=0 that does not tolerate cloud site
disconnections, but only requires one cloud site and may be

useful for latency sensitive applications (see Section VIII).
Similarly, a configuration with do=0 does not tolerate on-
premises site disconnections, but allows a system operator
currently using a single site to gain intrusion tolerance and the
ability to recover from management domain failures without
constructing and managing any additional sites.

VI. PROTOCOLS FOR HYBRID MANAGEMENT OF BFT
SYSTEMS

In order to support the system architecture described in
Section III, we must develop new protocols for handling client
requests, and for performing state transfer and recovery.

A. Introducing New Client Requests

Figure 2 illustrates the steps involved in processing each
client request. First, a client signs its request with its private
key and sends it to the on-premises sites (step 1, Figure 2). If
a client does not have the capability to do this on their own,
a proxy can sign the request on the client’s behalf [7], [27].
Once the request reaches an on-premises site, it is received by
the client-side privacy firewall, which multicasts the request
to all on-premises replicas in that site (step 2, Figure 2).

To enforce confidentiality of client requests, on-premises
replicas encrypt the request using shared symmetric keys
known to all on-premises replicas (but not known to the cloud
replicas). In contrast to prior works that encrypt client requests
(e.g. [44], [17], [24]), the on-premises replicas encrypt not
only the request body, but also the client headers so that the
cloud replicas do not see client IDs and sequence numbers,
and cannot easily learn client request patterns.

Next, on-premises replicas generate a threshold signature.
Each replica encrypts the request, generates a partial signature
share over it, and multicasts the signature share to the other
replicas in its site. Upon collecting fo+1 partial signatures,
the replica combines the partial signatures to generate a full
threshold signature and sends the signed, encrypted request to
the cloud-side privacy firewall (step 3, Figure 2).

Fig. 2: Client Request Flow
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Note that to generate a full threshold signature, all on-
premises replicas must generate partial signature shares over
identical encrypted content. To ensure this, similar to the work
in [24], each on-premises replica maintains two shared secret
keys known to all on-premises replicas: one for symmetric
encryption/decryption of client requests, and the other for
generating initialization vectors via a pseudorandom function,
similar to the approach in [17]. This allows all replicas to
generate identical encrypted requests for a given client request.
To avoid signing each request individually, it is possible to
batch requests (see Appendix for details.)

After verifying the threshold signature, the privacy firewall
multicasts the signed encrypted request to the cloud replicas
(step 4, Figure 2). Cloud replicas use the threshold signature
to verify that the encrypted request is valid before introducing
it for ordering by the BFT replication engine.

While the high-level process is relatively straightforward,
fully encrypting and threshold signing client requests intro-
duces new challenges: (1) we need to address a replay-attack
vulnerability that encrypting client requests creates, and (2) we
need a procedure for consistently updating encryption keys.

1) Preventing Replay Attacks: While encrypting the full
client request (including headers) and threshold signing it
enforces stronger confidentiality than previous approaches, this
introduces a new vulnerability to replay attacks. A compro-
mised on-premises replica can overload the BFT Replication
Engine by storing threshold-signed encrypted requests and
replaying them to the cloud replicas repeatedly. Since these old
requests have valid threshold signatures, they will successfully
pass through the privacy firewall and will be accepted as
valid by the cloud replicas, causing them to waste processing
resources and bandwidth ordering the duplicate requests.

Prior works have avoided this issue by using cleartext
client IDs and sequence numbers in request headers to reject
old/duplicate requests [44], [17], [24], but this exposes client
information to the cloud replicas. A naive solution is for the
cloud replicas to store a copy of every encrypted client request
(e.g. in a hash table), and then use that to check for duplicates
(when a new request arrives), which are then discarded.
However, this is not practical as it requires unbounded memory
(cloud replicas can never garbage collect old requests).

Validity Period. To address replays, we require on-premises
replicas to append a validity period in cleartext to each en-
crypted request. The validity period is part of the content over
which the threshold signature is generated (so a compromised
replica cannot modify it). Cloud replicas store unique requests
from the current validity period in a hash table, so they can
discard requests from previous validity periods and duplicates
from the current validity period.

On-premises replicas determine the validity period based on
the latest global sequence number (lseq) they have executed,
and cloud replicas reject a request if the upper bound (ubound)
of its associated validity period is less than the lseq they have
totally ordered. So that all on-premises replicas will typically
have the same view of the validity period, we only update the
validity period every vp size sequence numbers. The lower

bound (lbound) of the validity period is set as: b lseq
vp sizec×

vp size, and the ubound is set as: lbound+(2×vp size).
Ideally, the validity period size (vp size) should be at least
the maximum number of outstanding client requests. Smaller
validity periods will not violate correctness, but can reduce
performance, because on-premises replicas may assign validity
periods that become stale by the time the request reaches the
cloud replicas. With each client limited to one outstanding
request, we can set vp size to at least M×b no

fo+1c×So (where
M is maximum number of clients, no is number of on-
premises replicas per site, and So is number of on-premises
sites). Note that there can still be brief periods where on-
premises replicas disagree on the validity period (because they
execute requests at slightly different times). However, this does
not affect liveness, since a replica will retransmit its partial
signature share for a client request (with an updated validity
period) if the request is not executed before a timeout.

2) Updating Encryption Keys: Privacy firewalls prevent
encryption key leakage, but periodic key refreshes are still
needed to be able to recover from potential side-channel
attacks or a malicious operator with physical access copying
keys. To ensure that all on-premises replicas know which
key to use to decrypt each request, we tie key changes to
the validity period (since it is the only available cleartext
information). When the end of the validity period approaches,
each on-premises replica generates a new key proposal signed
by a persistent hardware-based key (e.g. using the TPM) and
submits it for ordering. The key for the next validity period
is determined based on the ordered key proposals, similar
to [24] (although they based the key-change interval on client
sequence numbers that are not available in cleartext for us).

B. Ordering and Executing Client Requests

Upon receiving a new valid client request (i.e. one that is
within the validity period, not a duplicate, and has a valid
threshold signature), cloud replicas inject the request into
the BFT replication engine (step 5, Figure 2). This executes
the BFT agreement protocol to assign the request a global
sequence number or ordinal (step 6, Figure 2). Cloud replicas
threshold-sign the ordered encrypted request (step 7, Figure 2),
and then multicast it to the cloud-side privacy firewalls, which
forward it to the on-premises replicas (step 8, Figure 2).

Requests may occasionally arrive out-of-order due to net-
work disruptions, so on-premises replicas use a sliding window
buffer to maintain ordering. Upon receiving the next expected
ordinal, the on-premises replica executes the corresponding
request (step 9, Figure 2), generates a response, and cooperates
to create a threshold signature (step 10, Figure 2). This
response is sent to the client through the client-side privacy
firewall (step 11, Figure 2). The client (or accompanying
proxy) validates the correctness of the response by verifying
the threshold signature (step 12, Figure 2).

C. Checkpoints and Nearest-First Recovery

As discussed in Section III, to enable recovery from network
attacks and management domain failures, cloud replicas store
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encrypted state checkpoints and any encrypted requests that
have been ordered since the latest checkpoint. On-premises
replicas can request this encrypted state to recover from state
loss or prolonged disconnections.

However, as also discussed in Section III, every message
leaving an on-premises site must be threshold signed. This
requires new protocols for checkpointing and recovery across
management domains. Two important challenges are: (1)
Only threshold-signed recovery requests can be sent from
on-premises replicas to the cloud replicas. This requires on-
premises replicas to agree on which requests to send to the
cloud. (2) Because client responses must also be threshold-
signed, on-premises replicas must be able to recover these
signatures in order to serve client retransmissions.

We address these issues with a new nearest-first recovery
protocol that first attempts to perform recovery within a site,
and only sends (threshold-signed) recovery requests outside
the site if in-site recovery is unsuccessful. The protocol also
enables on-premises replicas to collect the threshold-signed
client response corresponding to each request it recovers.
This strategy is necessary under our system model, but also
improves recovery latency and wide-area bandwidth usage
by localizing state transfer as much as possible. Below we
describe the checkpointing and recovery protocols.

1) Checkpoint Creation: Each on-premises replica period-
ically generates a checkpoint representing its current state
(including the latest response for each client), encrypts it,
and then cooperates with other on-premises replicas in its site
to create a threshold signature. The replica stores the signed
encrypted checkpoint and multicasts it to the cloud replicas,
which can verify the threshold signature and then store the
encrypted checkpoint. Any replica can safely remove ordered
encrypted requests older than the currently stored checkpoint.

2) Nearest-First Recovery: Recovery begins when a replica
detects that it is missing ordered requests, e.g. due to a site
disconnection, crash, or proactive recovery.

Requesting Recovery. An on-premises replica triggers re-
covery when it receives an ordered request beyond the upper
bound of its sliding window buffer from the cloud replicas.
The recovering replica separately requests missing ordered
encrypted requests and client responses. For each, it sends a
request with a list of ordinals (global sequence numbers) that
it is missing to the other on-premises replicas in its site.

Responding to a Recovery Request. Upon receiving a
recovery request, an on-premises replica will respond with
its stored encrypted checkpoint if any ordinal in the recovery
request is older than the checkpoint. Otherwise, the replica
sends all of the requested ordered encrypted requests or client
responses it has to the recovering replica. It also sends the
associated threshold signatures for client responses; if it does
not yet have the threshold signature for a client response, it
sends its partial signature share instead. To prevent malicious
replicas from wasting resources, all replicas rate-limit their
responses to repeated recovery requests from the same replica.

Applying Recovery Responses. Upon receiving client re-
sponses, a recovering replica simply stores them. Upon re-

ceiving a checkpoint that is newer than its current state, the
recovering replica verifies the threshold signature, and decrypts
and applies the checkpoint to its local state (the latest client
responses in the checkpoint are extracted and stored).

Upon receiving new ordered encrypted requests, the recov-
ering replica decrypts and executes them (after verifying their
threshold signatures) consecutively based on the ordinals. If
it already collected a client response with threshold signature
for the executed ordered request, then it simply stores this
client response and moves on to the next ordinal. Otherwise,
the recovering replica generates the client response, sends a
partial signature to other on-premises replicas in its site, and
waits to collect fo+1 partial signature shares (including its
own). By applying a checkpoint and/or executing requests, the
recovering replica eventually catches up to the latest state.

Recovering an On-Premises Site. If all the replicas in a
site are missing the same ordered encrypted requests (which
they will eventually find out), then they can generate a
threshold signature for the recovery request and send it to the
cloud replicas. To do this, every recovery request for ordered
encrypted requests includes a validity period and a partial
signature share over the request; the validity period is based
on the ordinal of the latest ordered encrypted request received
from the cloud replicas. On receiving such a request, a cloud
replica multicasts the requested ordered encrypted requests or
encrypted checkpoint to the on-premises replicas.

To mitigate replay attacks by a malicious replica (which
may re-send an old threshold-signed recovery request), cloud
replicas rate-limit their responses to recovery requests. New
recovery requests are not subject to this rate limit. If a cloud
replica receives a request that is in the current validity period,
and is not a duplicate (checked with hashes of other requests
in the current validity period), then it responds immediately.

Recovery Procedure in Cloud: Cloud replicas use a similar
nearest first recovery strategy when they detect a gap in the
global sequence numbers from the underlying BFT protocol.
However, they do not store or request client responses.

VII. IMPLEMENTATION

We have implemented Decoupled Spire, a SCADA system
for the power grid, based on the open source Spire version
1.2 [41]. Spire 1.2 uses an integrated architecture in which
all replicas fully participate in the BFT replication protocol,
maintain application state, and execute requests [7].

Decoupled Spire Components. In Decoupled Spire, the
on-premises sites host replicas of the SCADA master ap-
plication. The clients are Programmable Logic Controllers
(PLCs), Remote Terminal Units (RTUs), and Human Machine
Interfaces (HMIs); we use the HMI and emulated PLCs/RTUs
available in Spire 1.2. Like Spire 1.2, we use Prime [3], [34]
as the BFT replication engine. We add a single-node privacy
firewall to these components. Privacy firewalls run in each on-
premises site and use the public service key for that site to
verify threshold signatures on all outgoing messages. We use
Spines [40] for our intrusion-tolerant networks: one Spines
network connects all the cloud replicas to each other and
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Avg Latency % <100ms 0.1st percentile 1st percentile 50th percentile 99th percentile 99.9th percentile
Decoupled Spire (fo=1, fc=1, do=0, dc=0) 41.8 ms 100 27.9 ms 30.1 ms 41.8 ms 53.1 ms 54.8 ms
Decoupled Spire (fo=1, fc=1, do=1, dc=0) 41.9 ms 100 27.7 ms 30.1 ms 41.9 ms 53.1 ms 54.9 ms
Decoupled Spire (fo=1, fc=1, do=0, dc=1) 58.7 ms 100 46.6 ms 48.0 ms 58.7 ms 69.5 ms 71.3 ms
Decoupled Spire (fo=1, fc=1, do=1, dc=1) 58.9 ms 100 46.9 ms 48.1 ms 59.0 ms 69.6 ms 71.3 ms

Confidential Spire 2021 [24] (f=1) 50.1 ms 100 38.4 ms 39.6 ms 50.1 ms 60.9 ms 63.5 ms
Spire 2018 [7] (f=1) 49.9 ms 100 38.2 ms 39.2 ms 50.0 ms 60.5 ms 62.2 ms

Decoupled Spire (fo=2, fc=1, do=1, dc=1) 58.9 ms 100 46.9 ms 48.2 ms 58.9 ms 69.7 ms 71.6 ms
Decoupled Spire (fo=1, fc=2, do=1, dc=1) 60.5 ms 100 48.5 ms 49.5 ms 60.5 ms 71.7 ms 75.2 ms
Decoupled Spire (fo=2, fc=2, do=1, dc=1) 62.0 ms 100 49.4 ms 50.6 ms 62.0 ms 74.3 ms 78.2 ms

Confidential Spire 2021 [24] (f=2) 56.5 ms 100 42.2 ms 43.7 ms 56.7 ms 69.8 ms 73.8 ms
Spire 2018 [7] (f=2) 53.4 ms 100 39.6 ms 41.1 ms 53.5 ms 64.1 ms 67.9 ms

TABLE I: Normal Operation Performance on LAN with emulated latencies between sites for 36000 updates over 1 hour

the cloud-side privacy firewalls, and a second Spines network
connects the clients to the client-side privacy firewalls. Inside
each on-premises site, replicas communicate using UDP over
a switched LAN (with application-level retransmissions).

Separating Agreement and Execution. In contrast to Spire
1.2, our SCADA master replicas do not participate in the Prime
replication protocol. Instead, each SCADA master is linked
with a simple intrusion-tolerance layer that prepares each
client request for ordering, sends it to the cloud replicas, and
then receives, buffers, and verifies signatures on incoming or-
dered updates. Preparing a client request for ordering involves
encrypting it, appending a validity period, and generating a
threshold signature on it. Our implementation of encryption
is similar to that in [24], which is based on [17]. We use the
client request and a pseudo-random function key (refreshed
each validity period and shared by all on-premises replicas, as
discussed in Section VI-A2) to generate a hash-based message
authentication code (HMAC). This HMAC is used as the
initialization vector (IV), along with the shared encryption key,
to encrypt the entire client request using AES-256 in CBC
mode. This encrypted request is accompanied by a clear-text
header that includes the validity period and IV, and a threshold
signature covering the header and the encrypted request.

VIII. EVALUATION

The main benefit of Decoupled Spire is its clean separa-
tion of the cloud and on-premises domains, which simplifies
management while supporting a strong threat model. Here, we
quantify the performance overhead of this separation (the main
tradeoff for system operators) by comparing Decoupled Spire
with Spire 1.2 [7] and Confidential Spire [24]. We show that
this tradeoff is acceptable for this latency-sensitive application.

All experiments are done using a local area network with
emulated latencies between sites that reflect a realistic geo-
graphic distribution that spans 250 miles of the US East Coast
(similar to [7]). This corresponds to emulated latencies of 2 to
5 ms between each pair of sites. We emulate ten power grid
substations, where each introduces a new request every second
for a total of 36,000 requests in a one hour period.

Normal Operation Performance (f=1). Table I shows
client request latencies over a one-hour experiment for each
configuration. We can see that Decoupled Spire (fo=1,fc=
1,do=1,dc=1), which tolerates one compromise, one proactive
recovery and one site disconnection in both on-premises and
cloud domains, has an average latency of 58.9ms, compared
to about 50ms for Spire 1.2 (f=1) and Confidential Spire

(f=1)3, for an overhead of about 9ms (18%). The overhead
comes from the additional wide-area communications on the
critical path of request processing: in Decoupled Spire, on-
premises replicas must send each client request to the cloud
replicas before it is introduced for ordering, whereas, in Spire
and Confidential Spire, the control center replicas directly
inject requests via their local BFT replication instances. In our
experimental setting, this extra wide-area delay adds a total of
4ms to the processing of each request. The remaining 5ms
is due to the additional processing done by the on-premises
and cloud replicas (more messages, encryption, decryption,
duplicate check, and threshold signing and verification).

Decoupled Spire (fo=1,fc=1,do=0,dc=1), which does not
tolerate any on-premises site disconnection, has almost exactly
the same overhead as Decoupled Spire (fo=1,fc=1,do=1,dc=
1), since it has the same additional wide-area communications
and processing in the critical path.

Interestingly, Decoupled Spire (fo=1,fc=1,do=1,dc=0),
which does not tolerate any cloud site disconnection, achieves
about 8ms (16%) less latency compared to Spire 1.2 (f=1)
and Confidential Spire (f=1), and 17ms (29%) less latency
compared to Decoupled Spire (fo=1,fc=1,do=1,dc=1). This
is because the entire agreement protocol runs in a single cloud
site: even with the additional wide-area delays for sending
the request to the cloud and back, eliminating wide-area
communication overhead in the agreement protocol results
in lower total latency. For latency-sensitive applications, this
may be attractive if service providers can guarantee near
100% uptime for their cloud sites and effectively bolster them
against DoS attacks. Decoupled Spire (fo=1,fc=1,do=0,dc=
0), which does not tolerate any site disconnection, has similar
performance, since it also uses just one cloud site.

Increasing the Number of Tolerated Intrusions. In De-
coupled Spire, increasing fo from 1 to 2 (lower half of Table I)
has negligible effect on latency, since most of the additional
communication happens inside the on-premises site over a
LAN. This can be useful for system operators who want to
increase the resiliency in their on-premises sites (which may
be less protected) without needing any higher resiliency in the
cloud (which may be better protected).

Table I also shows that Decoupled Spire with fo=fc=2
increases latency by about 3.1ms compared to Decoupled Spire
with fo=fc=1. Interestingly, Spire 1.2 also adds about 3.3ms

3In our experiments, the overhead of Confidential Spire compared to Spire
1.2 is smaller than the one reported in [24], likely due to hardware differences.
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(a) Server and Site Recovery (b) Domain Recovery

Fig. 3: Performance During Attack Recovery

when increasing f from 1 to 2. This is because most of the
increase comes from the increased wide-area communications
in the BFT agreement protocol which is about the same for
both systems (both increase the number of BFT replicas from
12 to 19). Confidential Spire shows a larger increase (6.4ms)
when f is increased from 1 to 2, as the number of replicas in
the BFT protocol increases from 14 to 21.

Performance during Failures and Recovery. We evaluated
the performance of Decoupled Spire (fo=1,fc=1,do=1,dc=1)
while recovering after a failure or an attack. We emulated
this in 1-hour long experiments by repeatedly killing and
restarting the SCADA application of a single server (for server
recovery), all servers in an on-premises site (for site recovery),
or all servers in both on-premises sites (for domain recovery).
For each experiment, we kill the SCADA application, wait 1
minute, restart the SCADA application, again wait 1 minute,
then repeat. A restarted server must collect the latest state from
other replicas, so it emulates the proactive recovery process
after state has been corrupted by an attacker.

Our SCADA application requires client request latencies
within a 100ms threshold under normal operations, and can
tolerate up to 200ms for a few requests [1]. Figure 3a shows
that our Decoupled Spire achieves just that since no request
crosses 100ms during server or site recoveries. This is because
during server recovery, the entire recovery process happens
within the on-premises site, while the path for processing
client requests through the other on-premises site remains
unaffected. We see a few small spikes in latencies (but none
over 100ms) during site recovery, since the recovering replicas
need to pull the latest encrypted checkpoint and encrypted
ordered requests from the cloud replicas which generates extra
wide-area network traffic that affects request latencies.

During a domain recovery, we see large latency spikes while
both on-premises sites are recovering, but the performance
quickly returns to normal as soon as either on-premises site
finishes recovering. Figure 3b shows a few requests with very
high latencies (e.g. 64s for point A and 90s for point B). This
is because those requests were submitted just before both the
on-premises sites went down, and hence were ordered and held
by the cloud replicas until the on-premises sites recovered.

Discussion on Throughput. In our current implementation,
the throughput of the system is primarily limited by the BFT
replication engine (in our case, Prime [3], [34]), so we do
not focus on throughput in the evaluation. However, there are

Number of Diverse Variants

App BFT
On-

Premises
(App/BFT)

Decoupled Spire (fo=1, fc=1, do=1, dc=1) 4 12 4 / 0
Confidential Spire 2021 [24] (f=1) 8 14 8 / 8

Spire 2018 [7] (f=1) 12 12 6 / 6
Decoupled Spire (fo=2, fc=2, do=1, dc=1) 6 19 6 / 0

Confidential Spire 2021 [24] (f=2) 12 21 12 / 12
Spire 2018 [7] (f=2) 19 19 10 / 10

TABLE II: Diversity Analysis (number of diverse variants)

three additional factors in our architecture that can impact
throughput: threshold signing for new client requests at on-
premises replicas, threshold signing ordered encrypted updates
at cloud replicas, and threshold signing client responses. Of
these, the threshold signing of ordered encrypted updates is
the only new addition compared to Confidential Spire [24].

Diversity Analysis. To support failure independence as-
sumptions, each instance of the application, and each instance
of the BFT engine should be different from all other instances.
Decoupled Spire significantly reduces the number of diverse
variants required for the application. Because we tolerate fo
compromises per on-premises site, a system operator can set
up diverse replicas in one site, and then simply duplicate that
same setup for their additional site(s). In contrast, Confidential
Spire requires that all application replicas are diverse, and
Spire runs an application instance at every replica, requiring
a much larger number of diverse variants. While we require
about the same number of variants for the BFT replication
engine as previous systems, the service provider approach
has an important benefit here: the service provider can use
the same set of (diverse) replicas to serve many applications,
which can help make it cost-effective to invest in expensive
diversity techniques (e.g. N-version programming).

Table II summarizes the number of required diverse appli-
cation and BFT engine variants in each architecture, as well as
how many of those variants need to be deployed on-premises.
For example, for the case of f=1, we require only 4 diverse
application variants compared to 8 for Confidential Spire or 12
for Spire. The total number of diverse components that need to
be deployed on-premises is dramatically reduced, since both
Spire and Confidential Spire require BFT replicas (with diverse
variants) to be deployed on-premises.

IX. CONCLUSION

We have presented a decoupled cloud-based BFT archi-
tecture that allows system operators to deploy and manage
intrusion-tolerant applications, while completely offloading the
BFT replication protocol to a cloud service provider. It does
this while preserving the confidentiality of application state,
algorithms, and client request patterns even if a threshold
number of on-premises replicas, and any number of cloud
replicas in the cloud sites are compromised. It supports a
broad threat model including server compromises, network
attacks, and management domain failures. We implemented
and evaluated the system and showed that it introduces a
latency overhead of only about 9ms (18%) compared to an
integrated system-operator-managed BFT architecture.
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X. APPENDIX

A. Calculating the number of required cloud replicas
To calculate the number of cloud replicas, we generalize

the replica distribution formula from [7]. That work showed
how to distribute replicas across sites to withstand exactly one
site disconnection, while tolerating f intrusions and exactly
one proactive recovery. We adapt this approach to tolerate any
number of site disconnections, and any number of simultane-
ous proactive recoveries. We assume a BFT replication pro-
tocol that normally uses 3f+2k+1 replicas to simultaneously
withstand f intrusions and k proactive recoveries.

Similar to [7], we let the k parameter in the standard
formula represent the total number of replicas that may be
simultaneously unavailable (not only going through proactive
recovery). For clarity, we use u to represent this total number
of unavailable replicas, since we use kc to represent the
number of cloud replicas that may be going through proactive
recovery. We let fc represent the number of tolerated intrusions
in the cloud, and let nc represent the total number of cloud
replicas. Therefore, in order for the BFT protocol to make
progress, we require that 2fc+u+1 out of nc=3fc+2u+1
total replicas are correct, available, and connected.

If we assume replicas are distributed as evenly as possible
across sites, then, to tolerate dc site disconnections out of Sc

total sites, in a system with nc total replicas, we require:

u≥dc
⌈
nc

Sc

⌉
+kc (1)

This guarantees that the tolerated number of unavailable
replicas is at least the number of replicas in the dc dis-
connected sites, plus the kc replicas that may be down for
proactive recovery.

To get a lower bound for the required value of u, we can
drop the ceiling function and calculate:

u≥dc
(
nc

Sc

)
+kc (2)

Substituting the formula for nc into (2) gives us:

u≥dc
(
3fc+2u+1

Sc

)
+kc (3)

Solving (3) for u, we get:

u≥3dcfc+dc+Sckc
Sc−2dc

(4)

Since we require u to be an integer (a whole number of
replicas), we can apply the ceiling function and choose u as:

u=

⌈
3dcfc+dc+Sckc

Sc−2dc

⌉
(5)

To get a lower bound on the required number of replicas
nc, we can substitute the above lower bound for u into the
formula 3fc+2u+1 to get:

nc=3fc+2

⌈
3dcfc+dc+Sckc

Sc−2dc

⌉
+1 (6)

In the case where the nc resulting from equation (6) is
evenly divisible by Sc, we can directly use this nc as our
number of cloud replicas, and distribute the replicas evenly
across the Sc sites. This is guaranteed to satisfy the require-
ment in inequality (1). The reasoning for this is as follows:
from inequalities (2)-(4) and equation (5), we have shown that
setting u as in (5) satisfies inequality (2). When nc is evenly
divisible by Sc, the right-hand side of inequality (2) is exactly
equal to the right-hand side of inequality (1). Thus, this choice
of u also satisfies inequality (1) in this case.

However, when the nc resulting from equation (6) is not
evenly divisible by Sc, we are not guaranteed that inequality
(1) is satisfied. In this case, we can calculate an upper bound on
the required value of u, and then test each value of u between
the lower bound and the upper bound to find one that satisfies
inequality (1).

By the definition of the ceiling function, we know:

dc

⌈
nc

Sc

⌉
+kc<dc

(
nc

Sc
+1

)
+kc (7)

We want to find a value of u that is guaranteed to satisfy
inequality (1). Based on inequality (7), we know the following
choice of u is safe:

u=dc

(
nc

Sc
+1

)
+kc (8)

Substituting the formula for nc into (8) we get:

u=dc

(
3fc+2u+1

Sc
+1

)
+kc (9)

Solving (9) for u, we get:

u=
3dcfc+dc+Scdc+Sckc

Sc−2dc
(10)

Since we require u to be an integer, we can apply the ceiling
function:

u=

⌈
3dcfc+dc+Scdc+Sckc

Sc−2dc

⌉
(11)

Setting u as in (11) satisfies inequality (1). But, this is not
necessarily the minimum value. To find the minimum integer
value of u that satisfies (1), we consider every value of u
between the values in (5) and (11):

⌈
3dcfc+dc+Sckc

Sc−2dc

⌉
≤u≤

⌈
3dcfc+dc+Scdc+Sckc

Sc−2dc

⌉
(12)

To find the number of required replicas nc, we test each
integer in this range as a possible value for u, and calculate
nc using the usual formula:

nc=3fc+2u+1 (13)

We start from the lower bound, and for each u and corre-
sponding nc, we check whether inequality (1) is satisfied. We
choose the smallest u that satisfies this inequality, and use the
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corresponding nc from equation (13) as the total number of
replicas, distributing them as evenly as possible across the Sc

sites.
Note that a clear implication of the lower bound (5) and

upper bound (11) for u is that we require the quantity Sc−2dc
(the denominator in the formulas for u) to be strictly greater
than 0. Thus, we require the total number of cloud sites:

Sc≥2dc+1 (14)

B. Batching of Client Requests

To generate threshold signatures on new client requests
efficiently, it is important to be able to batch requests, such
that replicas do not need to sign every request individually.
Unfortunately, client requests may not arrive in the same order
at every on-premises replica, so replicas may not generate
identical batches (and requiring replicas to agree on the batch
contents is essentially equivalent to running the agreement
protocol). Without identical batches, the partial signature
shares generated over these batches will not combine correctly.
Therefore, we allow replicas to contribute partial signatures to
batches received from other replicas as described below.

Each on-premises replica batches received client requests
with a limit on the maximum count and/or time, sorting
batched requests by their client IDs. Next, the on-premises
replica encrypts the batch, generates a partial signature over
it, and sends the encrypted batch (with its partial signature)
to all other on-premises replicas in its site. Upon receiving a
batch of client requests, an on-premises replica decrypts it and
verifies each of the client requests with the respective client’s
public key. Once the entire batch is verified, the on-premises
replica generates a partial signature for the encrypted batch
and sends it back. Upon collecting fo+1 partial signatures

(including its own), an on-premises replica can generate a
threshold signature. It sends the encrypted batch (with the
threshold signature) to the cloud replicas through the cloud-
side privacy firewall, which verifies the threshold signature
before forwarding it.

To optimize the batching process, when an on-premises
replica’s batch of encrypted requests matches that of another
on-premises replica’s, it uses the accompanying partial sig-
nature from the other on-premises replica for its own batch
of encrypted requests. Since we require the client requests
inside a batch to be sorted by client IDs, and there is typically
very little delay variation or chance of message loss within
a site, we can expect that new batches from different on-
premises replicas within a site to almost always match, and
hence threshold signatures can be generated quickly.

Note that we do not need to change our validity period
procedure for batching requests. Since we limit each client to
one outstanding request at a time, in the worst case scenario,
a malicious replica can space out the client requests to one
per batch, but the validity period takes into account the total
number of clients. Hence, the malicious replica will not be able
to quickly fill up the validity period and slow down processing
of new requests.

The cloud replicas treat this encrypted batch of requests
same as a single encrypted request (check validity period and
threshold signature, order the batch, threshold sign the ordered
encrypted batch of requests, and finally send this back to
the on-premises replicas). Upon receiving a ordered encrypted
batch of requests, the on-premises replica checks the threshold
signature, decrypts the batch, and then executes each request
in the same order as they are in the batch. Since each batch
has an ordinal number, batches are processed consecutively
according to their ordinal numbers.
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