

Problem 1. (20 pts) For each of the vectors S below either write its decomposition in a tensor product of two vectors or show that it is indecomposable.

(a) $S = 2e_1 \otimes e_2 - e_1 \otimes e_1 \in \mathbb{C}^2 \otimes \mathbb{C}^2$

(b) $S = e_1 \otimes e_1 - e_1 \otimes e_2 - e_2 \otimes e_1 + e_2 \otimes e_2 \in \mathbb{C}^2 \otimes \mathbb{C}^2$

(c) $S = e_1 \otimes e_2 - e_2 \otimes e_1 \in \mathbb{C}^2 \otimes \mathbb{C}^2$

Problem 2. (15 pts) Do indecomposable vectors form a vector subspace inside $V \otimes W$? If 'yes' give a proof, if 'no', give an example of two vector spaces V, W and two indecomposable vectors $S_1, S_2 \in V \otimes W$ with $S_1 + S_2$ not indecomposable.

Problem 3. (15 pts) Consider the Greenberger-Horne-Zeilinger state GHZ_n = $\frac{1}{\sqrt{2}}$ 2 $(|00...0|$ \sum_{n} $\rangle + |11...1\rangle$ \sum_{n} ⟩) and construct a quantum circuit for the gate $[0, 0, \ldots, 0]$ $\underbrace{00...0}_{n}$ \rightarrow GHZ_n using Hadamard and $\underbrace{C...C}_{k}$ NOT gates with $1 \leq k \leq n-1$. No ancilla qubits are allowed.

(a) $n = 2$.

(b) $n = 3$.

(c) Any $n \in \mathbb{Z}_{>1}$.

Problem 4. (20 pts) Suppose Alice and Bob share an EPR-pair, $|\psi\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|00\rangle + |11\rangle)$. Then they can transmit two classical bits by sending one qubit over the channel; the procedure is called *superdense coding*. This exercise will show how this works.

(a) Alice has classical bits a and b. Suppose she applies an $X = NOT = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ -gate on her half of the EPR-pair if $a = 1$, followed by a $Z = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 0 −1 -gate if $b = 1$ (she does both if $(a, b) = (1, 1)$, and neither if $(a, b) = (0, 0)$). Write the resulting 2-qubit state for the four different pairs of bits (a, b) .

(b) Suppose Alice sends her half of the state to Bob, who now has two qubits. Show that Bob can determine both a and b from his state, using Hadamard and CNOT gates, followed by a measurement in the standard basis.

Remark. You have just established another **Bennet's law**^{[1](#page-2-0)}: 1 ebit + 1 qubit \geq 2 classical bits.

Problem 5. (30 pts) Let $U_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ $sin(\theta)$ $cos(\theta)$ be the operator of rotation by an angle θ with $|\varphi\rangle = U_{\theta}(|0\rangle)$ and $|\varphi^{\perp}\rangle = U_{\theta}(|1\rangle).$

(a) Show that $ZX(|\varphi^{\perp}\rangle) = |\varphi\rangle$.

¹In agricultural economics and development economics, Bennett's law observes that as incomes rise, people eat relatively fewer calorie-dense starchy staple foods and relatively more nutrient-dense meats, oils, sweeteners, fruits, and vegetables. Bennett's law is related to Engel's law, which considers the relationship between rising household incomes and total food spending $\binom{n}{k}$

(b) Show that an EPR-pair, $|\psi\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|00\rangle + |11\rangle)$, can also be written as $|\psi\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|\varphi\varphi\rangle+|\varphi^{\perp}\varphi^{\perp}\rangle).$ $\frac{1}{2}(|\varphi\varphi\rangle+|\varphi^{\perp}\varphi^{\perp}\rangle).$ $\frac{1}{2}(|\varphi\varphi\rangle+|\varphi^{\perp}\varphi^{\perp}\rangle).$ ²

(c) Suppose Alice and Bob start with an EPR-pair. Alice applies U_{θ}^{-1} to her qubit and then measures it in the standard basis. What state does Bob have if her outcome was $|0\rangle$, and what state does he have if her outcome was $|1\rangle$?

(d) Suppose Alice knows the angle of rotation θ (can apply U_{θ} and U_{θ}^{-1}) but Bob does not. Give a protocol (algorithm) that uses one EPR-pair and one classical bit of communication where Bob ends up with the qubit $|\varphi\rangle$ (in contrast to general teleportation of an unknown qubit, which uses 1 EPR-pair and 2 bits of communication).

²Hint: you need to check that $U_\theta e_1 \otimes U_\theta e_1 + U_\theta e_2 \otimes U_\theta e_2 = e_1 \otimes e_1 + e_2 \otimes e_2$, where $e_1 = (1,0)$ and $e_2 = (0,1)$ form the standard basis of \mathbb{C}^2 .